blob: 58a3cf897d6efe2a5a5a5d938c1c46023164f959 [file] [log] [blame]
<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source of the Rust file `/root/.cargo/git/checkouts/rulinalg-309246e5a94bf5cf/1ed8b93/src/matrix/decomposition/cholesky.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>cholesky.rs - source</title><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../SourceSerif4-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../FiraSans-Regular.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../FiraSans-Medium.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../SourceCodePro-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../SourceSerif4-Bold.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../SourceCodePro-Semibold.ttf.woff2"><link rel="stylesheet" href="../../../../normalize.css"><link rel="stylesheet" href="../../../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" href="../../../../ayu.css" disabled><link rel="stylesheet" href="../../../../dark.css" disabled><link rel="stylesheet" href="../../../../light.css" id="themeStyle"><script id="default-settings" ></script><script src="../../../../storage.js"></script><script defer src="../../../../source-script.js"></script><script defer src="../../../../source-files.js"></script><script defer src="../../../../main.js"></script><noscript><link rel="stylesheet" href="../../../../noscript.css"></noscript><link rel="alternate icon" type="image/png" href="../../../../favicon-16x16.png"><link rel="alternate icon" type="image/png" href="../../../../favicon-32x32.png"><link rel="icon" type="image/svg+xml" href="../../../../favicon.svg"></head><body class="rustdoc source"><!--[if lte IE 11]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><a class="sidebar-logo" href="../../../../rulinalg/index.html"><div class="logo-container"><img class="rust-logo" src="../../../../rust-logo.svg" alt="logo"></div></a></nav><main><div class="width-limiter"><nav class="sub"><a class="sub-logo-container" href="../../../../rulinalg/index.html"><img class="rust-logo" src="../../../../rust-logo.svg" alt="logo"></a><form class="search-form"><div class="search-container"><span></span><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"><div id="help-button" title="help" tabindex="-1"><a href="../../../../help.html">?</a></div><div id="settings-menu" tabindex="-1"><a href="../../../../settings.html" title="settings"><img width="22" height="22" alt="Change settings" src="../../../../wheel.svg"></a></div></div></form></nav><section id="main-content" class="content"><div class="example-wrap"><pre class="src-line-numbers"><span id="1">1</span>
<span id="2">2</span>
<span id="3">3</span>
<span id="4">4</span>
<span id="5">5</span>
<span id="6">6</span>
<span id="7">7</span>
<span id="8">8</span>
<span id="9">9</span>
<span id="10">10</span>
<span id="11">11</span>
<span id="12">12</span>
<span id="13">13</span>
<span id="14">14</span>
<span id="15">15</span>
<span id="16">16</span>
<span id="17">17</span>
<span id="18">18</span>
<span id="19">19</span>
<span id="20">20</span>
<span id="21">21</span>
<span id="22">22</span>
<span id="23">23</span>
<span id="24">24</span>
<span id="25">25</span>
<span id="26">26</span>
<span id="27">27</span>
<span id="28">28</span>
<span id="29">29</span>
<span id="30">30</span>
<span id="31">31</span>
<span id="32">32</span>
<span id="33">33</span>
<span id="34">34</span>
<span id="35">35</span>
<span id="36">36</span>
<span id="37">37</span>
<span id="38">38</span>
<span id="39">39</span>
<span id="40">40</span>
<span id="41">41</span>
<span id="42">42</span>
<span id="43">43</span>
<span id="44">44</span>
<span id="45">45</span>
<span id="46">46</span>
<span id="47">47</span>
<span id="48">48</span>
<span id="49">49</span>
<span id="50">50</span>
<span id="51">51</span>
<span id="52">52</span>
<span id="53">53</span>
<span id="54">54</span>
<span id="55">55</span>
<span id="56">56</span>
<span id="57">57</span>
<span id="58">58</span>
<span id="59">59</span>
<span id="60">60</span>
<span id="61">61</span>
<span id="62">62</span>
<span id="63">63</span>
<span id="64">64</span>
<span id="65">65</span>
<span id="66">66</span>
<span id="67">67</span>
<span id="68">68</span>
<span id="69">69</span>
<span id="70">70</span>
<span id="71">71</span>
<span id="72">72</span>
<span id="73">73</span>
<span id="74">74</span>
<span id="75">75</span>
<span id="76">76</span>
<span id="77">77</span>
<span id="78">78</span>
<span id="79">79</span>
<span id="80">80</span>
<span id="81">81</span>
<span id="82">82</span>
<span id="83">83</span>
<span id="84">84</span>
<span id="85">85</span>
<span id="86">86</span>
<span id="87">87</span>
<span id="88">88</span>
<span id="89">89</span>
<span id="90">90</span>
<span id="91">91</span>
<span id="92">92</span>
<span id="93">93</span>
<span id="94">94</span>
<span id="95">95</span>
<span id="96">96</span>
<span id="97">97</span>
<span id="98">98</span>
<span id="99">99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
<span id="290">290</span>
<span id="291">291</span>
<span id="292">292</span>
<span id="293">293</span>
<span id="294">294</span>
<span id="295">295</span>
<span id="296">296</span>
<span id="297">297</span>
<span id="298">298</span>
<span id="299">299</span>
<span id="300">300</span>
<span id="301">301</span>
<span id="302">302</span>
<span id="303">303</span>
<span id="304">304</span>
<span id="305">305</span>
<span id="306">306</span>
<span id="307">307</span>
<span id="308">308</span>
<span id="309">309</span>
<span id="310">310</span>
<span id="311">311</span>
<span id="312">312</span>
<span id="313">313</span>
<span id="314">314</span>
<span id="315">315</span>
<span id="316">316</span>
<span id="317">317</span>
<span id="318">318</span>
<span id="319">319</span>
<span id="320">320</span>
<span id="321">321</span>
<span id="322">322</span>
<span id="323">323</span>
<span id="324">324</span>
<span id="325">325</span>
<span id="326">326</span>
<span id="327">327</span>
<span id="328">328</span>
<span id="329">329</span>
<span id="330">330</span>
<span id="331">331</span>
<span id="332">332</span>
<span id="333">333</span>
<span id="334">334</span>
<span id="335">335</span>
<span id="336">336</span>
<span id="337">337</span>
<span id="338">338</span>
<span id="339">339</span>
<span id="340">340</span>
<span id="341">341</span>
<span id="342">342</span>
<span id="343">343</span>
<span id="344">344</span>
<span id="345">345</span>
<span id="346">346</span>
<span id="347">347</span>
<span id="348">348</span>
<span id="349">349</span>
<span id="350">350</span>
<span id="351">351</span>
<span id="352">352</span>
<span id="353">353</span>
<span id="354">354</span>
<span id="355">355</span>
<span id="356">356</span>
<span id="357">357</span>
<span id="358">358</span>
<span id="359">359</span>
<span id="360">360</span>
<span id="361">361</span>
<span id="362">362</span>
<span id="363">363</span>
<span id="364">364</span>
<span id="365">365</span>
<span id="366">366</span>
<span id="367">367</span>
<span id="368">368</span>
<span id="369">369</span>
<span id="370">370</span>
<span id="371">371</span>
<span id="372">372</span>
<span id="373">373</span>
<span id="374">374</span>
<span id="375">375</span>
<span id="376">376</span>
<span id="377">377</span>
<span id="378">378</span>
<span id="379">379</span>
<span id="380">380</span>
<span id="381">381</span>
<span id="382">382</span>
<span id="383">383</span>
<span id="384">384</span>
<span id="385">385</span>
<span id="386">386</span>
<span id="387">387</span>
<span id="388">388</span>
<span id="389">389</span>
<span id="390">390</span>
<span id="391">391</span>
<span id="392">392</span>
<span id="393">393</span>
<span id="394">394</span>
<span id="395">395</span>
<span id="396">396</span>
<span id="397">397</span>
<span id="398">398</span>
<span id="399">399</span>
<span id="400">400</span>
<span id="401">401</span>
<span id="402">402</span>
<span id="403">403</span>
<span id="404">404</span>
<span id="405">405</span>
<span id="406">406</span>
<span id="407">407</span>
<span id="408">408</span>
<span id="409">409</span>
<span id="410">410</span>
<span id="411">411</span>
<span id="412">412</span>
<span id="413">413</span>
<span id="414">414</span>
<span id="415">415</span>
<span id="416">416</span>
<span id="417">417</span>
<span id="418">418</span>
<span id="419">419</span>
<span id="420">420</span>
<span id="421">421</span>
<span id="422">422</span>
<span id="423">423</span>
<span id="424">424</span>
<span id="425">425</span>
<span id="426">426</span>
<span id="427">427</span>
<span id="428">428</span>
<span id="429">429</span>
<span id="430">430</span>
<span id="431">431</span>
<span id="432">432</span>
<span id="433">433</span>
<span id="434">434</span>
<span id="435">435</span>
<span id="436">436</span>
<span id="437">437</span>
<span id="438">438</span>
<span id="439">439</span>
<span id="440">440</span>
<span id="441">441</span>
<span id="442">442</span>
<span id="443">443</span>
<span id="444">444</span>
<span id="445">445</span>
<span id="446">446</span>
<span id="447">447</span>
<span id="448">448</span>
<span id="449">449</span>
<span id="450">450</span>
<span id="451">451</span>
<span id="452">452</span>
<span id="453">453</span>
<span id="454">454</span>
<span id="455">455</span>
<span id="456">456</span>
<span id="457">457</span>
<span id="458">458</span>
<span id="459">459</span>
<span id="460">460</span>
<span id="461">461</span>
<span id="462">462</span>
<span id="463">463</span>
<span id="464">464</span>
<span id="465">465</span>
<span id="466">466</span>
<span id="467">467</span>
<span id="468">468</span>
<span id="469">469</span>
<span id="470">470</span>
<span id="471">471</span>
<span id="472">472</span>
<span id="473">473</span>
<span id="474">474</span>
<span id="475">475</span>
<span id="476">476</span>
<span id="477">477</span>
<span id="478">478</span>
<span id="479">479</span>
<span id="480">480</span>
<span id="481">481</span>
<span id="482">482</span>
<span id="483">483</span>
<span id="484">484</span>
<span id="485">485</span>
<span id="486">486</span>
<span id="487">487</span>
<span id="488">488</span>
<span id="489">489</span>
<span id="490">490</span>
<span id="491">491</span>
<span id="492">492</span>
<span id="493">493</span>
<span id="494">494</span>
<span id="495">495</span>
<span id="496">496</span>
<span id="497">497</span>
<span id="498">498</span>
<span id="499">499</span>
<span id="500">500</span>
<span id="501">501</span>
<span id="502">502</span>
<span id="503">503</span>
<span id="504">504</span>
<span id="505">505</span>
<span id="506">506</span>
<span id="507">507</span>
<span id="508">508</span>
<span id="509">509</span>
<span id="510">510</span>
<span id="511">511</span>
<span id="512">512</span>
<span id="513">513</span>
<span id="514">514</span>
<span id="515">515</span>
<span id="516">516</span>
<span id="517">517</span>
<span id="518">518</span>
<span id="519">519</span>
<span id="520">520</span>
<span id="521">521</span>
<span id="522">522</span>
<span id="523">523</span>
<span id="524">524</span>
<span id="525">525</span>
<span id="526">526</span>
<span id="527">527</span>
<span id="528">528</span>
<span id="529">529</span>
<span id="530">530</span>
<span id="531">531</span>
<span id="532">532</span>
<span id="533">533</span>
<span id="534">534</span>
<span id="535">535</span>
<span id="536">536</span>
<span id="537">537</span>
<span id="538">538</span>
<span id="539">539</span>
<span id="540">540</span>
<span id="541">541</span>
<span id="542">542</span>
<span id="543">543</span>
<span id="544">544</span>
<span id="545">545</span>
<span id="546">546</span>
<span id="547">547</span>
<span id="548">548</span>
<span id="549">549</span>
<span id="550">550</span>
<span id="551">551</span>
<span id="552">552</span>
<span id="553">553</span>
<span id="554">554</span>
<span id="555">555</span>
<span id="556">556</span>
<span id="557">557</span>
<span id="558">558</span>
<span id="559">559</span>
<span id="560">560</span>
<span id="561">561</span>
<span id="562">562</span>
<span id="563">563</span>
<span id="564">564</span>
<span id="565">565</span>
<span id="566">566</span>
<span id="567">567</span>
<span id="568">568</span>
<span id="569">569</span>
<span id="570">570</span>
<span id="571">571</span>
<span id="572">572</span>
<span id="573">573</span>
<span id="574">574</span>
<span id="575">575</span>
<span id="576">576</span>
<span id="577">577</span>
<span id="578">578</span>
<span id="579">579</span>
<span id="580">580</span>
<span id="581">581</span>
<span id="582">582</span>
<span id="583">583</span>
<span id="584">584</span>
<span id="585">585</span>
<span id="586">586</span>
<span id="587">587</span>
<span id="588">588</span>
<span id="589">589</span>
<span id="590">590</span>
<span id="591">591</span>
<span id="592">592</span>
<span id="593">593</span>
<span id="594">594</span>
</pre><pre class="rust"><code><span class="kw">use </span>matrix::{Matrix, BaseMatrix};
<span class="kw">use </span>error::{Error, ErrorKind};
<span class="kw">use </span>matrix::decomposition::Decomposition;
<span class="kw">use </span>matrix::forward_substitution;
<span class="kw">use </span>vector::Vector;
<span class="kw">use </span>utils::dot;
<span class="kw">use </span>std::any::Any;
<span class="kw">use </span>libnum::{Zero, Float};
<span class="doccomment">/// Cholesky decomposition.
///
/// Given a square, symmetric positive definite matrix A,
/// there exists an invertible lower triangular matrix L
/// such that
///
/// A = L L&lt;sup&gt;T&lt;/sup&gt;.
///
/// This is called the Cholesky decomposition of A.
/// For not too ill-conditioned A, the computation
/// of the decomposition is very robust, and it takes about
/// half the effort of an LU decomposition with partial pivoting.
///
/// # Applications
/// The Cholesky decomposition can be thought of as a specialized
/// LU decomposition for symmetric positive definite matrices,
/// and so its applications are similar to that of LU.
///
/// The following example shows how to compute the Cholesky
/// decomposition of a given matrix. In this example, we also
/// unpack the decomposition to retrieve the L matrix,
/// but in many practical applications we are not so concerned
/// with the factor itself. Instead, we may wish to
/// solve linear systems or compute the determinant or the
/// inverse of a symmetric positive definite matrix.
/// In this case, see the next subsections.
///
/// ```
/// # #[macro_use] extern crate rulinalg; fn main() {
/// use rulinalg::matrix::decomposition::Cholesky;
///
/// // Need to import Decomposition if we want to unpack
/// use rulinalg::matrix::decomposition::Decomposition;
///
/// let x = matrix![ 1.0, 3.0, 1.0;
/// 3.0, 13.0, 11.0;
/// 1.0, 11.0, 21.0 ];
/// let cholesky = Cholesky::decompose(x)
/// .expect(&quot;Matrix is SPD.&quot;);
///
/// // Obtain the matrix factor L
/// let l = cholesky.unpack();
///
/// assert_matrix_eq!(l, matrix![1.0, 0.0, 0.0;
/// 3.0, 2.0, 0.0;
/// 1.0, 4.0, 2.0], comp = float);
/// # }
/// ```
///
/// ## Solving linear systems
/// After having decomposed the matrix, one may efficiently
/// solve linear systems for different right-hand sides.
///
/// ```
/// # #[macro_use] extern crate rulinalg; fn main() {
/// # use rulinalg::matrix::decomposition::Cholesky;
/// # let x = matrix![ 1.0, 3.0, 1.0;
/// # 3.0, 13.0, 11.0;
/// # 1.0, 11.0, 21.0 ];
/// # let cholesky = Cholesky::decompose(x).unwrap();
/// let b1 = vector![ 3.0, 2.0, 1.0];
/// let b2 = vector![-2.0, 1.0, 0.0];
/// let y1 = cholesky.solve(b1).expect(&quot;Matrix is invertible.&quot;);
/// let y2 = cholesky.solve(b2).expect(&quot;Matrix is invertible.&quot;);
/// assert_vector_eq!(y1, vector![ 23.25, -7.75, 3.0 ]);
/// assert_vector_eq!(y2, vector![-22.25, 7.75, -3.00 ]);
/// # }
/// ```
///
/// ## Computing the inverse of a matrix
///
/// While computing the inverse explicitly is rarely
/// the best solution to any given problem, it is sometimes
/// necessary. In this case, it is easily accessible
/// through the `inverse()` method on `Cholesky`.
///
/// # Computing the determinant of a matrix
///
/// As with LU decomposition, the `Cholesky` decomposition
/// exposes a method `det` for computing the determinant
/// of the decomposed matrix. This is a very cheap operation.
</span><span class="attribute">#[derive(Clone, Debug)]
</span><span class="kw">pub struct </span>Cholesky&lt;T&gt; {
l: Matrix&lt;T&gt;
}
<span class="kw">impl</span>&lt;T&gt; Cholesky&lt;T&gt; <span class="kw">where </span>T: <span class="lifetime">&#39;static </span>+ Float {
<span class="doccomment">/// Computes the Cholesky decomposition A = L L&lt;sup&gt;T&lt;/sup&gt;
/// for the given square, symmetric positive definite matrix.
///
/// Note that the implementation cannot reliably and efficiently
/// verify that the matrix truly is symmetric positive definite matrix,
/// so it is the responsibility of the user to make sure that this is
/// the case. In particular, if the input matrix is not SPD,
/// the returned decomposition may not be a valid decomposition
/// for the input matrix.
///
/// # Errors
/// - A diagonal entry is effectively zero to working precision.
/// - A diagonal entry is negative.
///
/// # Panics
///
/// - The matrix must be square.
</span><span class="kw">pub fn </span>decompose(matrix: Matrix&lt;T&gt;) -&gt; <span class="prelude-ty">Result</span>&lt;<span class="self">Self</span>, Error&gt; {
<span class="macro">assert!</span>(matrix.rows() == matrix.cols(),
<span class="string">&quot;Matrix must be square for Cholesky decomposition.&quot;</span>);
<span class="kw">let </span>n = matrix.rows();
<span class="comment">// The implementation here is based on the
// &quot;Gaxpy-Rich Cholesky Factorization&quot;
// from Chapter 4.2.5 in
// Matrix Computations, 4th Edition,
// (Golub and Van Loan).
// We consume the matrix we&#39;re given, and overwrite its
// lower diagonal part with the L factor. However,
// we ignore the strictly upper triangular part of the matrix,
// because this saves us a few operations.
// When the decomposition is unpacked, we will completely zero
// the upper triangular part.
</span><span class="kw">let </span><span class="kw-2">mut </span>a = matrix;
<span class="kw">for </span>j <span class="kw">in </span><span class="number">0 </span>.. n {
<span class="kw">if </span>j &gt; <span class="number">0 </span>{
<span class="comment">// This is essentially a GAXPY operation y = y - Bx
// where B is the [j .. n, 0 .. j] submatrix of A,
// x is the [ j, 0 .. j ] submatrix of A,
// and y is the [ j .. n, j ] submatrix of A
</span><span class="kw">for </span>k <span class="kw">in </span>j .. n {
<span class="kw">let </span>kj_dot = {
<span class="kw">let </span>j_row = a.row(j).raw_slice();
<span class="kw">let </span>k_row = a.row(k).raw_slice();
dot(<span class="kw-2">&amp;</span>k_row[<span class="number">0 </span>.. j], <span class="kw-2">&amp;</span>j_row[<span class="number">0 </span>.. j])
};
a[[k, j]] = a[[k, j]] - kj_dot;
}
}
<span class="kw">let </span>diagonal = a[[j, j]];
<span class="kw">if </span>diagonal.abs() &lt; T::epsilon() {
<span class="kw">return </span><span class="prelude-val">Err</span>(Error::new(ErrorKind::DecompFailure,
<span class="string">&quot;Matrix is singular to working precision.&quot;</span>));
} <span class="kw">else if </span>diagonal &lt; T::zero() {
<span class="kw">return </span><span class="prelude-val">Err</span>(Error::new(ErrorKind::DecompFailure,
<span class="string">&quot;Diagonal entries of matrix are not all positive.&quot;</span>));
}
<span class="kw">let </span>divisor = diagonal.sqrt();
<span class="kw">for </span>k <span class="kw">in </span>j .. n {
a[[k, j]] = a[[k, j]] / divisor;
}
}
<span class="prelude-val">Ok</span>(Cholesky {
l: a
})
}
<span class="doccomment">/// Computes the determinant of the decomposed matrix.
///
/// Note that the determinant of an empty matrix is considered
/// to be equal to 1.
</span><span class="kw">pub fn </span>det(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; T {
<span class="kw">let </span>l_det = <span class="self">self</span>.l.diag()
.cloned()
.fold(T::one(), |a, b| a * b);
l_det * l_det
}
<span class="doccomment">/// Solves the linear system Ax = b.
///
/// Here A is the decomposed matrix and b is the
/// supplied vector.
///
/// # Errors
/// If the matrix is sufficiently ill-conditioned,
/// it is possible that the solution cannot be obtained.
///
/// # Panics
/// - The supplied right-hand side vector must be
/// dimensionally compatible with the supplied matrix.
</span><span class="kw">pub fn </span>solve(<span class="kw-2">&amp;</span><span class="self">self</span>, b: Vector&lt;T&gt;) -&gt; <span class="prelude-ty">Result</span>&lt;Vector&lt;T&gt;, Error&gt; {
<span class="macro">assert!</span>(<span class="self">self</span>.l.rows() == b.size(),
<span class="string">&quot;RHS vector and coefficient matrix must be
dimensionally compatible.&quot;</span>);
<span class="comment">// Solve Ly = b
</span><span class="kw">let </span>y = forward_substitution(<span class="kw-2">&amp;</span><span class="self">self</span>.l, b)<span class="question-mark">?</span>;
<span class="comment">// Solve L^T x = y
</span>transpose_back_substitution(<span class="kw-2">&amp;</span><span class="self">self</span>.l, y)
}
<span class="doccomment">/// Computes the inverse of the decomposed matrix.
///
/// # Errors
/// If the matrix is sufficiently ill-conditioned,
/// it is possible that the inverse cannot be obtained.
</span><span class="kw">pub fn </span>inverse(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;Matrix&lt;T&gt;, Error&gt; {
<span class="kw">let </span>n = <span class="self">self</span>.l.rows();
<span class="kw">let </span><span class="kw-2">mut </span>inv = Matrix::zeros(n, n);
<span class="kw">let </span><span class="kw-2">mut </span>e = Vector::zeros(n);
<span class="comment">// Note: this is essentially the same as
// PartialPivLu::inverse(), and consequently
// the data access patterns here can also be
// improved by way of using BLAS-3 calls.
// Please see that function&#39;s implementation
// for more details.
// Solve for each column of the inverse matrix
</span><span class="kw">for </span>i <span class="kw">in </span><span class="number">0 </span>.. n {
e[i] = T::one();
<span class="kw">let </span>col = <span class="self">self</span>.solve(e)<span class="question-mark">?</span>;
<span class="kw">for </span>j <span class="kw">in </span><span class="number">0 </span>.. n {
inv[[j, i]] = col[j];
}
e = col.apply(<span class="kw-2">&amp;</span>|<span class="kw">_</span>| T::zero());
}
<span class="prelude-val">Ok</span>(inv)
}
}
<span class="kw">impl</span>&lt;T: Zero&gt; Decomposition <span class="kw">for </span>Cholesky&lt;T&gt; {
<span class="kw">type </span>Factors = Matrix&lt;T&gt;;
<span class="kw">fn </span>unpack(<span class="self">self</span>) -&gt; Matrix&lt;T&gt; {
<span class="kw">use </span>internal_utils::nullify_upper_triangular_part;
<span class="kw">let </span><span class="kw-2">mut </span>l = <span class="self">self</span>.l;
nullify_upper_triangular_part(<span class="kw-2">&amp;mut </span>l);
l
}
}
<span class="kw">impl</span>&lt;T&gt; Matrix&lt;T&gt;
<span class="kw">where </span>T: Any + Float
{
<span class="doccomment">/// Cholesky decomposition
///
/// Returns the cholesky decomposition of a positive definite matrix.
///
/// *NOTE*: This function is deprecated, and will be removed in a
/// future release. Please see
/// [Cholesky](decomposition/struct.Cholesky.html) for its
/// replacement.
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate rulinalg; fn main() {
/// use rulinalg::matrix::Matrix;
///
/// let m = matrix![1.0, 0.5, 0.5;
/// 0.5, 1.0, 0.5;
/// 0.5, 0.5, 1.0];
///
/// let l = m.cholesky();
/// # }
/// ```
///
/// # Panics
///
/// - The matrix is not square.
///
/// # Failures
///
/// - Matrix is not positive definite.
</span><span class="attribute">#[deprecated]
</span><span class="kw">pub fn </span>cholesky(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;Matrix&lt;T&gt;, Error&gt; {
<span class="macro">assert!</span>(<span class="self">self</span>.rows == <span class="self">self</span>.cols,
<span class="string">&quot;Matrix must be square for Cholesky decomposition.&quot;</span>);
<span class="kw">let </span><span class="kw-2">mut </span>new_data = Vec::&lt;T&gt;::with_capacity(<span class="self">self</span>.rows() * <span class="self">self</span>.cols());
<span class="kw">for </span>i <span class="kw">in </span><span class="number">0</span>..<span class="self">self</span>.rows() {
<span class="kw">for </span>j <span class="kw">in </span><span class="number">0</span>..<span class="self">self</span>.cols() {
<span class="kw">if </span>j &gt; i {
new_data.push(T::zero());
<span class="kw">continue</span>;
}
<span class="kw">let </span><span class="kw-2">mut </span>sum = T::zero();
<span class="kw">for </span>k <span class="kw">in </span><span class="number">0</span>..j {
sum = sum + (new_data[i * <span class="self">self</span>.cols() + k] * new_data[j * <span class="self">self</span>.cols() + k]);
}
<span class="kw">if </span>j == i {
new_data.push((<span class="self">self</span>[[i, i]] - sum).sqrt());
} <span class="kw">else </span>{
<span class="kw">let </span>p = (<span class="self">self</span>[[i, j]] - sum) / new_data[j * <span class="self">self</span>.cols + j];
<span class="kw">if </span>!p.is_finite() {
<span class="kw">return </span><span class="prelude-val">Err</span>(Error::new(ErrorKind::DecompFailure,
<span class="string">&quot;Matrix is not positive definite.&quot;</span>));
} <span class="kw">else </span>{
}
new_data.push(p);
}
}
}
<span class="prelude-val">Ok</span>(Matrix {
rows: <span class="self">self</span>.rows(),
cols: <span class="self">self</span>.cols(),
data: new_data,
})
}
}
<span class="doccomment">/// Solves the square system L^T x = b,
/// where L is lower triangular
</span><span class="kw">fn </span>transpose_back_substitution&lt;T&gt;(l: <span class="kw-2">&amp;</span>Matrix&lt;T&gt;, b: Vector&lt;T&gt;)
-&gt; <span class="prelude-ty">Result</span>&lt;Vector&lt;T&gt;, Error&gt; <span class="kw">where </span>T: Float {
<span class="macro">assert!</span>(l.rows() == l.cols(), <span class="string">&quot;Matrix L must be square.&quot;</span>);
<span class="macro">assert!</span>(l.rows() == b.size(), <span class="string">&quot;L and b must be dimensionally compatible.&quot;</span>);
<span class="kw">let </span>n = l.rows();
<span class="kw">let </span><span class="kw-2">mut </span>x = b;
<span class="kw">for </span>i <span class="kw">in </span>(<span class="number">0 </span>.. n).rev() {
<span class="kw">let </span>row = l.row(i).raw_slice();
<span class="kw">let </span>diagonal = l[[i, i]];
<span class="kw">if </span>diagonal.abs() &lt; T::epsilon() {
<span class="kw">return </span><span class="prelude-val">Err</span>(Error::new(ErrorKind::DivByZero,
<span class="string">&quot;Matrix L is singular to working precision.&quot;</span>));
}
x[i] = x[i] / diagonal;
<span class="comment">// Apply the BLAS-1 operation
// y &lt;- y + α x
// where α = - x[i],
// y = x[0 .. i]
// and x = l[i, 0 .. i]
// TODO: Hopefully we&#39;ll have a more systematic way
// of applying optimized BLAS-like operations in the future.
// In this case, we should replace this loop with a call
// to the appropriate function.
</span><span class="kw">for </span>j <span class="kw">in </span><span class="number">0 </span>.. i {
x[j] = x[j] - x[i] * row[j];
}
}
<span class="prelude-val">Ok</span>(x)
}
<span class="attribute">#[cfg(test)]
</span><span class="kw">mod </span>tests {
<span class="kw">use </span>matrix::Matrix;
<span class="kw">use </span>matrix::decomposition::Decomposition;
<span class="kw">use </span>vector::Vector;
<span class="kw">use </span><span class="kw">super</span>::Cholesky;
<span class="kw">use </span><span class="kw">super</span>::transpose_back_substitution;
<span class="kw">use </span>quickcheck::TestResult;
<span class="attribute">#[test]
#[should_panic]
#[allow(deprecated)]
</span><span class="kw">fn </span>test_non_square_cholesky() {
<span class="kw">let </span>a = Matrix::&lt;f64&gt;::ones(<span class="number">2</span>, <span class="number">3</span>);
<span class="kw">let _ </span>= a.cholesky();
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>cholesky_unpack_empty() {
<span class="kw">let </span>x: Matrix&lt;f64&gt; = <span class="macro">matrix!</span>[];
<span class="kw">let </span>l = Cholesky::decompose(x.clone())
.unwrap()
.unpack();
<span class="macro">assert_matrix_eq!</span>(l, x);
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>cholesky_unpack_1x1() {
<span class="kw">let </span>x = <span class="macro">matrix!</span>[ <span class="number">4.0 </span>];
<span class="kw">let </span>expected = <span class="macro">matrix!</span>[ <span class="number">2.0 </span>];
<span class="kw">let </span>l = Cholesky::decompose(x)
.unwrap()
.unpack();
<span class="macro">assert_matrix_eq!</span>(l, expected, comp = float);
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>cholesky_unpack_2x2() {
{
<span class="kw">let </span>x = <span class="macro">matrix!</span>[ <span class="number">9.0</span>, -<span class="number">6.0</span>;
-<span class="number">6.0</span>, <span class="number">20.0</span>];
<span class="kw">let </span>expected = <span class="macro">matrix!</span>[ <span class="number">3.0</span>, <span class="number">0.0</span>;
-<span class="number">2.0</span>, <span class="number">4.0</span>];
<span class="kw">let </span>l = Cholesky::decompose(x)
.unwrap()
.unpack();
<span class="macro">assert_matrix_eq!</span>(l, expected, comp = float);
}
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>cholesky_singular_fails() {
{
<span class="kw">let </span>x = <span class="macro">matrix!</span>[<span class="number">0.0</span>];
<span class="macro">assert!</span>(Cholesky::decompose(x).is_err());
}
{
<span class="kw">let </span>x = <span class="macro">matrix!</span>[<span class="number">0.0</span>, <span class="number">0.0</span>;
<span class="number">0.0</span>, <span class="number">1.0</span>];
<span class="macro">assert!</span>(Cholesky::decompose(x).is_err());
}
{
<span class="kw">let </span>x = <span class="macro">matrix!</span>[<span class="number">1.0</span>, <span class="number">0.0</span>;
<span class="number">0.0</span>, <span class="number">0.0</span>];
<span class="macro">assert!</span>(Cholesky::decompose(x).is_err());
}
{
<span class="kw">let </span>x = <span class="macro">matrix!</span>[<span class="number">1.0</span>, <span class="number">3.0</span>, <span class="number">5.0</span>;
<span class="number">3.0</span>, <span class="number">9.0</span>, <span class="number">15.0</span>;
<span class="number">5.0</span>, <span class="number">15.0</span>, <span class="number">65.0</span>];
<span class="macro">assert!</span>(Cholesky::decompose(x).is_err());
}
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>cholesky_det_empty() {
<span class="kw">let </span>x: Matrix&lt;f64&gt; = <span class="macro">matrix!</span>[];
<span class="kw">let </span>cholesky = Cholesky::decompose(x).unwrap();
<span class="macro">assert_eq!</span>(cholesky.det(), <span class="number">1.0</span>);
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>cholesky_det() {
{
<span class="kw">let </span>x = <span class="macro">matrix!</span>[<span class="number">1.0</span>];
<span class="kw">let </span>cholesky = Cholesky::decompose(x).unwrap();
<span class="macro">assert_scalar_eq!</span>(cholesky.det(), <span class="number">1.0</span>, comp = float);
}
{
<span class="kw">let </span>x = <span class="macro">matrix!</span>[<span class="number">1.0</span>, <span class="number">3.0</span>, <span class="number">5.0</span>;
<span class="number">3.0</span>, <span class="number">18.0</span>, <span class="number">33.0</span>;
<span class="number">5.0</span>, <span class="number">33.0</span>, <span class="number">65.0</span>];
<span class="kw">let </span>cholesky = Cholesky::decompose(x).unwrap();
<span class="macro">assert_scalar_eq!</span>(cholesky.det(), <span class="number">36.0</span>, comp = float);
}
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>cholesky_solve_examples() {
{
<span class="kw">let </span>a: Matrix&lt;f64&gt; = <span class="macro">matrix!</span>[];
<span class="kw">let </span>b: Vector&lt;f64&gt; = <span class="macro">vector!</span>[];
<span class="kw">let </span>expected: Vector&lt;f64&gt; = <span class="macro">vector!</span>[];
<span class="kw">let </span>cholesky = Cholesky::decompose(a).unwrap();
<span class="kw">let </span>x = cholesky.solve(b).unwrap();
<span class="macro">assert_eq!</span>(x, expected);
}
{
<span class="kw">let </span>a = <span class="macro">matrix!</span>[ <span class="number">1.0 </span>];
<span class="kw">let </span>b = <span class="macro">vector!</span>[ <span class="number">4.0 </span>];
<span class="kw">let </span>expected = <span class="macro">vector!</span>[ <span class="number">4.0 </span>];
<span class="kw">let </span>cholesky = Cholesky::decompose(a).unwrap();
<span class="kw">let </span>x = cholesky.solve(b).unwrap();
<span class="macro">assert_vector_eq!</span>(x, expected, comp = float);
}
{
<span class="kw">let </span>a = <span class="macro">matrix!</span>[ <span class="number">4.0</span>, <span class="number">6.0</span>;
<span class="number">6.0</span>, <span class="number">25.0</span>];
<span class="kw">let </span>b = <span class="macro">vector!</span>[ <span class="number">2.0</span>, <span class="number">4.0</span>];
<span class="kw">let </span>expected = <span class="macro">vector!</span>[ <span class="number">0.40625</span>, <span class="number">0.0625 </span>];
<span class="kw">let </span>cholesky = Cholesky::decompose(a).unwrap();
<span class="kw">let </span>x = cholesky.solve(b).unwrap();
<span class="macro">assert_vector_eq!</span>(x, expected, comp = float);
}
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>cholesky_inverse_examples() {
{
<span class="kw">let </span>a: Matrix&lt;f64&gt; = <span class="macro">matrix!</span>[];
<span class="kw">let </span>expected: Matrix&lt;f64&gt; = <span class="macro">matrix!</span>[];
<span class="kw">let </span>cholesky = Cholesky::decompose(a).unwrap();
<span class="macro">assert_eq!</span>(cholesky.inverse().unwrap(), expected);
}
{
<span class="kw">let </span>a = <span class="macro">matrix!</span>[ <span class="number">2.0 </span>];
<span class="kw">let </span>expected = <span class="macro">matrix!</span>[ <span class="number">0.5 </span>];
<span class="kw">let </span>cholesky = Cholesky::decompose(a).unwrap();
<span class="macro">assert_matrix_eq!</span>(cholesky.inverse().unwrap(), expected,
comp = float);
}
{
<span class="kw">let </span>a = <span class="macro">matrix!</span>[ <span class="number">4.0</span>, <span class="number">6.0</span>;
<span class="number">6.0</span>, <span class="number">25.0</span>];
<span class="kw">let </span>expected = <span class="macro">matrix!</span>[ <span class="number">0.390625</span>, -<span class="number">0.09375</span>;
-<span class="number">0.093750 </span>, <span class="number">0.06250</span>];
<span class="kw">let </span>cholesky = Cholesky::decompose(a).unwrap();
<span class="macro">assert_matrix_eq!</span>(cholesky.inverse().unwrap(), expected,
comp = float);
}
{
<span class="kw">let </span>a = <span class="macro">matrix!</span>[ <span class="number">9.0</span>, <span class="number">6.0</span>, <span class="number">3.0</span>;
<span class="number">6.0</span>, <span class="number">20.0</span>, <span class="number">10.0</span>;
<span class="number">3.0</span>, <span class="number">10.0</span>, <span class="number">14.0</span>];
<span class="kw">let </span>expected = <span class="macro">matrix!</span>[<span class="number">0.1388888888888889</span>, -<span class="number">0.0416666666666667</span>, <span class="number">0.0 </span>;
-<span class="number">0.0416666666666667</span>, <span class="number">0.0902777777777778</span>, -<span class="number">0.0555555555555556</span>;
<span class="number">0.0</span>, -<span class="number">0.0555555555555556</span>, <span class="number">0.1111111111111111</span>];
<span class="kw">let </span>cholesky = Cholesky::decompose(a).unwrap();
<span class="macro">assert_matrix_eq!</span>(cholesky.inverse().unwrap(), expected,
comp = float);
}
}
<span class="macro">quickcheck! </span>{
<span class="kw">fn </span>property_cholesky_of_identity_is_identity(n: usize) -&gt; TestResult {
<span class="kw">if </span>n &gt; <span class="number">30 </span>{
<span class="kw">return </span>TestResult::discard();
}
<span class="kw">let </span>x = Matrix::&lt;f64&gt;::identity(n);
<span class="kw">let </span>l = Cholesky::decompose(x.clone()).map(|c| c.unpack());
<span class="kw">match </span>l {
<span class="prelude-val">Ok</span>(l) =&gt; {
<span class="macro">assert_matrix_eq!</span>(l, x, comp = float);
TestResult::passed()
},
<span class="kw">_ </span>=&gt; TestResult::failed()
}
}
}
<span class="attribute">#[test]
</span><span class="kw">fn </span>transpose_back_substitution_examples() {
{
<span class="kw">let </span>l: Matrix&lt;f64&gt; = <span class="macro">matrix!</span>[];
<span class="kw">let </span>b: Vector&lt;f64&gt; = <span class="macro">vector!</span>[];
<span class="kw">let </span>expected: Vector&lt;f64&gt; = <span class="macro">vector!</span>[];
<span class="kw">let </span>x = transpose_back_substitution(<span class="kw-2">&amp;</span>l, b).unwrap();
<span class="macro">assert_vector_eq!</span>(x, expected);
}
{
<span class="kw">let </span>l = <span class="macro">matrix!</span>[<span class="number">2.0</span>];
<span class="kw">let </span>b = <span class="macro">vector!</span>[<span class="number">2.0</span>];
<span class="kw">let </span>expected = <span class="macro">vector!</span>[<span class="number">1.0</span>];
<span class="kw">let </span>x = transpose_back_substitution(<span class="kw-2">&amp;</span>l, b).unwrap();
<span class="macro">assert_vector_eq!</span>(x, expected, comp = float);
}
{
<span class="kw">let </span>l = <span class="macro">matrix!</span>[<span class="number">2.0</span>, <span class="number">0.0</span>;
<span class="number">3.0</span>, <span class="number">4.0</span>];
<span class="kw">let </span>b = <span class="macro">vector!</span>[<span class="number">2.0</span>, <span class="number">1.0</span>];
<span class="kw">let </span>expected = <span class="macro">vector!</span>[<span class="number">0.625</span>, <span class="number">0.25 </span>];
<span class="kw">let </span>x = transpose_back_substitution(<span class="kw-2">&amp;</span>l, b).unwrap();
<span class="macro">assert_vector_eq!</span>(x, expected, comp = float);
}
{
<span class="kw">let </span>l = <span class="macro">matrix!</span>[ <span class="number">2.0</span>, <span class="number">0.0</span>, <span class="number">0.0</span>;
<span class="number">5.0</span>, -<span class="number">1.0</span>, <span class="number">0.0</span>;
-<span class="number">2.0</span>, <span class="number">0.0</span>, <span class="number">1.0</span>];
<span class="kw">let </span>b = <span class="macro">vector!</span>[-<span class="number">1.0</span>, <span class="number">2.0</span>, <span class="number">3.0</span>];
<span class="kw">let </span>expected = <span class="macro">vector!</span>[ <span class="number">7.5</span>, -<span class="number">2.0</span>, <span class="number">3.0 </span>];
<span class="kw">let </span>x = transpose_back_substitution(<span class="kw-2">&amp;</span>l, b).unwrap();
<span class="macro">assert_vector_eq!</span>(x, expected, comp = float);
}
}
}
</code></pre></div>
</section></div></main><div id="rustdoc-vars" data-root-path="../../../../" data-current-crate="rulinalg" data-themes="ayu,dark,light" data-resource-suffix="" data-rustdoc-version="1.66.0-nightly (5c8bff74b 2022-10-21)" ></div></body></html>