blob: ad9cc632f02c3082fddd1c6e0f721f333b1898dd [file] [log] [blame]
<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source of the Rust file `/root/.cargo/git/checkouts/rulinalg-309246e5a94bf5cf/1ed8b93/src/matrix/decomposition/svd.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>svd.rs - source</title><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../SourceSerif4-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../FiraSans-Regular.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../FiraSans-Medium.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../SourceCodePro-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../SourceSerif4-Bold.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../SourceCodePro-Semibold.ttf.woff2"><link rel="stylesheet" href="../../../../normalize.css"><link rel="stylesheet" href="../../../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" href="../../../../ayu.css" disabled><link rel="stylesheet" href="../../../../dark.css" disabled><link rel="stylesheet" href="../../../../light.css" id="themeStyle"><script id="default-settings" ></script><script src="../../../../storage.js"></script><script defer src="../../../../source-script.js"></script><script defer src="../../../../source-files.js"></script><script defer src="../../../../main.js"></script><noscript><link rel="stylesheet" href="../../../../noscript.css"></noscript><link rel="alternate icon" type="image/png" href="../../../../favicon-16x16.png"><link rel="alternate icon" type="image/png" href="../../../../favicon-32x32.png"><link rel="icon" type="image/svg+xml" href="../../../../favicon.svg"></head><body class="rustdoc source"><!--[if lte IE 11]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><a class="sidebar-logo" href="../../../../rulinalg/index.html"><div class="logo-container"><img class="rust-logo" src="../../../../rust-logo.svg" alt="logo"></div></a></nav><main><div class="width-limiter"><nav class="sub"><a class="sub-logo-container" href="../../../../rulinalg/index.html"><img class="rust-logo" src="../../../../rust-logo.svg" alt="logo"></a><form class="search-form"><div class="search-container"><span></span><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"><div id="help-button" title="help" tabindex="-1"><a href="../../../../help.html">?</a></div><div id="settings-menu" tabindex="-1"><a href="../../../../settings.html" title="settings"><img width="22" height="22" alt="Change settings" src="../../../../wheel.svg"></a></div></div></form></nav><section id="main-content" class="content"><div class="example-wrap"><pre class="src-line-numbers"><span id="1">1</span>
<span id="2">2</span>
<span id="3">3</span>
<span id="4">4</span>
<span id="5">5</span>
<span id="6">6</span>
<span id="7">7</span>
<span id="8">8</span>
<span id="9">9</span>
<span id="10">10</span>
<span id="11">11</span>
<span id="12">12</span>
<span id="13">13</span>
<span id="14">14</span>
<span id="15">15</span>
<span id="16">16</span>
<span id="17">17</span>
<span id="18">18</span>
<span id="19">19</span>
<span id="20">20</span>
<span id="21">21</span>
<span id="22">22</span>
<span id="23">23</span>
<span id="24">24</span>
<span id="25">25</span>
<span id="26">26</span>
<span id="27">27</span>
<span id="28">28</span>
<span id="29">29</span>
<span id="30">30</span>
<span id="31">31</span>
<span id="32">32</span>
<span id="33">33</span>
<span id="34">34</span>
<span id="35">35</span>
<span id="36">36</span>
<span id="37">37</span>
<span id="38">38</span>
<span id="39">39</span>
<span id="40">40</span>
<span id="41">41</span>
<span id="42">42</span>
<span id="43">43</span>
<span id="44">44</span>
<span id="45">45</span>
<span id="46">46</span>
<span id="47">47</span>
<span id="48">48</span>
<span id="49">49</span>
<span id="50">50</span>
<span id="51">51</span>
<span id="52">52</span>
<span id="53">53</span>
<span id="54">54</span>
<span id="55">55</span>
<span id="56">56</span>
<span id="57">57</span>
<span id="58">58</span>
<span id="59">59</span>
<span id="60">60</span>
<span id="61">61</span>
<span id="62">62</span>
<span id="63">63</span>
<span id="64">64</span>
<span id="65">65</span>
<span id="66">66</span>
<span id="67">67</span>
<span id="68">68</span>
<span id="69">69</span>
<span id="70">70</span>
<span id="71">71</span>
<span id="72">72</span>
<span id="73">73</span>
<span id="74">74</span>
<span id="75">75</span>
<span id="76">76</span>
<span id="77">77</span>
<span id="78">78</span>
<span id="79">79</span>
<span id="80">80</span>
<span id="81">81</span>
<span id="82">82</span>
<span id="83">83</span>
<span id="84">84</span>
<span id="85">85</span>
<span id="86">86</span>
<span id="87">87</span>
<span id="88">88</span>
<span id="89">89</span>
<span id="90">90</span>
<span id="91">91</span>
<span id="92">92</span>
<span id="93">93</span>
<span id="94">94</span>
<span id="95">95</span>
<span id="96">96</span>
<span id="97">97</span>
<span id="98">98</span>
<span id="99">99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
<span id="290">290</span>
<span id="291">291</span>
<span id="292">292</span>
<span id="293">293</span>
<span id="294">294</span>
<span id="295">295</span>
<span id="296">296</span>
<span id="297">297</span>
<span id="298">298</span>
<span id="299">299</span>
<span id="300">300</span>
<span id="301">301</span>
<span id="302">302</span>
<span id="303">303</span>
<span id="304">304</span>
<span id="305">305</span>
<span id="306">306</span>
<span id="307">307</span>
<span id="308">308</span>
<span id="309">309</span>
<span id="310">310</span>
<span id="311">311</span>
<span id="312">312</span>
<span id="313">313</span>
<span id="314">314</span>
<span id="315">315</span>
<span id="316">316</span>
<span id="317">317</span>
<span id="318">318</span>
<span id="319">319</span>
<span id="320">320</span>
<span id="321">321</span>
<span id="322">322</span>
<span id="323">323</span>
<span id="324">324</span>
<span id="325">325</span>
<span id="326">326</span>
<span id="327">327</span>
<span id="328">328</span>
<span id="329">329</span>
<span id="330">330</span>
<span id="331">331</span>
<span id="332">332</span>
<span id="333">333</span>
<span id="334">334</span>
<span id="335">335</span>
<span id="336">336</span>
<span id="337">337</span>
<span id="338">338</span>
<span id="339">339</span>
<span id="340">340</span>
<span id="341">341</span>
<span id="342">342</span>
<span id="343">343</span>
<span id="344">344</span>
<span id="345">345</span>
<span id="346">346</span>
<span id="347">347</span>
<span id="348">348</span>
<span id="349">349</span>
<span id="350">350</span>
<span id="351">351</span>
<span id="352">352</span>
<span id="353">353</span>
<span id="354">354</span>
<span id="355">355</span>
<span id="356">356</span>
<span id="357">357</span>
<span id="358">358</span>
<span id="359">359</span>
<span id="360">360</span>
<span id="361">361</span>
<span id="362">362</span>
<span id="363">363</span>
<span id="364">364</span>
<span id="365">365</span>
<span id="366">366</span>
<span id="367">367</span>
<span id="368">368</span>
<span id="369">369</span>
<span id="370">370</span>
<span id="371">371</span>
<span id="372">372</span>
<span id="373">373</span>
<span id="374">374</span>
<span id="375">375</span>
<span id="376">376</span>
<span id="377">377</span>
<span id="378">378</span>
<span id="379">379</span>
<span id="380">380</span>
<span id="381">381</span>
<span id="382">382</span>
<span id="383">383</span>
<span id="384">384</span>
<span id="385">385</span>
<span id="386">386</span>
<span id="387">387</span>
<span id="388">388</span>
<span id="389">389</span>
<span id="390">390</span>
<span id="391">391</span>
<span id="392">392</span>
<span id="393">393</span>
<span id="394">394</span>
<span id="395">395</span>
<span id="396">396</span>
<span id="397">397</span>
<span id="398">398</span>
<span id="399">399</span>
<span id="400">400</span>
<span id="401">401</span>
<span id="402">402</span>
<span id="403">403</span>
<span id="404">404</span>
<span id="405">405</span>
<span id="406">406</span>
<span id="407">407</span>
<span id="408">408</span>
<span id="409">409</span>
<span id="410">410</span>
<span id="411">411</span>
<span id="412">412</span>
<span id="413">413</span>
<span id="414">414</span>
<span id="415">415</span>
<span id="416">416</span>
<span id="417">417</span>
<span id="418">418</span>
<span id="419">419</span>
<span id="420">420</span>
<span id="421">421</span>
<span id="422">422</span>
<span id="423">423</span>
<span id="424">424</span>
<span id="425">425</span>
<span id="426">426</span>
<span id="427">427</span>
<span id="428">428</span>
<span id="429">429</span>
<span id="430">430</span>
<span id="431">431</span>
<span id="432">432</span>
<span id="433">433</span>
<span id="434">434</span>
<span id="435">435</span>
<span id="436">436</span>
<span id="437">437</span>
<span id="438">438</span>
<span id="439">439</span>
<span id="440">440</span>
<span id="441">441</span>
<span id="442">442</span>
<span id="443">443</span>
<span id="444">444</span>
<span id="445">445</span>
<span id="446">446</span>
<span id="447">447</span>
<span id="448">448</span>
<span id="449">449</span>
</pre><pre class="rust"><code><span class="kw">use </span>matrix::{Matrix, BaseMatrix, BaseMatrixMut, MatrixSlice, MatrixSliceMut};
<span class="kw">use </span>error::{Error, ErrorKind};
<span class="kw">use </span>std::any::Any;
<span class="kw">use </span>std::cmp;
<span class="kw">use </span>libnum::{Float, Signed};
<span class="doccomment">/// Ensures that all singular values in the given singular value decomposition
/// are non-negative, making necessary corrections to the singular vectors.
///
/// The SVD is represented by matrices `(b, u, v)`, where `b` is the diagonal matrix
/// containing the singular values, `u` is the matrix of left singular vectors
/// and v is the matrix of right singular vectors.
</span><span class="kw">fn </span>correct_svd_signs&lt;T&gt;(<span class="kw-2">mut </span>b: Matrix&lt;T&gt;,
<span class="kw-2">mut </span>u: Matrix&lt;T&gt;,
<span class="kw-2">mut </span>v: Matrix&lt;T&gt;)
-&gt; (Matrix&lt;T&gt;, Matrix&lt;T&gt;, Matrix&lt;T&gt;)
<span class="kw">where </span>T: Any + Float + Signed
{
<span class="comment">// When correcting the signs of the singular vectors, we can choose
// to correct EITHER u or v. We make the choice depending on which matrix has the
// least number of rows. Later we will need to multiply all elements in columns by
// -1, which might be significantly faster in corner cases if we pick the matrix
// with the least amount of rows.
</span>{
<span class="kw">let </span><span class="kw-2">ref mut </span>shortest_matrix = <span class="kw">if </span>u.rows() &lt;= v.rows() { <span class="kw-2">&amp;mut </span>u } <span class="kw">else </span>{ <span class="kw-2">&amp;mut </span>v };
<span class="kw">let </span>column_length = shortest_matrix.rows();
<span class="kw">let </span>num_singular_values = cmp::min(b.rows(), b.cols());
<span class="kw">for </span>i <span class="kw">in </span><span class="number">0</span>..num_singular_values {
<span class="kw">if </span>b[[i, i]] &lt; T::zero() {
<span class="comment">// Swap sign of singular value and column in u
</span>b[[i, i]] = b[[i, i]].abs();
<span class="comment">// Access the column as a slice and flip sign
</span><span class="kw">let </span><span class="kw-2">mut </span>column = shortest_matrix.sub_slice_mut([<span class="number">0</span>, i], column_length, <span class="number">1</span>);
column <span class="kw-2">*</span>= -T::one();
}
}
}
(b, u, v)
}
<span class="kw">fn </span>sort_svd&lt;T&gt;(<span class="kw-2">mut </span>b: Matrix&lt;T&gt;,
<span class="kw-2">mut </span>u: Matrix&lt;T&gt;,
<span class="kw-2">mut </span>v: Matrix&lt;T&gt;)
-&gt; (Matrix&lt;T&gt;, Matrix&lt;T&gt;, Matrix&lt;T&gt;)
<span class="kw">where </span>T: Any + Float + Signed
{
<span class="macro">assert!</span>(u.cols() == b.cols() &amp;&amp; b.cols() == v.cols());
<span class="comment">// This unfortunately incurs two allocations since we have no (simple)
// way to iterate over a matrix diagonal, only to copy it into a new Vector
</span><span class="kw">let </span><span class="kw-2">mut </span>indexed_sorted_values: Vec&lt;<span class="kw">_</span>&gt; = b.diag().cloned().enumerate().collect();
<span class="comment">// Sorting a vector of indices simultaneously with the singular values
// gives us a mapping between old and new (final) column indices.
</span>indexed_sorted_values.sort_by(|<span class="kw-2">&amp;</span>(<span class="kw">_</span>, <span class="kw-2">ref </span>x), <span class="kw-2">&amp;</span>(<span class="kw">_</span>, <span class="kw-2">ref </span>y)| {
x.partial_cmp(y)
.expect(<span class="string">&quot;All singular values should be finite, and thus sortable.&quot;</span>)
.reverse()
});
<span class="comment">// Set the diagonal elements of the singular value matrix
</span><span class="kw">for </span>(i, <span class="kw-2">&amp;</span>(<span class="kw">_</span>, value)) <span class="kw">in </span>indexed_sorted_values.iter().enumerate() {
b[[i, i]] = value;
}
<span class="comment">// Assuming N columns, the simultaneous sorting of indices and singular values yields
// a set of N (i, j) pairs which correspond to columns which must be swapped. However,
// for any (i, j) in this set, there is also (j, i). Keeping both of these would make us
// swap the columns back and forth, so we must remove the duplicates. We can avoid
// any further sorting or hashsets or similar by noting that we can simply
// remove any (i, j) for which j &gt;= i. This also removes (i, i) pairs,
// i.e. columns that don&#39;t need to be swapped.
</span><span class="kw">let </span>swappable_pairs = indexed_sorted_values.into_iter()
.enumerate()
.map(|(new_index, (old_index, <span class="kw">_</span>))| (old_index, new_index))
.filter(|<span class="kw-2">&amp;</span>(old_index, new_index)| old_index &lt; new_index);
<span class="kw">for </span>(old_index, new_index) <span class="kw">in </span>swappable_pairs {
u.swap_cols(old_index, new_index);
v.swap_cols(old_index, new_index);
}
(b, u, v)
}
<span class="kw">impl</span>&lt;T: Any + Float + Signed&gt; Matrix&lt;T&gt; {
<span class="doccomment">/// Singular Value Decomposition
///
/// Computes the SVD using the Golub-Reinsch algorithm.
///
/// Returns Σ, U, V, such that `self` = U Σ V&lt;sup&gt;T&lt;/sup&gt;. Σ is a diagonal matrix whose elements
/// correspond to the non-negative singular values of the matrix. The singular values are ordered in
/// non-increasing order. U and V have orthonormal columns, and each column represents the
/// left and right singular vectors for the corresponding singular value in Σ, respectively.
///
/// If `self` has M rows and N columns, the dimensions of the returned matrices
/// are as follows.
///
/// If M &gt;= N:
///
/// - `Σ`: N x N
/// - `U`: M x N
/// - `V`: N x N
///
/// If M &lt; N:
///
/// - `Σ`: M x M
/// - `U`: M x M
/// - `V`: N x M
///
/// Note: This version of the SVD is sometimes referred to as the &#39;economy SVD&#39;.
///
/// # Failures
///
/// This function may fail in some cases. The current decomposition whilst being
/// efficient is fairly basic. Hopefully the algorithm can be made not to fail in the near future.
</span><span class="kw">pub fn </span>svd(<span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;(Matrix&lt;T&gt;, Matrix&lt;T&gt;, Matrix&lt;T&gt;), Error&gt; {
<span class="kw">let </span>(b, u, v) = <span class="macro">try!</span>(<span class="self">self</span>.svd_unordered());
<span class="prelude-val">Ok</span>(sort_svd(b, u, v))
}
<span class="kw">fn </span>svd_unordered(<span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;(Matrix&lt;T&gt;, Matrix&lt;T&gt;, Matrix&lt;T&gt;), Error&gt; {
<span class="kw">let </span>(b, u, v) = <span class="macro">try!</span>(<span class="self">self</span>.svd_golub_reinsch());
<span class="comment">// The Golub-Reinsch implementation sometimes spits out negative singular values,
// so we need to correct these.
</span><span class="prelude-val">Ok</span>(correct_svd_signs(b, u, v))
}
<span class="kw">fn </span>svd_golub_reinsch(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;(Matrix&lt;T&gt;, Matrix&lt;T&gt;, Matrix&lt;T&gt;), Error&gt; {
<span class="kw">let </span><span class="kw-2">mut </span>flipped = <span class="bool-val">false</span>;
<span class="comment">// The algorithm assumes rows &gt; cols. If this is not the case we transpose and fix later.
</span><span class="kw">if </span><span class="self">self</span>.cols &gt; <span class="self">self</span>.rows {
<span class="self">self </span>= <span class="self">self</span>.transpose();
flipped = <span class="bool-val">true</span>;
}
<span class="kw">let </span>eps = T::from(<span class="number">3.0</span>).unwrap() * T::epsilon();
<span class="kw">let </span>n = <span class="self">self</span>.cols;
<span class="comment">// Get the bidiagonal decomposition
</span><span class="kw">let </span>(<span class="kw-2">mut </span>b, <span class="kw-2">mut </span>u, <span class="kw-2">mut </span>v) = <span class="macro">try!</span>(<span class="self">self</span>.bidiagonal_decomp()
.map_err(|<span class="kw">_</span>| Error::new(ErrorKind::DecompFailure, <span class="string">&quot;Could not compute SVD.&quot;</span>)));
<span class="kw">loop </span>{
<span class="comment">// Values to count the size of lower diagonal block
</span><span class="kw">let </span><span class="kw-2">mut </span>q = <span class="number">0</span>;
<span class="kw">let </span><span class="kw-2">mut </span>on_lower = <span class="bool-val">true</span>;
<span class="comment">// Values to count top block
</span><span class="kw">let </span><span class="kw-2">mut </span>p = <span class="number">0</span>;
<span class="kw">let </span><span class="kw-2">mut </span>on_middle = <span class="bool-val">false</span>;
<span class="comment">// Iterate through and hard set the super diag if converged
</span><span class="kw">for </span>i <span class="kw">in </span>(<span class="number">0</span>..n - <span class="number">1</span>).rev() {
<span class="kw">let </span>(b_ii, b_sup_diag, diag_abs_sum): (T, T, T);
<span class="kw">unsafe </span>{
b_ii = <span class="kw-2">*</span>b.get_unchecked([i, i]);
b_sup_diag = b.get_unchecked([i, i + <span class="number">1</span>]).abs();
diag_abs_sum = eps * (b_ii.abs() + b.get_unchecked([i + <span class="number">1</span>, i + <span class="number">1</span>]).abs());
}
<span class="kw">if </span>b_sup_diag &lt;= diag_abs_sum {
<span class="comment">// Adjust q or p to define boundaries of sup-diagonal box
</span><span class="kw">if </span>on_lower {
q += <span class="number">1</span>;
} <span class="kw">else if </span>on_middle {
on_middle = <span class="bool-val">false</span>;
p = i + <span class="number">1</span>;
}
<span class="kw">unsafe </span>{
<span class="kw-2">*</span>b.get_unchecked_mut([i, i + <span class="number">1</span>]) = T::zero();
}
} <span class="kw">else </span>{
<span class="kw">if </span>on_lower {
<span class="comment">// No longer on the lower diagonal
</span>on_middle = <span class="bool-val">true</span>;
on_lower = <span class="bool-val">false</span>;
}
}
}
<span class="comment">// We have converged!
</span><span class="kw">if </span>q == n - <span class="number">1 </span>{
<span class="kw">break</span>;
}
<span class="comment">// Zero off diagonals if needed.
</span><span class="kw">for </span>i <span class="kw">in </span>p..n - q - <span class="number">1 </span>{
<span class="kw">let </span>(b_ii, b_sup_diag): (T, T);
<span class="kw">unsafe </span>{
b_ii = <span class="kw-2">*</span>b.get_unchecked([i, i]);
b_sup_diag = <span class="kw-2">*</span>b.get_unchecked([i, i + <span class="number">1</span>]);
}
<span class="kw">if </span>b_ii.abs() &lt; eps {
<span class="kw">let </span>(c, s) = Matrix::&lt;T&gt;::givens_rot(b_ii, b_sup_diag);
<span class="kw">let </span>givens = Matrix::new(<span class="number">2</span>, <span class="number">2</span>, <span class="macro">vec!</span>[c, s, -s, c]);
<span class="kw">let </span>b_i = MatrixSliceMut::from_matrix(<span class="kw-2">&amp;mut </span>b, [i, i], <span class="number">1</span>, <span class="number">2</span>);
<span class="kw">let </span>zerod_line = <span class="kw-2">&amp;</span>b_i * givens;
b_i.set_to(zerod_line.as_slice());
}
}
<span class="comment">// Apply Golub-Kahan svd step
</span><span class="kw">unsafe </span>{
<span class="macro">try!</span>(Matrix::&lt;T&gt;::golub_kahan_svd_step(<span class="kw-2">&amp;mut </span>b, <span class="kw-2">&amp;mut </span>u, <span class="kw-2">&amp;mut </span>v, p, q)
.map_err(|<span class="kw">_</span>| Error::new(ErrorKind::DecompFailure, <span class="string">&quot;Could not compute SVD.&quot;</span>)));
}
}
<span class="kw">if </span>flipped {
<span class="prelude-val">Ok</span>((b.transpose(), v, u))
} <span class="kw">else </span>{
<span class="prelude-val">Ok</span>((b, u, v))
}
}
<span class="doccomment">/// This function is unsafe as it makes assumptions about the dimensions
/// of the inputs matrices and does not check them. As a result if misused
/// this function can call `get_unchecked` on invalid indices.
</span><span class="kw">unsafe fn </span>golub_kahan_svd_step(b: <span class="kw-2">&amp;mut </span>Matrix&lt;T&gt;,
u: <span class="kw-2">&amp;mut </span>Matrix&lt;T&gt;,
v: <span class="kw-2">&amp;mut </span>Matrix&lt;T&gt;,
p: usize,
q: usize)
-&gt; <span class="prelude-ty">Result</span>&lt;(), Error&gt; {
<span class="kw">let </span>n = b.rows();
<span class="comment">// C is the lower, right 2x2 square of aTa, where a is the
// middle block of b (between p and n-q).
//
// Computed as xTx + yTy, where y is the bottom 2x2 block of a
// and x are the two columns above it within a.
</span><span class="kw">let </span>c: Matrix&lt;T&gt;;
{
<span class="kw">let </span>y = MatrixSlice::from_matrix(<span class="kw-2">&amp;</span>b, [n - q - <span class="number">2</span>, n - q - <span class="number">2</span>], <span class="number">2</span>, <span class="number">2</span>).into_matrix();
<span class="kw">if </span>n - q - p - <span class="number">2 </span>&gt; <span class="number">0 </span>{
<span class="kw">let </span>x = MatrixSlice::from_matrix(<span class="kw-2">&amp;</span>b, [p, n - q - <span class="number">2</span>], n - q - p - <span class="number">2</span>, <span class="number">2</span>);
c = x.into_matrix().transpose() * x + y.transpose() * y;
} <span class="kw">else </span>{
c = y.transpose() * y;
}
}
<span class="kw">let </span>c_eigs = <span class="macro">try!</span>(c.clone().eigenvalues());
<span class="comment">// Choose eigenvalue closes to c[1,1].
</span><span class="kw">let </span>lambda: T;
<span class="kw">if </span>(c_eigs[<span class="number">0</span>] - <span class="kw-2">*</span>c.get_unchecked([<span class="number">1</span>, <span class="number">1</span>])).abs() &lt;
(c_eigs[<span class="number">1</span>] - <span class="kw-2">*</span>c.get_unchecked([<span class="number">1</span>, <span class="number">1</span>])).abs() {
lambda = c_eigs[<span class="number">0</span>];
} <span class="kw">else </span>{
lambda = c_eigs[<span class="number">1</span>];
}
<span class="kw">let </span>b_pp = <span class="kw-2">*</span>b.get_unchecked([p, p]);
<span class="kw">let </span><span class="kw-2">mut </span>alpha = (b_pp * b_pp) - lambda;
<span class="kw">let </span><span class="kw-2">mut </span>beta = b_pp * <span class="kw-2">*</span>b.get_unchecked([p, p + <span class="number">1</span>]);
<span class="kw">for </span>k <span class="kw">in </span>p..n - q - <span class="number">1 </span>{
<span class="comment">// Givens rot on columns k and k + 1
</span><span class="kw">let </span>(c, s) = Matrix::&lt;T&gt;::givens_rot(alpha, beta);
<span class="kw">let </span>givens_mat = Matrix::new(<span class="number">2</span>, <span class="number">2</span>, <span class="macro">vec!</span>[c, s, -s, c]);
{
<span class="comment">// Pick the rows from b to be zerod.
</span><span class="kw">let </span>b_block = MatrixSliceMut::from_matrix(b,
[k.saturating_sub(<span class="number">1</span>), k],
cmp::min(<span class="number">3</span>, n - k.saturating_sub(<span class="number">1</span>)),
<span class="number">2</span>);
<span class="kw">let </span>transformed = <span class="kw-2">&amp;</span>b_block * <span class="kw-2">&amp;</span>givens_mat;
b_block.set_to(transformed.as_slice());
<span class="kw">let </span>v_block = MatrixSliceMut::from_matrix(v, [<span class="number">0</span>, k], n, <span class="number">2</span>);
<span class="kw">let </span>transformed = <span class="kw-2">&amp;</span>v_block * <span class="kw-2">&amp;</span>givens_mat;
v_block.set_to(transformed.as_slice());
}
alpha = <span class="kw-2">*</span>b.get_unchecked([k, k]);
beta = <span class="kw-2">*</span>b.get_unchecked([k + <span class="number">1</span>, k]);
<span class="kw">let </span>(c, s) = Matrix::&lt;T&gt;::givens_rot(alpha, beta);
<span class="kw">let </span>givens_mat = Matrix::new(<span class="number">2</span>, <span class="number">2</span>, <span class="macro">vec!</span>[c, -s, s, c]);
{
<span class="comment">// Pick the columns from b to be zerod.
</span><span class="kw">let </span>b_block = MatrixSliceMut::from_matrix(b, [k, k], <span class="number">2</span>, cmp::min(<span class="number">3</span>, n - k));
<span class="kw">let </span>transformed = <span class="kw-2">&amp;</span>givens_mat * <span class="kw-2">&amp;</span>b_block;
b_block.set_to(transformed.as_slice());
<span class="kw">let </span>m = u.rows();
<span class="kw">let </span>u_block = MatrixSliceMut::from_matrix(u, [<span class="number">0</span>, k], m, <span class="number">2</span>);
<span class="kw">let </span>transformed = <span class="kw-2">&amp;</span>u_block * givens_mat.transpose();
u_block.set_to(transformed.as_slice());
}
<span class="kw">if </span>k + <span class="number">2 </span>&lt; n - q {
alpha = <span class="kw-2">*</span>b.get_unchecked([k, k + <span class="number">1</span>]);
beta = <span class="kw-2">*</span>b.get_unchecked([k, k + <span class="number">2</span>]);
}
}
<span class="prelude-val">Ok</span>(())
}
}
<span class="attribute">#[cfg(test)]
</span><span class="kw">mod </span>tests {
<span class="kw">use </span>matrix::{Matrix, BaseMatrix};
<span class="kw">use </span>vector::Vector;
<span class="kw">use </span><span class="kw">super</span>::sort_svd;
<span class="kw">fn </span>validate_svd(mat: <span class="kw-2">&amp;</span>Matrix&lt;f64&gt;, b: <span class="kw-2">&amp;</span>Matrix&lt;f64&gt;, u: <span class="kw-2">&amp;</span>Matrix&lt;f64&gt;, v: <span class="kw-2">&amp;</span>Matrix&lt;f64&gt;) {
<span class="comment">// b is diagonal (the singular values)
</span><span class="kw">for </span>(idx, row) <span class="kw">in </span>b.row_iter().enumerate() {
<span class="macro">assert!</span>(!row.iter().take(idx).any(|<span class="kw-2">&amp;</span>x| x &gt; <span class="number">1e-10</span>));
<span class="macro">assert!</span>(!row.iter().skip(idx + <span class="number">1</span>).any(|<span class="kw-2">&amp;</span>x| x &gt; <span class="number">1e-10</span>));
<span class="comment">// Assert non-negativity of diagonal elements
</span><span class="macro">assert!</span>(row[idx] &gt;= <span class="number">0.0</span>);
}
<span class="kw">let </span>recovered = u * b * v.transpose();
<span class="macro">assert_eq!</span>(recovered.rows(), mat.rows());
<span class="macro">assert_eq!</span>(recovered.cols(), mat.cols());
<span class="macro">assert!</span>(!mat.data()
.iter()
.zip(recovered.data().iter())
.any(|(<span class="kw-2">&amp;</span>x, <span class="kw-2">&amp;</span>y)| (x - y).abs() &gt; <span class="number">1e-10</span>));
<span class="comment">// The transposition is due to the fact that there does not exist
// any column iterators at the moment, and we need to simultaneously iterate
// over the columns. Once they do exist, we should rewrite
// the below iterators to use iter_cols() or whatever instead.
</span><span class="kw">let </span><span class="kw-2">ref </span>u_transposed = u.transpose();
<span class="kw">let </span><span class="kw-2">ref </span>v_transposed = v.transpose();
<span class="kw">let </span><span class="kw-2">ref </span>mat_transposed = mat.transpose();
<span class="kw">let </span><span class="kw-2">mut </span>singular_triplets = u_transposed.row_iter().zip(b.diag()).zip(v_transposed.row_iter())
<span class="comment">// chained zipping results in nested tuple. Flatten it.
</span>.map(|((u_col, singular_value), v_col)| (Vector::new(u_col.raw_slice()), singular_value, Vector::new(v_col.raw_slice())));
<span class="macro">assert!</span>(singular_triplets.by_ref()
<span class="comment">// For a matrix M, each singular value σ and left and right singular vectors u and v respectively
// satisfy M v = σ u, so we take the difference
</span>.map(|(<span class="kw-2">ref </span>u, sigma, <span class="kw-2">ref </span>v)| mat * v - u * sigma)
.flat_map(|v| v.into_vec().into_iter())
.all(|x| x.abs() &lt; <span class="number">1e-10</span>));
<span class="macro">assert!</span>(singular_triplets.by_ref()
<span class="comment">// For a matrix M, each singular value σ and left and right singular vectors u and v respectively
// satisfy M_transposed u = σ v, so we take the difference
</span>.map(|(<span class="kw-2">ref </span>u, sigma, <span class="kw-2">ref </span>v)| mat_transposed * u - v * sigma)
.flat_map(|v| v.into_vec().into_iter())
.all(|x| x.abs() &lt; <span class="number">1e-10</span>));
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>test_sort_svd() {
<span class="kw">let </span>u = <span class="macro">matrix!</span>[<span class="number">1.0</span>, <span class="number">2.0</span>, <span class="number">3.0</span>;
<span class="number">4.0</span>, <span class="number">5.0</span>, <span class="number">6.0</span>];
<span class="kw">let </span>b = <span class="macro">matrix!</span>[<span class="number">4.0</span>, <span class="number">0.0</span>, <span class="number">0.0</span>;
<span class="number">0.0</span>, <span class="number">8.0</span>, <span class="number">0.0</span>;
<span class="number">0.0</span>, <span class="number">0.0</span>, <span class="number">2.0</span>];
<span class="kw">let </span>v = <span class="macro">matrix!</span>[<span class="number">21.0</span>, <span class="number">22.0</span>, <span class="number">23.0</span>;
<span class="number">24.0</span>, <span class="number">25.0</span>, <span class="number">26.0</span>;
<span class="number">27.0</span>, <span class="number">28.0</span>, <span class="number">29.0</span>];
<span class="kw">let </span>(b, u, v) = sort_svd(b, u, v);
<span class="macro">assert_eq!</span>(b.data(), <span class="kw-2">&amp;</span><span class="macro">vec!</span>[<span class="number">8.0</span>, <span class="number">0.0</span>, <span class="number">0.0</span>, <span class="number">0.0</span>, <span class="number">4.0</span>, <span class="number">0.0</span>, <span class="number">0.0</span>, <span class="number">0.0</span>, <span class="number">2.0</span>]);
<span class="macro">assert_eq!</span>(u.data(), <span class="kw-2">&amp;</span><span class="macro">vec!</span>[<span class="number">2.0</span>, <span class="number">1.0</span>, <span class="number">3.0</span>, <span class="number">5.0</span>, <span class="number">4.0</span>, <span class="number">6.0</span>]);
<span class="macro">assert_eq!</span>(v.data(),
<span class="kw-2">&amp;</span><span class="macro">vec!</span>[<span class="number">22.0</span>, <span class="number">21.0</span>, <span class="number">23.0</span>, <span class="number">25.0</span>, <span class="number">24.0</span>, <span class="number">26.0</span>, <span class="number">28.0</span>, <span class="number">27.0</span>, <span class="number">29.0</span>]);
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>test_svd_tall_matrix() {
<span class="comment">// Note: This matrix is not arbitrary. It has been constructed specifically so that
// the &quot;natural&quot; order of the singular values it not sorted by default.
</span><span class="kw">let </span>mat = <span class="macro">matrix!</span>[<span class="number">3.61833700244349288</span>, -<span class="number">3.28382346228211697</span>, <span class="number">1.97968027781346501</span>, -<span class="number">0.41869628192662156</span>;
<span class="number">3.96046289599926427</span>, <span class="number">0.70730060716580723</span>, -<span class="number">2.80552479438772817</span>, -<span class="number">1.45283286109873933</span>;
<span class="number">1.44435028724617442</span>, <span class="number">1.27749196276785826</span>, -<span class="number">1.09858397535426366</span>, -<span class="number">0.03159619816434689</span>;
<span class="number">1.13455445826500667</span>, <span class="number">0.81521390274755756</span>, <span class="number">3.99123446373437263</span>, -<span class="number">2.83025703359666192</span>;
-<span class="number">3.30895752093770579</span>, -<span class="number">0.04979044289857298</span>, <span class="number">3.03248594516832792</span>, <span class="number">3.85962479743330977</span>];
<span class="kw">let </span>(b, u, v) = mat.clone().svd().unwrap();
<span class="kw">let </span>expected_values = <span class="macro">vec!</span>[<span class="number">8.0</span>, <span class="number">6.0</span>, <span class="number">4.0</span>, <span class="number">2.0</span>];
validate_svd(<span class="kw-2">&amp;</span>mat, <span class="kw-2">&amp;</span>b, <span class="kw-2">&amp;</span>u, <span class="kw-2">&amp;</span>v);
<span class="comment">// Assert the singular values are what we expect
</span><span class="macro">assert!</span>(expected_values.iter()
.zip(b.diag())
.all(|(expected, actual)| (expected - actual).abs() &lt; <span class="number">1e-14</span>));
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>test_svd_short_matrix() {
<span class="comment">// Note: This matrix is not arbitrary. It has been constructed specifically so that
// the &quot;natural&quot; order of the singular values it not sorted by default.
</span><span class="kw">let </span>mat = <span class="macro">matrix!</span>[<span class="number">3.61833700244349288</span>, <span class="number">3.96046289599926427</span>, <span class="number">1.44435028724617442</span>, <span class="number">1.13455445826500645</span>, -<span class="number">3.30895752093770579</span>;
-<span class="number">3.28382346228211697</span>, <span class="number">0.70730060716580723</span>, <span class="number">1.27749196276785826</span>, <span class="number">0.81521390274755756</span>, -<span class="number">0.04979044289857298</span>;
<span class="number">1.97968027781346545</span>, -<span class="number">2.80552479438772817</span>, -<span class="number">1.09858397535426366</span>, <span class="number">3.99123446373437263</span>, <span class="number">3.03248594516832792</span>;
-<span class="number">0.41869628192662156</span>, -<span class="number">1.45283286109873933</span>, -<span class="number">0.03159619816434689</span>, -<span class="number">2.83025703359666192</span>, <span class="number">3.85962479743330977</span>];
<span class="kw">let </span>(b, u, v) = mat.clone().svd().unwrap();
<span class="kw">let </span>expected_values = <span class="macro">vec!</span>[<span class="number">8.0</span>, <span class="number">6.0</span>, <span class="number">4.0</span>, <span class="number">2.0</span>];
validate_svd(<span class="kw-2">&amp;</span>mat, <span class="kw-2">&amp;</span>b, <span class="kw-2">&amp;</span>u, <span class="kw-2">&amp;</span>v);
<span class="comment">// Assert the singular values are what we expect
</span><span class="macro">assert!</span>(expected_values.iter()
.zip(b.diag())
.all(|(expected, actual)| (expected - actual).abs() &lt; <span class="number">1e-14</span>));
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>test_svd_square_matrix() {
<span class="kw">let </span>mat = <span class="macro">matrix!</span>[<span class="number">1.0</span>, <span class="number">2.0</span>, <span class="number">3.0</span>, <span class="number">4.0</span>, <span class="number">5.0</span>;
<span class="number">2.0</span>, <span class="number">4.0</span>, <span class="number">1.0</span>, <span class="number">2.0</span>, <span class="number">1.0</span>;
<span class="number">3.0</span>, <span class="number">1.0</span>, <span class="number">7.0</span>, <span class="number">1.0</span>, <span class="number">1.0</span>;
<span class="number">4.0</span>, <span class="number">2.0</span>, <span class="number">1.0</span>, -<span class="number">1.0</span>, <span class="number">3.0</span>;
<span class="number">5.0</span>, <span class="number">1.0</span>, <span class="number">1.0</span>, <span class="number">3.0</span>, <span class="number">2.0</span>];
<span class="kw">let </span>expected_values = <span class="macro">vec!</span>[<span class="number">12.1739747429271112</span>,
<span class="number">5.2681047320525831</span>,
<span class="number">4.4942269799769843</span>,
<span class="number">2.9279675877385123</span>,
<span class="number">2.8758200827412224</span>];
<span class="kw">let </span>(b, u, v) = mat.clone().svd().unwrap();
validate_svd(<span class="kw-2">&amp;</span>mat, <span class="kw-2">&amp;</span>b, <span class="kw-2">&amp;</span>u, <span class="kw-2">&amp;</span>v);
<span class="comment">// Assert the singular values are what we expect
</span><span class="macro">assert!</span>(expected_values.iter()
.zip(b.diag())
.all(|(expected, actual)| (expected - actual).abs() &lt; <span class="number">1e-12</span>));
}
}
</code></pre></div>
</section></div></main><div id="rustdoc-vars" data-root-path="../../../../" data-current-crate="rulinalg" data-themes="ayu,dark,light" data-resource-suffix="" data-rustdoc-version="1.66.0-nightly (5c8bff74b 2022-10-21)" ></div></body></html>