blob: 543b0475316c515a1e8223f50d41813298f48d83 [file] [log] [blame]
<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source of the Rust file `/root/.cargo/git/checkouts/rayon-3b3b152053499ede/a07ce2e/src/slice/quicksort.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>quicksort.rs - source</title><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceSerif4-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../FiraSans-Regular.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../FiraSans-Medium.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceCodePro-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceSerif4-Bold.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceCodePro-Semibold.ttf.woff2"><link rel="stylesheet" href="../../../normalize.css"><link rel="stylesheet" href="../../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" href="../../../ayu.css" disabled><link rel="stylesheet" href="../../../dark.css" disabled><link rel="stylesheet" href="../../../light.css" id="themeStyle"><script id="default-settings" ></script><script src="../../../storage.js"></script><script defer src="../../../source-script.js"></script><script defer src="../../../source-files.js"></script><script defer src="../../../main.js"></script><noscript><link rel="stylesheet" href="../../../noscript.css"></noscript><link rel="alternate icon" type="image/png" href="../../../favicon-16x16.png"><link rel="alternate icon" type="image/png" href="../../../favicon-32x32.png"><link rel="icon" type="image/svg+xml" href="../../../favicon.svg"></head><body class="rustdoc source"><!--[if lte IE 11]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><a class="sidebar-logo" href="../../../rayon/index.html"><div class="logo-container"><img class="rust-logo" src="../../../rust-logo.svg" alt="logo"></div></a></nav><main><div class="width-limiter"><nav class="sub"><a class="sub-logo-container" href="../../../rayon/index.html"><img class="rust-logo" src="../../../rust-logo.svg" alt="logo"></a><form class="search-form"><div class="search-container"><span></span><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"><div id="help-button" title="help" tabindex="-1"><a href="../../../help.html">?</a></div><div id="settings-menu" tabindex="-1"><a href="../../../settings.html" title="settings"><img width="22" height="22" alt="Change settings" src="../../../wheel.svg"></a></div></div></form></nav><section id="main-content" class="content"><div class="example-wrap"><pre class="src-line-numbers"><span id="1">1</span>
<span id="2">2</span>
<span id="3">3</span>
<span id="4">4</span>
<span id="5">5</span>
<span id="6">6</span>
<span id="7">7</span>
<span id="8">8</span>
<span id="9">9</span>
<span id="10">10</span>
<span id="11">11</span>
<span id="12">12</span>
<span id="13">13</span>
<span id="14">14</span>
<span id="15">15</span>
<span id="16">16</span>
<span id="17">17</span>
<span id="18">18</span>
<span id="19">19</span>
<span id="20">20</span>
<span id="21">21</span>
<span id="22">22</span>
<span id="23">23</span>
<span id="24">24</span>
<span id="25">25</span>
<span id="26">26</span>
<span id="27">27</span>
<span id="28">28</span>
<span id="29">29</span>
<span id="30">30</span>
<span id="31">31</span>
<span id="32">32</span>
<span id="33">33</span>
<span id="34">34</span>
<span id="35">35</span>
<span id="36">36</span>
<span id="37">37</span>
<span id="38">38</span>
<span id="39">39</span>
<span id="40">40</span>
<span id="41">41</span>
<span id="42">42</span>
<span id="43">43</span>
<span id="44">44</span>
<span id="45">45</span>
<span id="46">46</span>
<span id="47">47</span>
<span id="48">48</span>
<span id="49">49</span>
<span id="50">50</span>
<span id="51">51</span>
<span id="52">52</span>
<span id="53">53</span>
<span id="54">54</span>
<span id="55">55</span>
<span id="56">56</span>
<span id="57">57</span>
<span id="58">58</span>
<span id="59">59</span>
<span id="60">60</span>
<span id="61">61</span>
<span id="62">62</span>
<span id="63">63</span>
<span id="64">64</span>
<span id="65">65</span>
<span id="66">66</span>
<span id="67">67</span>
<span id="68">68</span>
<span id="69">69</span>
<span id="70">70</span>
<span id="71">71</span>
<span id="72">72</span>
<span id="73">73</span>
<span id="74">74</span>
<span id="75">75</span>
<span id="76">76</span>
<span id="77">77</span>
<span id="78">78</span>
<span id="79">79</span>
<span id="80">80</span>
<span id="81">81</span>
<span id="82">82</span>
<span id="83">83</span>
<span id="84">84</span>
<span id="85">85</span>
<span id="86">86</span>
<span id="87">87</span>
<span id="88">88</span>
<span id="89">89</span>
<span id="90">90</span>
<span id="91">91</span>
<span id="92">92</span>
<span id="93">93</span>
<span id="94">94</span>
<span id="95">95</span>
<span id="96">96</span>
<span id="97">97</span>
<span id="98">98</span>
<span id="99">99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
<span id="290">290</span>
<span id="291">291</span>
<span id="292">292</span>
<span id="293">293</span>
<span id="294">294</span>
<span id="295">295</span>
<span id="296">296</span>
<span id="297">297</span>
<span id="298">298</span>
<span id="299">299</span>
<span id="300">300</span>
<span id="301">301</span>
<span id="302">302</span>
<span id="303">303</span>
<span id="304">304</span>
<span id="305">305</span>
<span id="306">306</span>
<span id="307">307</span>
<span id="308">308</span>
<span id="309">309</span>
<span id="310">310</span>
<span id="311">311</span>
<span id="312">312</span>
<span id="313">313</span>
<span id="314">314</span>
<span id="315">315</span>
<span id="316">316</span>
<span id="317">317</span>
<span id="318">318</span>
<span id="319">319</span>
<span id="320">320</span>
<span id="321">321</span>
<span id="322">322</span>
<span id="323">323</span>
<span id="324">324</span>
<span id="325">325</span>
<span id="326">326</span>
<span id="327">327</span>
<span id="328">328</span>
<span id="329">329</span>
<span id="330">330</span>
<span id="331">331</span>
<span id="332">332</span>
<span id="333">333</span>
<span id="334">334</span>
<span id="335">335</span>
<span id="336">336</span>
<span id="337">337</span>
<span id="338">338</span>
<span id="339">339</span>
<span id="340">340</span>
<span id="341">341</span>
<span id="342">342</span>
<span id="343">343</span>
<span id="344">344</span>
<span id="345">345</span>
<span id="346">346</span>
<span id="347">347</span>
<span id="348">348</span>
<span id="349">349</span>
<span id="350">350</span>
<span id="351">351</span>
<span id="352">352</span>
<span id="353">353</span>
<span id="354">354</span>
<span id="355">355</span>
<span id="356">356</span>
<span id="357">357</span>
<span id="358">358</span>
<span id="359">359</span>
<span id="360">360</span>
<span id="361">361</span>
<span id="362">362</span>
<span id="363">363</span>
<span id="364">364</span>
<span id="365">365</span>
<span id="366">366</span>
<span id="367">367</span>
<span id="368">368</span>
<span id="369">369</span>
<span id="370">370</span>
<span id="371">371</span>
<span id="372">372</span>
<span id="373">373</span>
<span id="374">374</span>
<span id="375">375</span>
<span id="376">376</span>
<span id="377">377</span>
<span id="378">378</span>
<span id="379">379</span>
<span id="380">380</span>
<span id="381">381</span>
<span id="382">382</span>
<span id="383">383</span>
<span id="384">384</span>
<span id="385">385</span>
<span id="386">386</span>
<span id="387">387</span>
<span id="388">388</span>
<span id="389">389</span>
<span id="390">390</span>
<span id="391">391</span>
<span id="392">392</span>
<span id="393">393</span>
<span id="394">394</span>
<span id="395">395</span>
<span id="396">396</span>
<span id="397">397</span>
<span id="398">398</span>
<span id="399">399</span>
<span id="400">400</span>
<span id="401">401</span>
<span id="402">402</span>
<span id="403">403</span>
<span id="404">404</span>
<span id="405">405</span>
<span id="406">406</span>
<span id="407">407</span>
<span id="408">408</span>
<span id="409">409</span>
<span id="410">410</span>
<span id="411">411</span>
<span id="412">412</span>
<span id="413">413</span>
<span id="414">414</span>
<span id="415">415</span>
<span id="416">416</span>
<span id="417">417</span>
<span id="418">418</span>
<span id="419">419</span>
<span id="420">420</span>
<span id="421">421</span>
<span id="422">422</span>
<span id="423">423</span>
<span id="424">424</span>
<span id="425">425</span>
<span id="426">426</span>
<span id="427">427</span>
<span id="428">428</span>
<span id="429">429</span>
<span id="430">430</span>
<span id="431">431</span>
<span id="432">432</span>
<span id="433">433</span>
<span id="434">434</span>
<span id="435">435</span>
<span id="436">436</span>
<span id="437">437</span>
<span id="438">438</span>
<span id="439">439</span>
<span id="440">440</span>
<span id="441">441</span>
<span id="442">442</span>
<span id="443">443</span>
<span id="444">444</span>
<span id="445">445</span>
<span id="446">446</span>
<span id="447">447</span>
<span id="448">448</span>
<span id="449">449</span>
<span id="450">450</span>
<span id="451">451</span>
<span id="452">452</span>
<span id="453">453</span>
<span id="454">454</span>
<span id="455">455</span>
<span id="456">456</span>
<span id="457">457</span>
<span id="458">458</span>
<span id="459">459</span>
<span id="460">460</span>
<span id="461">461</span>
<span id="462">462</span>
<span id="463">463</span>
<span id="464">464</span>
<span id="465">465</span>
<span id="466">466</span>
<span id="467">467</span>
<span id="468">468</span>
<span id="469">469</span>
<span id="470">470</span>
<span id="471">471</span>
<span id="472">472</span>
<span id="473">473</span>
<span id="474">474</span>
<span id="475">475</span>
<span id="476">476</span>
<span id="477">477</span>
<span id="478">478</span>
<span id="479">479</span>
<span id="480">480</span>
<span id="481">481</span>
<span id="482">482</span>
<span id="483">483</span>
<span id="484">484</span>
<span id="485">485</span>
<span id="486">486</span>
<span id="487">487</span>
<span id="488">488</span>
<span id="489">489</span>
<span id="490">490</span>
<span id="491">491</span>
<span id="492">492</span>
<span id="493">493</span>
<span id="494">494</span>
<span id="495">495</span>
<span id="496">496</span>
<span id="497">497</span>
<span id="498">498</span>
<span id="499">499</span>
<span id="500">500</span>
<span id="501">501</span>
<span id="502">502</span>
<span id="503">503</span>
<span id="504">504</span>
<span id="505">505</span>
<span id="506">506</span>
<span id="507">507</span>
<span id="508">508</span>
<span id="509">509</span>
<span id="510">510</span>
<span id="511">511</span>
<span id="512">512</span>
<span id="513">513</span>
<span id="514">514</span>
<span id="515">515</span>
<span id="516">516</span>
<span id="517">517</span>
<span id="518">518</span>
<span id="519">519</span>
<span id="520">520</span>
<span id="521">521</span>
<span id="522">522</span>
<span id="523">523</span>
<span id="524">524</span>
<span id="525">525</span>
<span id="526">526</span>
<span id="527">527</span>
<span id="528">528</span>
<span id="529">529</span>
<span id="530">530</span>
<span id="531">531</span>
<span id="532">532</span>
<span id="533">533</span>
<span id="534">534</span>
<span id="535">535</span>
<span id="536">536</span>
<span id="537">537</span>
<span id="538">538</span>
<span id="539">539</span>
<span id="540">540</span>
<span id="541">541</span>
<span id="542">542</span>
<span id="543">543</span>
<span id="544">544</span>
<span id="545">545</span>
<span id="546">546</span>
<span id="547">547</span>
<span id="548">548</span>
<span id="549">549</span>
<span id="550">550</span>
<span id="551">551</span>
<span id="552">552</span>
<span id="553">553</span>
<span id="554">554</span>
<span id="555">555</span>
<span id="556">556</span>
<span id="557">557</span>
<span id="558">558</span>
<span id="559">559</span>
<span id="560">560</span>
<span id="561">561</span>
<span id="562">562</span>
<span id="563">563</span>
<span id="564">564</span>
<span id="565">565</span>
<span id="566">566</span>
<span id="567">567</span>
<span id="568">568</span>
<span id="569">569</span>
<span id="570">570</span>
<span id="571">571</span>
<span id="572">572</span>
<span id="573">573</span>
<span id="574">574</span>
<span id="575">575</span>
<span id="576">576</span>
<span id="577">577</span>
<span id="578">578</span>
<span id="579">579</span>
<span id="580">580</span>
<span id="581">581</span>
<span id="582">582</span>
<span id="583">583</span>
<span id="584">584</span>
<span id="585">585</span>
<span id="586">586</span>
<span id="587">587</span>
<span id="588">588</span>
<span id="589">589</span>
<span id="590">590</span>
<span id="591">591</span>
<span id="592">592</span>
<span id="593">593</span>
<span id="594">594</span>
<span id="595">595</span>
<span id="596">596</span>
<span id="597">597</span>
<span id="598">598</span>
<span id="599">599</span>
<span id="600">600</span>
<span id="601">601</span>
<span id="602">602</span>
<span id="603">603</span>
<span id="604">604</span>
<span id="605">605</span>
<span id="606">606</span>
<span id="607">607</span>
<span id="608">608</span>
<span id="609">609</span>
<span id="610">610</span>
<span id="611">611</span>
<span id="612">612</span>
<span id="613">613</span>
<span id="614">614</span>
<span id="615">615</span>
<span id="616">616</span>
<span id="617">617</span>
<span id="618">618</span>
<span id="619">619</span>
<span id="620">620</span>
<span id="621">621</span>
<span id="622">622</span>
<span id="623">623</span>
<span id="624">624</span>
<span id="625">625</span>
<span id="626">626</span>
<span id="627">627</span>
<span id="628">628</span>
<span id="629">629</span>
<span id="630">630</span>
<span id="631">631</span>
<span id="632">632</span>
<span id="633">633</span>
<span id="634">634</span>
<span id="635">635</span>
<span id="636">636</span>
<span id="637">637</span>
<span id="638">638</span>
<span id="639">639</span>
<span id="640">640</span>
<span id="641">641</span>
<span id="642">642</span>
<span id="643">643</span>
<span id="644">644</span>
<span id="645">645</span>
<span id="646">646</span>
<span id="647">647</span>
<span id="648">648</span>
<span id="649">649</span>
<span id="650">650</span>
<span id="651">651</span>
<span id="652">652</span>
<span id="653">653</span>
<span id="654">654</span>
<span id="655">655</span>
<span id="656">656</span>
<span id="657">657</span>
<span id="658">658</span>
<span id="659">659</span>
<span id="660">660</span>
<span id="661">661</span>
<span id="662">662</span>
<span id="663">663</span>
<span id="664">664</span>
<span id="665">665</span>
<span id="666">666</span>
<span id="667">667</span>
<span id="668">668</span>
<span id="669">669</span>
<span id="670">670</span>
<span id="671">671</span>
<span id="672">672</span>
<span id="673">673</span>
<span id="674">674</span>
<span id="675">675</span>
<span id="676">676</span>
<span id="677">677</span>
<span id="678">678</span>
<span id="679">679</span>
<span id="680">680</span>
<span id="681">681</span>
<span id="682">682</span>
<span id="683">683</span>
<span id="684">684</span>
<span id="685">685</span>
<span id="686">686</span>
<span id="687">687</span>
<span id="688">688</span>
<span id="689">689</span>
<span id="690">690</span>
<span id="691">691</span>
<span id="692">692</span>
<span id="693">693</span>
<span id="694">694</span>
<span id="695">695</span>
<span id="696">696</span>
<span id="697">697</span>
<span id="698">698</span>
<span id="699">699</span>
<span id="700">700</span>
<span id="701">701</span>
<span id="702">702</span>
<span id="703">703</span>
<span id="704">704</span>
<span id="705">705</span>
<span id="706">706</span>
<span id="707">707</span>
<span id="708">708</span>
<span id="709">709</span>
<span id="710">710</span>
<span id="711">711</span>
<span id="712">712</span>
<span id="713">713</span>
<span id="714">714</span>
<span id="715">715</span>
<span id="716">716</span>
<span id="717">717</span>
<span id="718">718</span>
<span id="719">719</span>
<span id="720">720</span>
<span id="721">721</span>
<span id="722">722</span>
<span id="723">723</span>
<span id="724">724</span>
<span id="725">725</span>
<span id="726">726</span>
<span id="727">727</span>
<span id="728">728</span>
<span id="729">729</span>
<span id="730">730</span>
<span id="731">731</span>
<span id="732">732</span>
<span id="733">733</span>
<span id="734">734</span>
<span id="735">735</span>
<span id="736">736</span>
<span id="737">737</span>
<span id="738">738</span>
<span id="739">739</span>
<span id="740">740</span>
<span id="741">741</span>
<span id="742">742</span>
<span id="743">743</span>
<span id="744">744</span>
<span id="745">745</span>
<span id="746">746</span>
<span id="747">747</span>
<span id="748">748</span>
<span id="749">749</span>
<span id="750">750</span>
<span id="751">751</span>
<span id="752">752</span>
<span id="753">753</span>
<span id="754">754</span>
<span id="755">755</span>
<span id="756">756</span>
<span id="757">757</span>
<span id="758">758</span>
<span id="759">759</span>
<span id="760">760</span>
<span id="761">761</span>
<span id="762">762</span>
<span id="763">763</span>
<span id="764">764</span>
<span id="765">765</span>
<span id="766">766</span>
<span id="767">767</span>
<span id="768">768</span>
<span id="769">769</span>
<span id="770">770</span>
<span id="771">771</span>
<span id="772">772</span>
<span id="773">773</span>
<span id="774">774</span>
<span id="775">775</span>
<span id="776">776</span>
<span id="777">777</span>
<span id="778">778</span>
<span id="779">779</span>
<span id="780">780</span>
<span id="781">781</span>
<span id="782">782</span>
<span id="783">783</span>
<span id="784">784</span>
<span id="785">785</span>
<span id="786">786</span>
<span id="787">787</span>
<span id="788">788</span>
<span id="789">789</span>
<span id="790">790</span>
<span id="791">791</span>
<span id="792">792</span>
<span id="793">793</span>
<span id="794">794</span>
<span id="795">795</span>
<span id="796">796</span>
<span id="797">797</span>
<span id="798">798</span>
<span id="799">799</span>
<span id="800">800</span>
<span id="801">801</span>
<span id="802">802</span>
<span id="803">803</span>
<span id="804">804</span>
<span id="805">805</span>
<span id="806">806</span>
<span id="807">807</span>
<span id="808">808</span>
<span id="809">809</span>
<span id="810">810</span>
<span id="811">811</span>
<span id="812">812</span>
<span id="813">813</span>
<span id="814">814</span>
<span id="815">815</span>
<span id="816">816</span>
<span id="817">817</span>
<span id="818">818</span>
<span id="819">819</span>
<span id="820">820</span>
<span id="821">821</span>
<span id="822">822</span>
<span id="823">823</span>
<span id="824">824</span>
<span id="825">825</span>
<span id="826">826</span>
<span id="827">827</span>
<span id="828">828</span>
<span id="829">829</span>
<span id="830">830</span>
<span id="831">831</span>
<span id="832">832</span>
<span id="833">833</span>
<span id="834">834</span>
<span id="835">835</span>
<span id="836">836</span>
<span id="837">837</span>
<span id="838">838</span>
<span id="839">839</span>
<span id="840">840</span>
<span id="841">841</span>
<span id="842">842</span>
<span id="843">843</span>
<span id="844">844</span>
<span id="845">845</span>
<span id="846">846</span>
<span id="847">847</span>
<span id="848">848</span>
<span id="849">849</span>
<span id="850">850</span>
<span id="851">851</span>
<span id="852">852</span>
<span id="853">853</span>
<span id="854">854</span>
<span id="855">855</span>
<span id="856">856</span>
<span id="857">857</span>
<span id="858">858</span>
<span id="859">859</span>
<span id="860">860</span>
<span id="861">861</span>
<span id="862">862</span>
<span id="863">863</span>
<span id="864">864</span>
<span id="865">865</span>
<span id="866">866</span>
<span id="867">867</span>
<span id="868">868</span>
<span id="869">869</span>
<span id="870">870</span>
<span id="871">871</span>
<span id="872">872</span>
<span id="873">873</span>
<span id="874">874</span>
<span id="875">875</span>
<span id="876">876</span>
<span id="877">877</span>
<span id="878">878</span>
<span id="879">879</span>
<span id="880">880</span>
<span id="881">881</span>
<span id="882">882</span>
<span id="883">883</span>
<span id="884">884</span>
<span id="885">885</span>
<span id="886">886</span>
<span id="887">887</span>
<span id="888">888</span>
<span id="889">889</span>
<span id="890">890</span>
<span id="891">891</span>
<span id="892">892</span>
<span id="893">893</span>
<span id="894">894</span>
<span id="895">895</span>
<span id="896">896</span>
<span id="897">897</span>
<span id="898">898</span>
<span id="899">899</span>
<span id="900">900</span>
<span id="901">901</span>
<span id="902">902</span>
<span id="903">903</span>
</pre><pre class="rust"><code><span class="doccomment">//! Parallel quicksort.
//!
//! This implementation is copied verbatim from `std::slice::sort_unstable` and then parallelized.
//! The only difference from the original is that calls to `recurse` are executed in parallel using
//! `rayon_core::join`.
</span><span class="kw">use </span>std::cmp;
<span class="kw">use </span>std::marker::PhantomData;
<span class="kw">use </span>std::mem::{<span class="self">self</span>, MaybeUninit};
<span class="kw">use </span>std::ptr;
<span class="doccomment">/// When dropped, copies from `src` into `dest`.
</span><span class="attribute">#[must_use]
</span><span class="kw">struct </span>CopyOnDrop&lt;<span class="lifetime">&#39;a</span>, T&gt; {
src: <span class="kw-2">*const </span>T,
dest: <span class="kw-2">*mut </span>T,
<span class="doccomment">/// `src` is often a local pointer here, make sure we have appropriate
/// PhantomData so that dropck can protect us.
</span>marker: PhantomData&lt;<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span><span class="kw-2">mut </span>T&gt;,
}
<span class="kw">impl</span>&lt;<span class="lifetime">&#39;a</span>, T&gt; CopyOnDrop&lt;<span class="lifetime">&#39;a</span>, T&gt; {
<span class="doccomment">/// Construct from a source pointer and a destination
/// Assumes dest lives longer than src, since there is no easy way to
/// copy down lifetime information from another pointer
</span><span class="kw">unsafe fn </span>new(src: <span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span>T, dest: <span class="kw-2">*mut </span>T) -&gt; <span class="self">Self </span>{
CopyOnDrop {
src,
dest,
marker: PhantomData,
}
}
}
<span class="kw">impl</span>&lt;T&gt; Drop <span class="kw">for </span>CopyOnDrop&lt;<span class="lifetime">&#39;_</span>, T&gt; {
<span class="kw">fn </span>drop(<span class="kw-2">&amp;mut </span><span class="self">self</span>) {
<span class="comment">// SAFETY: This is a helper class.
// Please refer to its usage for correctness.
// Namely, one must be sure that `src` and `dst` does not overlap as required by `ptr::copy_nonoverlapping`.
</span><span class="kw">unsafe </span>{
ptr::copy_nonoverlapping(<span class="self">self</span>.src, <span class="self">self</span>.dest, <span class="number">1</span>);
}
}
}
<span class="doccomment">/// Shifts the first element to the right until it encounters a greater or equal element.
</span><span class="kw">fn </span>shift_head&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], is_less: <span class="kw-2">&amp;</span>F)
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool,
{
<span class="kw">let </span>len = v.len();
<span class="comment">// SAFETY: The unsafe operations below involves indexing without a bounds check (by offsetting a
// pointer) and copying memory (`ptr::copy_nonoverlapping`).
//
// a. Indexing:
// 1. We checked the size of the array to &gt;=2.
// 2. All the indexing that we will do is always between {0 &lt;= index &lt; len} at most.
//
// b. Memory copying
// 1. We are obtaining pointers to references which are guaranteed to be valid.
// 2. They cannot overlap because we obtain pointers to difference indices of the slice.
// Namely, `i` and `i-1`.
// 3. If the slice is properly aligned, the elements are properly aligned.
// It is the caller&#39;s responsibility to make sure the slice is properly aligned.
//
// See comments below for further detail.
</span><span class="kw">unsafe </span>{
<span class="comment">// If the first two elements are out-of-order...
</span><span class="kw">if </span>len &gt;= <span class="number">2 </span>&amp;&amp; is_less(v.get_unchecked(<span class="number">1</span>), v.get_unchecked(<span class="number">0</span>)) {
<span class="comment">// Read the first element into a stack-allocated variable. If a following comparison
// operation panics, `hole` will get dropped and automatically write the element back
// into the slice.
</span><span class="kw">let </span>tmp = mem::ManuallyDrop::new(ptr::read(v.get_unchecked(<span class="number">0</span>)));
<span class="kw">let </span>v = v.as_mut_ptr();
<span class="kw">let </span><span class="kw-2">mut </span>hole = CopyOnDrop::new(<span class="kw-2">&amp;*</span>tmp, v.add(<span class="number">1</span>));
ptr::copy_nonoverlapping(v.add(<span class="number">1</span>), v.add(<span class="number">0</span>), <span class="number">1</span>);
<span class="kw">for </span>i <span class="kw">in </span><span class="number">2</span>..len {
<span class="kw">if </span>!is_less(<span class="kw-2">&amp;*</span>v.add(i), <span class="kw-2">&amp;*</span>tmp) {
<span class="kw">break</span>;
}
<span class="comment">// Move `i`-th element one place to the left, thus shifting the hole to the right.
</span>ptr::copy_nonoverlapping(v.add(i), v.add(i - <span class="number">1</span>), <span class="number">1</span>);
hole.dest = v.add(i);
}
<span class="comment">// `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
</span>}
}
}
<span class="doccomment">/// Shifts the last element to the left until it encounters a smaller or equal element.
</span><span class="kw">fn </span>shift_tail&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], is_less: <span class="kw-2">&amp;</span>F)
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool,
{
<span class="kw">let </span>len = v.len();
<span class="comment">// SAFETY: The unsafe operations below involves indexing without a bound check (by offsetting a
// pointer) and copying memory (`ptr::copy_nonoverlapping`).
//
// a. Indexing:
// 1. We checked the size of the array to &gt;= 2.
// 2. All the indexing that we will do is always between `0 &lt;= index &lt; len-1` at most.
//
// b. Memory copying
// 1. We are obtaining pointers to references which are guaranteed to be valid.
// 2. They cannot overlap because we obtain pointers to difference indices of the slice.
// Namely, `i` and `i+1`.
// 3. If the slice is properly aligned, the elements are properly aligned.
// It is the caller&#39;s responsibility to make sure the slice is properly aligned.
//
// See comments below for further detail.
</span><span class="kw">unsafe </span>{
<span class="comment">// If the last two elements are out-of-order...
</span><span class="kw">if </span>len &gt;= <span class="number">2 </span>&amp;&amp; is_less(v.get_unchecked(len - <span class="number">1</span>), v.get_unchecked(len - <span class="number">2</span>)) {
<span class="comment">// Read the last element into a stack-allocated variable. If a following comparison
// operation panics, `hole` will get dropped and automatically write the element back
// into the slice.
</span><span class="kw">let </span>tmp = mem::ManuallyDrop::new(ptr::read(v.get_unchecked(len - <span class="number">1</span>)));
<span class="kw">let </span>v = v.as_mut_ptr();
<span class="kw">let </span><span class="kw-2">mut </span>hole = CopyOnDrop::new(<span class="kw-2">&amp;*</span>tmp, v.add(len - <span class="number">2</span>));
ptr::copy_nonoverlapping(v.add(len - <span class="number">2</span>), v.add(len - <span class="number">1</span>), <span class="number">1</span>);
<span class="kw">for </span>i <span class="kw">in </span>(<span class="number">0</span>..len - <span class="number">2</span>).rev() {
<span class="kw">if </span>!is_less(<span class="kw-2">&amp;*</span>tmp, <span class="kw-2">&amp;*</span>v.add(i)) {
<span class="kw">break</span>;
}
<span class="comment">// Move `i`-th element one place to the right, thus shifting the hole to the left.
</span>ptr::copy_nonoverlapping(v.add(i), v.add(i + <span class="number">1</span>), <span class="number">1</span>);
hole.dest = v.add(i);
}
<span class="comment">// `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
</span>}
}
}
<span class="doccomment">/// Partially sorts a slice by shifting several out-of-order elements around.
///
/// Returns `true` if the slice is sorted at the end. This function is *O*(*n*) worst-case.
</span><span class="attribute">#[cold]
</span><span class="kw">fn </span>partial_insertion_sort&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], is_less: <span class="kw-2">&amp;</span>F) -&gt; bool
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool,
{
<span class="comment">// Maximum number of adjacent out-of-order pairs that will get shifted.
</span><span class="kw">const </span>MAX_STEPS: usize = <span class="number">5</span>;
<span class="comment">// If the slice is shorter than this, don&#39;t shift any elements.
</span><span class="kw">const </span>SHORTEST_SHIFTING: usize = <span class="number">50</span>;
<span class="kw">let </span>len = v.len();
<span class="kw">let </span><span class="kw-2">mut </span>i = <span class="number">1</span>;
<span class="kw">for _ in </span><span class="number">0</span>..MAX_STEPS {
<span class="comment">// SAFETY: We already explicitly did the bound checking with `i &lt; len`.
// All our subsequent indexing is only in the range `0 &lt;= index &lt; len`
</span><span class="kw">unsafe </span>{
<span class="comment">// Find the next pair of adjacent out-of-order elements.
</span><span class="kw">while </span>i &lt; len &amp;&amp; !is_less(v.get_unchecked(i), v.get_unchecked(i - <span class="number">1</span>)) {
i += <span class="number">1</span>;
}
}
<span class="comment">// Are we done?
</span><span class="kw">if </span>i == len {
<span class="kw">return </span><span class="bool-val">true</span>;
}
<span class="comment">// Don&#39;t shift elements on short arrays, that has a performance cost.
</span><span class="kw">if </span>len &lt; SHORTEST_SHIFTING {
<span class="kw">return </span><span class="bool-val">false</span>;
}
<span class="comment">// Swap the found pair of elements. This puts them in correct order.
</span>v.swap(i - <span class="number">1</span>, i);
<span class="comment">// Shift the smaller element to the left.
</span>shift_tail(<span class="kw-2">&amp;mut </span>v[..i], is_less);
<span class="comment">// Shift the greater element to the right.
</span>shift_head(<span class="kw-2">&amp;mut </span>v[i..], is_less);
}
<span class="comment">// Didn&#39;t manage to sort the slice in the limited number of steps.
</span><span class="bool-val">false
</span>}
<span class="doccomment">/// Sorts a slice using insertion sort, which is *O*(*n*^2) worst-case.
</span><span class="kw">fn </span>insertion_sort&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], is_less: <span class="kw-2">&amp;</span>F)
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool,
{
<span class="kw">for </span>i <span class="kw">in </span><span class="number">1</span>..v.len() {
shift_tail(<span class="kw-2">&amp;mut </span>v[..i + <span class="number">1</span>], is_less);
}
}
<span class="doccomment">/// Sorts `v` using heapsort, which guarantees *O*(*n* \* log(*n*)) worst-case.
</span><span class="attribute">#[cold]
</span><span class="kw">fn </span>heapsort&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], is_less: <span class="kw-2">&amp;</span>F)
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool,
{
<span class="comment">// This binary heap respects the invariant `parent &gt;= child`.
</span><span class="kw">let </span>sift_down = |v: <span class="kw-2">&amp;mut </span>[T], <span class="kw-2">mut </span>node| {
<span class="kw">loop </span>{
<span class="comment">// Children of `node`.
</span><span class="kw">let </span><span class="kw-2">mut </span>child = <span class="number">2 </span>* node + <span class="number">1</span>;
<span class="kw">if </span>child &gt;= v.len() {
<span class="kw">break</span>;
}
<span class="comment">// Choose the greater child.
</span><span class="kw">if </span>child + <span class="number">1 </span>&lt; v.len() &amp;&amp; is_less(<span class="kw-2">&amp;</span>v[child], <span class="kw-2">&amp;</span>v[child + <span class="number">1</span>]) {
child += <span class="number">1</span>;
}
<span class="comment">// Stop if the invariant holds at `node`.
</span><span class="kw">if </span>!is_less(<span class="kw-2">&amp;</span>v[node], <span class="kw-2">&amp;</span>v[child]) {
<span class="kw">break</span>;
}
<span class="comment">// Swap `node` with the greater child, move one step down, and continue sifting.
</span>v.swap(node, child);
node = child;
}
};
<span class="comment">// Build the heap in linear time.
</span><span class="kw">for </span>i <span class="kw">in </span>(<span class="number">0</span>..v.len() / <span class="number">2</span>).rev() {
sift_down(v, i);
}
<span class="comment">// Pop maximal elements from the heap.
</span><span class="kw">for </span>i <span class="kw">in </span>(<span class="number">1</span>..v.len()).rev() {
v.swap(<span class="number">0</span>, i);
sift_down(<span class="kw-2">&amp;mut </span>v[..i], <span class="number">0</span>);
}
}
<span class="doccomment">/// Partitions `v` into elements smaller than `pivot`, followed by elements greater than or equal
/// to `pivot`.
///
/// Returns the number of elements smaller than `pivot`.
///
/// Partitioning is performed block-by-block in order to minimize the cost of branching operations.
/// This idea is presented in the [BlockQuicksort][pdf] paper.
///
/// [pdf]: https://drops.dagstuhl.de/opus/volltexte/2016/6389/pdf/LIPIcs-ESA-2016-38.pdf
</span><span class="kw">fn </span>partition_in_blocks&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], pivot: <span class="kw-2">&amp;</span>T, is_less: <span class="kw-2">&amp;</span>F) -&gt; usize
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool,
{
<span class="comment">// Number of elements in a typical block.
</span><span class="kw">const </span>BLOCK: usize = <span class="number">128</span>;
<span class="comment">// The partitioning algorithm repeats the following steps until completion:
//
// 1. Trace a block from the left side to identify elements greater than or equal to the pivot.
// 2. Trace a block from the right side to identify elements smaller than the pivot.
// 3. Exchange the identified elements between the left and right side.
//
// We keep the following variables for a block of elements:
//
// 1. `block` - Number of elements in the block.
// 2. `start` - Start pointer into the `offsets` array.
// 3. `end` - End pointer into the `offsets` array.
// 4. `offsets - Indices of out-of-order elements within the block.
// The current block on the left side (from `l` to `l.add(block_l)`).
</span><span class="kw">let </span><span class="kw-2">mut </span>l = v.as_mut_ptr();
<span class="kw">let </span><span class="kw-2">mut </span>block_l = BLOCK;
<span class="kw">let </span><span class="kw-2">mut </span>start_l = ptr::null_mut();
<span class="kw">let </span><span class="kw-2">mut </span>end_l = ptr::null_mut();
<span class="kw">let </span><span class="kw-2">mut </span>offsets_l = [MaybeUninit::&lt;u8&gt;::uninit(); BLOCK];
<span class="comment">// The current block on the right side (from `r.sub(block_r)` to `r`).
// SAFETY: The documentation for .add() specifically mention that `vec.as_ptr().add(vec.len())` is always safe`
</span><span class="kw">let </span><span class="kw-2">mut </span>r = <span class="kw">unsafe </span>{ l.add(v.len()) };
<span class="kw">let </span><span class="kw-2">mut </span>block_r = BLOCK;
<span class="kw">let </span><span class="kw-2">mut </span>start_r = ptr::null_mut();
<span class="kw">let </span><span class="kw-2">mut </span>end_r = ptr::null_mut();
<span class="kw">let </span><span class="kw-2">mut </span>offsets_r = [MaybeUninit::&lt;u8&gt;::uninit(); BLOCK];
<span class="comment">// FIXME: When we get VLAs, try creating one array of length `min(v.len(), 2 * BLOCK)` rather
// than two fixed-size arrays of length `BLOCK`. VLAs might be more cache-efficient.
// Returns the number of elements between pointers `l` (inclusive) and `r` (exclusive).
</span><span class="kw">fn </span>width&lt;T&gt;(l: <span class="kw-2">*mut </span>T, r: <span class="kw-2">*mut </span>T) -&gt; usize {
<span class="macro">assert!</span>(mem::size_of::&lt;T&gt;() &gt; <span class="number">0</span>);
<span class="comment">// FIXME: this should *likely* use `offset_from`, but more
// investigation is needed (including running tests in miri).
// TODO unstable: (r.addr() - l.addr()) / mem::size_of::&lt;T&gt;()
</span>(r <span class="kw">as </span>usize - l <span class="kw">as </span>usize) / mem::size_of::&lt;T&gt;()
}
<span class="kw">loop </span>{
<span class="comment">// We are done with partitioning block-by-block when `l` and `r` get very close. Then we do
// some patch-up work in order to partition the remaining elements in between.
</span><span class="kw">let </span>is_done = width(l, r) &lt;= <span class="number">2 </span>* BLOCK;
<span class="kw">if </span>is_done {
<span class="comment">// Number of remaining elements (still not compared to the pivot).
</span><span class="kw">let </span><span class="kw-2">mut </span>rem = width(l, r);
<span class="kw">if </span>start_l &lt; end_l || start_r &lt; end_r {
rem -= BLOCK;
}
<span class="comment">// Adjust block sizes so that the left and right block don&#39;t overlap, but get perfectly
// aligned to cover the whole remaining gap.
</span><span class="kw">if </span>start_l &lt; end_l {
block_r = rem;
} <span class="kw">else if </span>start_r &lt; end_r {
block_l = rem;
} <span class="kw">else </span>{
<span class="comment">// There were the same number of elements to switch on both blocks during the last
// iteration, so there are no remaining elements on either block. Cover the remaining
// items with roughly equally-sized blocks.
</span>block_l = rem / <span class="number">2</span>;
block_r = rem - block_l;
}
<span class="macro">debug_assert!</span>(block_l &lt;= BLOCK &amp;&amp; block_r &lt;= BLOCK);
<span class="macro">debug_assert!</span>(width(l, r) == block_l + block_r);
}
<span class="kw">if </span>start_l == end_l {
<span class="comment">// Trace `block_l` elements from the left side.
// TODO unstable: start_l = MaybeUninit::slice_as_mut_ptr(&amp;mut offsets_l);
</span>start_l = offsets_l.as_mut_ptr() <span class="kw">as </span><span class="kw-2">*mut </span>u8;
end_l = start_l;
<span class="kw">let </span><span class="kw-2">mut </span>elem = l;
<span class="kw">for </span>i <span class="kw">in </span><span class="number">0</span>..block_l {
<span class="comment">// SAFETY: The unsafety operations below involve the usage of the `offset`.
// According to the conditions required by the function, we satisfy them because:
// 1. `offsets_l` is stack-allocated, and thus considered separate allocated object.
// 2. The function `is_less` returns a `bool`.
// Casting a `bool` will never overflow `isize`.
// 3. We have guaranteed that `block_l` will be `&lt;= BLOCK`.
// Plus, `end_l` was initially set to the begin pointer of `offsets_` which was declared on the stack.
// Thus, we know that even in the worst case (all invocations of `is_less` returns false) we will only be at most 1 byte pass the end.
// Another unsafety operation here is dereferencing `elem`.
// However, `elem` was initially the begin pointer to the slice which is always valid.
</span><span class="kw">unsafe </span>{
<span class="comment">// Branchless comparison.
</span><span class="kw-2">*</span>end_l = i <span class="kw">as </span>u8;
end_l = end_l.offset(!is_less(<span class="kw-2">&amp;*</span>elem, pivot) <span class="kw">as </span>isize);
elem = elem.offset(<span class="number">1</span>);
}
}
}
<span class="kw">if </span>start_r == end_r {
<span class="comment">// Trace `block_r` elements from the right side.
// TODO unstable: start_r = MaybeUninit::slice_as_mut_ptr(&amp;mut offsets_r);
</span>start_r = offsets_r.as_mut_ptr() <span class="kw">as </span><span class="kw-2">*mut </span>u8;
end_r = start_r;
<span class="kw">let </span><span class="kw-2">mut </span>elem = r;
<span class="kw">for </span>i <span class="kw">in </span><span class="number">0</span>..block_r {
<span class="comment">// SAFETY: The unsafety operations below involve the usage of the `offset`.
// According to the conditions required by the function, we satisfy them because:
// 1. `offsets_r` is stack-allocated, and thus considered separate allocated object.
// 2. The function `is_less` returns a `bool`.
// Casting a `bool` will never overflow `isize`.
// 3. We have guaranteed that `block_r` will be `&lt;= BLOCK`.
// Plus, `end_r` was initially set to the begin pointer of `offsets_` which was declared on the stack.
// Thus, we know that even in the worst case (all invocations of `is_less` returns true) we will only be at most 1 byte pass the end.
// Another unsafety operation here is dereferencing `elem`.
// However, `elem` was initially `1 * sizeof(T)` past the end and we decrement it by `1 * sizeof(T)` before accessing it.
// Plus, `block_r` was asserted to be less than `BLOCK` and `elem` will therefore at most be pointing to the beginning of the slice.
</span><span class="kw">unsafe </span>{
<span class="comment">// Branchless comparison.
</span>elem = elem.offset(-<span class="number">1</span>);
<span class="kw-2">*</span>end_r = i <span class="kw">as </span>u8;
end_r = end_r.offset(is_less(<span class="kw-2">&amp;*</span>elem, pivot) <span class="kw">as </span>isize);
}
}
}
<span class="comment">// Number of out-of-order elements to swap between the left and right side.
</span><span class="kw">let </span>count = cmp::min(width(start_l, end_l), width(start_r, end_r));
<span class="kw">if </span>count &gt; <span class="number">0 </span>{
<span class="macro">macro_rules! </span>left {
() =&gt; {
l.offset(<span class="kw-2">*</span>start_l <span class="kw">as </span>isize)
};
}
<span class="macro">macro_rules! </span>right {
() =&gt; {
r.offset(-(<span class="kw-2">*</span>start_r <span class="kw">as </span>isize) - <span class="number">1</span>)
};
}
<span class="comment">// Instead of swapping one pair at the time, it is more efficient to perform a cyclic
// permutation. This is not strictly equivalent to swapping, but produces a similar
// result using fewer memory operations.
// SAFETY: The use of `ptr::read` is valid because there is at least one element in
// both `offsets_l` and `offsets_r`, so `left!` is a valid pointer to read from.
//
// The uses of `left!` involve calls to `offset` on `l`, which points to the
// beginning of `v`. All the offsets pointed-to by `start_l` are at most `block_l`, so
// these `offset` calls are safe as all reads are within the block. The same argument
// applies for the uses of `right!`.
//
// The calls to `start_l.offset` are valid because there are at most `count-1` of them,
// plus the final one at the end of the unsafe block, where `count` is the minimum number
// of collected offsets in `offsets_l` and `offsets_r`, so there is no risk of there not
// being enough elements. The same reasoning applies to the calls to `start_r.offset`.
//
// The calls to `copy_nonoverlapping` are safe because `left!` and `right!` are guaranteed
// not to overlap, and are valid because of the reasoning above.
</span><span class="kw">unsafe </span>{
<span class="kw">let </span>tmp = ptr::read(<span class="macro">left!</span>());
ptr::copy_nonoverlapping(<span class="macro">right!</span>(), <span class="macro">left!</span>(), <span class="number">1</span>);
<span class="kw">for _ in </span><span class="number">1</span>..count {
start_l = start_l.offset(<span class="number">1</span>);
ptr::copy_nonoverlapping(<span class="macro">left!</span>(), <span class="macro">right!</span>(), <span class="number">1</span>);
start_r = start_r.offset(<span class="number">1</span>);
ptr::copy_nonoverlapping(<span class="macro">right!</span>(), <span class="macro">left!</span>(), <span class="number">1</span>);
}
ptr::copy_nonoverlapping(<span class="kw-2">&amp;</span>tmp, <span class="macro">right!</span>(), <span class="number">1</span>);
mem::forget(tmp);
start_l = start_l.offset(<span class="number">1</span>);
start_r = start_r.offset(<span class="number">1</span>);
}
}
<span class="kw">if </span>start_l == end_l {
<span class="comment">// All out-of-order elements in the left block were moved. Move to the next block.
// block-width-guarantee
// SAFETY: if `!is_done` then the slice width is guaranteed to be at least `2*BLOCK` wide. There
// are at most `BLOCK` elements in `offsets_l` because of its size, so the `offset` operation is
// safe. Otherwise, the debug assertions in the `is_done` case guarantee that
// `width(l, r) == block_l + block_r`, namely, that the block sizes have been adjusted to account
// for the smaller number of remaining elements.
</span>l = <span class="kw">unsafe </span>{ l.add(block_l) };
}
<span class="kw">if </span>start_r == end_r {
<span class="comment">// All out-of-order elements in the right block were moved. Move to the previous block.
// SAFETY: Same argument as [block-width-guarantee]. Either this is a full block `2*BLOCK`-wide,
// or `block_r` has been adjusted for the last handful of elements.
</span>r = <span class="kw">unsafe </span>{ r.offset(-(block_r <span class="kw">as </span>isize)) };
}
<span class="kw">if </span>is_done {
<span class="kw">break</span>;
}
}
<span class="comment">// All that remains now is at most one block (either the left or the right) with out-of-order
// elements that need to be moved. Such remaining elements can be simply shifted to the end
// within their block.
</span><span class="kw">if </span>start_l &lt; end_l {
<span class="comment">// The left block remains.
// Move its remaining out-of-order elements to the far right.
</span><span class="macro">debug_assert_eq!</span>(width(l, r), block_l);
<span class="kw">while </span>start_l &lt; end_l {
<span class="comment">// remaining-elements-safety
// SAFETY: while the loop condition holds there are still elements in `offsets_l`, so it
// is safe to point `end_l` to the previous element.
//
// The `ptr::swap` is safe if both its arguments are valid for reads and writes:
// - Per the debug assert above, the distance between `l` and `r` is `block_l`
// elements, so there can be at most `block_l` remaining offsets between `start_l`
// and `end_l`. This means `r` will be moved at most `block_l` steps back, which
// makes the `r.offset` calls valid (at that point `l == r`).
// - `offsets_l` contains valid offsets into `v` collected during the partitioning of
// the last block, so the `l.offset` calls are valid.
</span><span class="kw">unsafe </span>{
end_l = end_l.offset(-<span class="number">1</span>);
ptr::swap(l.offset(<span class="kw-2">*</span>end_l <span class="kw">as </span>isize), r.offset(-<span class="number">1</span>));
r = r.offset(-<span class="number">1</span>);
}
}
width(v.as_mut_ptr(), r)
} <span class="kw">else if </span>start_r &lt; end_r {
<span class="comment">// The right block remains.
// Move its remaining out-of-order elements to the far left.
</span><span class="macro">debug_assert_eq!</span>(width(l, r), block_r);
<span class="kw">while </span>start_r &lt; end_r {
<span class="comment">// SAFETY: See the reasoning in [remaining-elements-safety].
</span><span class="kw">unsafe </span>{
end_r = end_r.offset(-<span class="number">1</span>);
ptr::swap(l, r.offset(-(<span class="kw-2">*</span>end_r <span class="kw">as </span>isize) - <span class="number">1</span>));
l = l.offset(<span class="number">1</span>);
}
}
width(v.as_mut_ptr(), l)
} <span class="kw">else </span>{
<span class="comment">// Nothing else to do, we&#39;re done.
</span>width(v.as_mut_ptr(), l)
}
}
<span class="doccomment">/// Partitions `v` into elements smaller than `v[pivot]`, followed by elements greater than or
/// equal to `v[pivot]`.
///
/// Returns a tuple of:
///
/// 1. Number of elements smaller than `v[pivot]`.
/// 2. True if `v` was already partitioned.
</span><span class="kw">fn </span>partition&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], pivot: usize, is_less: <span class="kw-2">&amp;</span>F) -&gt; (usize, bool)
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool,
{
<span class="kw">let </span>(mid, was_partitioned) = {
<span class="comment">// Place the pivot at the beginning of slice.
</span>v.swap(<span class="number">0</span>, pivot);
<span class="kw">let </span>(pivot, v) = v.split_at_mut(<span class="number">1</span>);
<span class="kw">let </span>pivot = <span class="kw-2">&amp;mut </span>pivot[<span class="number">0</span>];
<span class="comment">// Read the pivot into a stack-allocated variable for efficiency. If a following comparison
// operation panics, the pivot will be automatically written back into the slice.
// SAFETY: `pivot` is a reference to the first element of `v`, so `ptr::read` is safe.
</span><span class="kw">let </span>tmp = mem::ManuallyDrop::new(<span class="kw">unsafe </span>{ ptr::read(pivot) });
<span class="kw">let </span>_pivot_guard = <span class="kw">unsafe </span>{ CopyOnDrop::new(<span class="kw-2">&amp;*</span>tmp, pivot) };
<span class="kw">let </span>pivot = <span class="kw-2">&amp;*</span>tmp;
<span class="comment">// Find the first pair of out-of-order elements.
</span><span class="kw">let </span><span class="kw-2">mut </span>l = <span class="number">0</span>;
<span class="kw">let </span><span class="kw-2">mut </span>r = v.len();
<span class="comment">// SAFETY: The unsafety below involves indexing an array.
// For the first one: We already do the bounds checking here with `l &lt; r`.
// For the second one: We initially have `l == 0` and `r == v.len()` and we checked that `l &lt; r` at every indexing operation.
// From here we know that `r` must be at least `r == l` which was shown to be valid from the first one.
</span><span class="kw">unsafe </span>{
<span class="comment">// Find the first element greater than or equal to the pivot.
</span><span class="kw">while </span>l &lt; r &amp;&amp; is_less(v.get_unchecked(l), pivot) {
l += <span class="number">1</span>;
}
<span class="comment">// Find the last element smaller that the pivot.
</span><span class="kw">while </span>l &lt; r &amp;&amp; !is_less(v.get_unchecked(r - <span class="number">1</span>), pivot) {
r -= <span class="number">1</span>;
}
}
(
l + partition_in_blocks(<span class="kw-2">&amp;mut </span>v[l..r], pivot, is_less),
l &gt;= r,
)
<span class="comment">// `_pivot_guard` goes out of scope and writes the pivot (which is a stack-allocated
// variable) back into the slice where it originally was. This step is critical in ensuring
// safety!
</span>};
<span class="comment">// Place the pivot between the two partitions.
</span>v.swap(<span class="number">0</span>, mid);
(mid, was_partitioned)
}
<span class="doccomment">/// Partitions `v` into elements equal to `v[pivot]` followed by elements greater than `v[pivot]`.
///
/// Returns the number of elements equal to the pivot. It is assumed that `v` does not contain
/// elements smaller than the pivot.
</span><span class="kw">fn </span>partition_equal&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], pivot: usize, is_less: <span class="kw-2">&amp;</span>F) -&gt; usize
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool,
{
<span class="comment">// Place the pivot at the beginning of slice.
</span>v.swap(<span class="number">0</span>, pivot);
<span class="kw">let </span>(pivot, v) = v.split_at_mut(<span class="number">1</span>);
<span class="kw">let </span>pivot = <span class="kw-2">&amp;mut </span>pivot[<span class="number">0</span>];
<span class="comment">// Read the pivot into a stack-allocated variable for efficiency. If a following comparison
// operation panics, the pivot will be automatically written back into the slice.
// SAFETY: The pointer here is valid because it is obtained from a reference to a slice.
</span><span class="kw">let </span>tmp = mem::ManuallyDrop::new(<span class="kw">unsafe </span>{ ptr::read(pivot) });
<span class="kw">let </span>_pivot_guard = <span class="kw">unsafe </span>{ CopyOnDrop::new(<span class="kw-2">&amp;*</span>tmp, pivot) };
<span class="kw">let </span>pivot = <span class="kw-2">&amp;*</span>tmp;
<span class="comment">// Now partition the slice.
</span><span class="kw">let </span><span class="kw-2">mut </span>l = <span class="number">0</span>;
<span class="kw">let </span><span class="kw-2">mut </span>r = v.len();
<span class="kw">loop </span>{
<span class="comment">// SAFETY: The unsafety below involves indexing an array.
// For the first one: We already do the bounds checking here with `l &lt; r`.
// For the second one: We initially have `l == 0` and `r == v.len()` and we checked that `l &lt; r` at every indexing operation.
// From here we know that `r` must be at least `r == l` which was shown to be valid from the first one.
</span><span class="kw">unsafe </span>{
<span class="comment">// Find the first element greater than the pivot.
</span><span class="kw">while </span>l &lt; r &amp;&amp; !is_less(pivot, v.get_unchecked(l)) {
l += <span class="number">1</span>;
}
<span class="comment">// Find the last element equal to the pivot.
</span><span class="kw">while </span>l &lt; r &amp;&amp; is_less(pivot, v.get_unchecked(r - <span class="number">1</span>)) {
r -= <span class="number">1</span>;
}
<span class="comment">// Are we done?
</span><span class="kw">if </span>l &gt;= r {
<span class="kw">break</span>;
}
<span class="comment">// Swap the found pair of out-of-order elements.
</span>r -= <span class="number">1</span>;
<span class="kw">let </span>ptr = v.as_mut_ptr();
ptr::swap(ptr.add(l), ptr.add(r));
l += <span class="number">1</span>;
}
}
<span class="comment">// We found `l` elements equal to the pivot. Add 1 to account for the pivot itself.
</span>l + <span class="number">1
</span><span class="comment">// `_pivot_guard` goes out of scope and writes the pivot (which is a stack-allocated variable)
// back into the slice where it originally was. This step is critical in ensuring safety!
</span>}
<span class="doccomment">/// Scatters some elements around in an attempt to break patterns that might cause imbalanced
/// partitions in quicksort.
</span><span class="attribute">#[cold]
</span><span class="kw">fn </span>break_patterns&lt;T&gt;(v: <span class="kw-2">&amp;mut </span>[T]) {
<span class="kw">let </span>len = v.len();
<span class="kw">if </span>len &gt;= <span class="number">8 </span>{
<span class="comment">// Pseudorandom number generator from the &quot;Xorshift RNGs&quot; paper by George Marsaglia.
</span><span class="kw">let </span><span class="kw-2">mut </span>random = len <span class="kw">as </span>u32;
<span class="kw">let </span><span class="kw-2">mut </span>gen_u32 = || {
random ^= random &lt;&lt; <span class="number">13</span>;
random ^= random &gt;&gt; <span class="number">17</span>;
random ^= random &lt;&lt; <span class="number">5</span>;
random
};
<span class="kw">let </span><span class="kw-2">mut </span>gen_usize = || {
<span class="kw">if </span>usize::BITS &lt;= <span class="number">32 </span>{
gen_u32() <span class="kw">as </span>usize
} <span class="kw">else </span>{
(((gen_u32() <span class="kw">as </span>u64) &lt;&lt; <span class="number">32</span>) | (gen_u32() <span class="kw">as </span>u64)) <span class="kw">as </span>usize
}
};
<span class="comment">// Take random numbers modulo this number.
// The number fits into `usize` because `len` is not greater than `isize::MAX`.
</span><span class="kw">let </span>modulus = len.next_power_of_two();
<span class="comment">// Some pivot candidates will be in the nearby of this index. Let&#39;s randomize them.
</span><span class="kw">let </span>pos = len / <span class="number">4 </span>* <span class="number">2</span>;
<span class="kw">for </span>i <span class="kw">in </span><span class="number">0</span>..<span class="number">3 </span>{
<span class="comment">// Generate a random number modulo `len`. However, in order to avoid costly operations
// we first take it modulo a power of two, and then decrease by `len` until it fits
// into the range `[0, len - 1]`.
</span><span class="kw">let </span><span class="kw-2">mut </span>other = gen_usize() &amp; (modulus - <span class="number">1</span>);
<span class="comment">// `other` is guaranteed to be less than `2 * len`.
</span><span class="kw">if </span>other &gt;= len {
other -= len;
}
v.swap(pos - <span class="number">1 </span>+ i, other);
}
}
}
<span class="doccomment">/// Chooses a pivot in `v` and returns the index and `true` if the slice is likely already sorted.
///
/// Elements in `v` might be reordered in the process.
</span><span class="kw">fn </span>choose_pivot&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], is_less: <span class="kw-2">&amp;</span>F) -&gt; (usize, bool)
<span class="kw">where
</span>F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool,
{
<span class="comment">// Minimum length to choose the median-of-medians method.
// Shorter slices use the simple median-of-three method.
</span><span class="kw">const </span>SHORTEST_MEDIAN_OF_MEDIANS: usize = <span class="number">50</span>;
<span class="comment">// Maximum number of swaps that can be performed in this function.
</span><span class="kw">const </span>MAX_SWAPS: usize = <span class="number">4 </span>* <span class="number">3</span>;
<span class="kw">let </span>len = v.len();
<span class="comment">// Three indices near which we are going to choose a pivot.
</span><span class="attribute">#[allow(clippy::identity_op)]
</span><span class="kw">let </span><span class="kw-2">mut </span>a = len / <span class="number">4 </span>* <span class="number">1</span>;
<span class="kw">let </span><span class="kw-2">mut </span>b = len / <span class="number">4 </span>* <span class="number">2</span>;
<span class="kw">let </span><span class="kw-2">mut </span>c = len / <span class="number">4 </span>* <span class="number">3</span>;
<span class="comment">// Counts the total number of swaps we are about to perform while sorting indices.
</span><span class="kw">let </span><span class="kw-2">mut </span>swaps = <span class="number">0</span>;
<span class="kw">if </span>len &gt;= <span class="number">8 </span>{
<span class="comment">// Swaps indices so that `v[a] &lt;= v[b]`.
// SAFETY: `len &gt;= 8` so there are at least two elements in the neighborhoods of
// `a`, `b` and `c`. This means the three calls to `sort_adjacent` result in
// corresponding calls to `sort3` with valid 3-item neighborhoods around each
// pointer, which in turn means the calls to `sort2` are done with valid
// references. Thus the `v.get_unchecked` calls are safe, as is the `ptr::swap`
// call.
</span><span class="kw">let </span><span class="kw-2">mut </span>sort2 = |a: <span class="kw-2">&amp;mut </span>usize, b: <span class="kw-2">&amp;mut </span>usize| <span class="kw">unsafe </span>{
<span class="kw">if </span>is_less(v.get_unchecked(<span class="kw-2">*</span>b), v.get_unchecked(<span class="kw-2">*</span>a)) {
ptr::swap(a, b);
swaps += <span class="number">1</span>;
}
};
<span class="comment">// Swaps indices so that `v[a] &lt;= v[b] &lt;= v[c]`.
</span><span class="kw">let </span><span class="kw-2">mut </span>sort3 = |a: <span class="kw-2">&amp;mut </span>usize, b: <span class="kw-2">&amp;mut </span>usize, c: <span class="kw-2">&amp;mut </span>usize| {
sort2(a, b);
sort2(b, c);
sort2(a, b);
};
<span class="kw">if </span>len &gt;= SHORTEST_MEDIAN_OF_MEDIANS {
<span class="comment">// Finds the median of `v[a - 1], v[a], v[a + 1]` and stores the index into `a`.
</span><span class="kw">let </span><span class="kw-2">mut </span>sort_adjacent = |a: <span class="kw-2">&amp;mut </span>usize| {
<span class="kw">let </span>tmp = <span class="kw-2">*</span>a;
sort3(<span class="kw-2">&amp;mut </span>(tmp - <span class="number">1</span>), a, <span class="kw-2">&amp;mut </span>(tmp + <span class="number">1</span>));
};
<span class="comment">// Find medians in the neighborhoods of `a`, `b`, and `c`.
</span>sort_adjacent(<span class="kw-2">&amp;mut </span>a);
sort_adjacent(<span class="kw-2">&amp;mut </span>b);
sort_adjacent(<span class="kw-2">&amp;mut </span>c);
}
<span class="comment">// Find the median among `a`, `b`, and `c`.
</span>sort3(<span class="kw-2">&amp;mut </span>a, <span class="kw-2">&amp;mut </span>b, <span class="kw-2">&amp;mut </span>c);
}
<span class="kw">if </span>swaps &lt; MAX_SWAPS {
(b, swaps == <span class="number">0</span>)
} <span class="kw">else </span>{
<span class="comment">// The maximum number of swaps was performed. Chances are the slice is descending or mostly
// descending, so reversing will probably help sort it faster.
</span>v.reverse();
(len - <span class="number">1 </span>- b, <span class="bool-val">true</span>)
}
}
<span class="doccomment">/// Sorts `v` recursively.
///
/// If the slice had a predecessor in the original array, it is specified as `pred`.
///
/// `limit` is the number of allowed imbalanced partitions before switching to `heapsort`. If zero,
/// this function will immediately switch to heapsort.
</span><span class="kw">fn </span>recurse&lt;<span class="lifetime">&#39;a</span>, T, F&gt;(<span class="kw-2">mut </span>v: <span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span><span class="kw-2">mut </span>[T], is_less: <span class="kw-2">&amp;</span>F, <span class="kw-2">mut </span>pred: <span class="prelude-ty">Option</span>&lt;<span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span><span class="kw-2">mut </span>T&gt;, <span class="kw-2">mut </span>limit: u32)
<span class="kw">where
</span>T: Send,
F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool + Sync,
{
<span class="comment">// Slices of up to this length get sorted using insertion sort.
</span><span class="kw">const </span>MAX_INSERTION: usize = <span class="number">20</span>;
<span class="comment">// If both partitions are up to this length, we continue sequentially. This number is as small
// as possible but so that the overhead of Rayon&#39;s task scheduling is still negligible.
</span><span class="kw">const </span>MAX_SEQUENTIAL: usize = <span class="number">2000</span>;
<span class="comment">// True if the last partitioning was reasonably balanced.
</span><span class="kw">let </span><span class="kw-2">mut </span>was_balanced = <span class="bool-val">true</span>;
<span class="comment">// True if the last partitioning didn&#39;t shuffle elements (the slice was already partitioned).
</span><span class="kw">let </span><span class="kw-2">mut </span>was_partitioned = <span class="bool-val">true</span>;
<span class="kw">loop </span>{
<span class="kw">let </span>len = v.len();
<span class="comment">// Very short slices get sorted using insertion sort.
</span><span class="kw">if </span>len &lt;= MAX_INSERTION {
insertion_sort(v, is_less);
<span class="kw">return</span>;
}
<span class="comment">// If too many bad pivot choices were made, simply fall back to heapsort in order to
// guarantee `O(n * log(n))` worst-case.
</span><span class="kw">if </span>limit == <span class="number">0 </span>{
heapsort(v, is_less);
<span class="kw">return</span>;
}
<span class="comment">// If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
// some elements around. Hopefully we&#39;ll choose a better pivot this time.
</span><span class="kw">if </span>!was_balanced {
break_patterns(v);
limit -= <span class="number">1</span>;
}
<span class="comment">// Choose a pivot and try guessing whether the slice is already sorted.
</span><span class="kw">let </span>(pivot, likely_sorted) = choose_pivot(v, is_less);
<span class="comment">// If the last partitioning was decently balanced and didn&#39;t shuffle elements, and if pivot
// selection predicts the slice is likely already sorted...
</span><span class="kw">if </span>was_balanced &amp;&amp; was_partitioned &amp;&amp; likely_sorted {
<span class="comment">// Try identifying several out-of-order elements and shifting them to correct
// positions. If the slice ends up being completely sorted, we&#39;re done.
</span><span class="kw">if </span>partial_insertion_sort(v, is_less) {
<span class="kw">return</span>;
}
}
<span class="comment">// If the chosen pivot is equal to the predecessor, then it&#39;s the smallest element in the
// slice. Partition the slice into elements equal to and elements greater than the pivot.
// This case is usually hit when the slice contains many duplicate elements.
</span><span class="kw">if let </span><span class="prelude-val">Some</span>(<span class="kw-2">ref </span>p) = pred {
<span class="kw">if </span>!is_less(p, <span class="kw-2">&amp;</span>v[pivot]) {
<span class="kw">let </span>mid = partition_equal(v, pivot, is_less);
<span class="comment">// Continue sorting elements greater than the pivot.
</span>v = <span class="kw-2">&amp;mut </span>v[mid..];
<span class="kw">continue</span>;
}
}
<span class="comment">// Partition the slice.
</span><span class="kw">let </span>(mid, was_p) = partition(v, pivot, is_less);
was_balanced = cmp::min(mid, len - mid) &gt;= len / <span class="number">8</span>;
was_partitioned = was_p;
<span class="comment">// Split the slice into `left`, `pivot`, and `right`.
</span><span class="kw">let </span>(left, right) = v.split_at_mut(mid);
<span class="kw">let </span>(pivot, right) = right.split_at_mut(<span class="number">1</span>);
<span class="kw">let </span>pivot = <span class="kw-2">&amp;mut </span>pivot[<span class="number">0</span>];
<span class="kw">if </span>cmp::max(left.len(), right.len()) &lt;= MAX_SEQUENTIAL {
<span class="comment">// Recurse into the shorter side only in order to minimize the total number of recursive
// calls and consume less stack space. Then just continue with the longer side (this is
// akin to tail recursion).
</span><span class="kw">if </span>left.len() &lt; right.len() {
recurse(left, is_less, pred, limit);
v = right;
pred = <span class="prelude-val">Some</span>(pivot);
} <span class="kw">else </span>{
recurse(right, is_less, <span class="prelude-val">Some</span>(pivot), limit);
v = left;
}
} <span class="kw">else </span>{
<span class="comment">// Sort the left and right half in parallel.
</span>rayon_core::join(
|| recurse(left, is_less, pred, limit),
|| recurse(right, is_less, <span class="prelude-val">Some</span>(pivot), limit),
);
<span class="kw">break</span>;
}
}
}
<span class="doccomment">/// Sorts `v` using pattern-defeating quicksort in parallel.
///
/// The algorithm is unstable, in-place, and *O*(*n* \* log(*n*)) worst-case.
</span><span class="kw">pub</span>(<span class="kw">super</span>) <span class="kw">fn </span>par_quicksort&lt;T, F&gt;(v: <span class="kw-2">&amp;mut </span>[T], is_less: F)
<span class="kw">where
</span>T: Send,
F: Fn(<span class="kw-2">&amp;</span>T, <span class="kw-2">&amp;</span>T) -&gt; bool + Sync,
{
<span class="comment">// Sorting has no meaningful behavior on zero-sized types.
</span><span class="kw">if </span>mem::size_of::&lt;T&gt;() == <span class="number">0 </span>{
<span class="kw">return</span>;
}
<span class="comment">// Limit the number of imbalanced partitions to `floor(log2(len)) + 1`.
</span><span class="kw">let </span>limit = usize::BITS - v.len().leading_zeros();
recurse(v, <span class="kw-2">&amp;</span>is_less, <span class="prelude-val">None</span>, limit);
}
<span class="attribute">#[cfg(test)]
</span><span class="kw">mod </span>tests {
<span class="kw">use </span><span class="kw">super</span>::heapsort;
<span class="kw">use </span>rand::distributions::Uniform;
<span class="kw">use </span>rand::{thread_rng, Rng};
<span class="attribute">#[test]
</span><span class="kw">fn </span>test_heapsort() {
<span class="kw">let </span>rng = <span class="kw-2">&amp;mut </span>thread_rng();
<span class="kw">for </span>len <span class="kw">in </span>(<span class="number">0</span>..<span class="number">25</span>).chain(<span class="number">500</span>..<span class="number">501</span>) {
<span class="kw">for </span><span class="kw-2">&amp;</span>modulus <span class="kw">in </span><span class="kw-2">&amp;</span>[<span class="number">5</span>, <span class="number">10</span>, <span class="number">100</span>] {
<span class="kw">let </span>dist = Uniform::new(<span class="number">0</span>, modulus);
<span class="kw">for _ in </span><span class="number">0</span>..<span class="number">100 </span>{
<span class="kw">let </span>v: Vec&lt;i32&gt; = rng.sample_iter(<span class="kw-2">&amp;</span>dist).take(len).collect();
<span class="comment">// Test heapsort using `&lt;` operator.
</span><span class="kw">let </span><span class="kw-2">mut </span>tmp = v.clone();
heapsort(<span class="kw-2">&amp;mut </span>tmp, <span class="kw-2">&amp;</span>|a, b| a &lt; b);
<span class="macro">assert!</span>(tmp.windows(<span class="number">2</span>).all(|w| w[<span class="number">0</span>] &lt;= w[<span class="number">1</span>]));
<span class="comment">// Test heapsort using `&gt;` operator.
</span><span class="kw">let </span><span class="kw-2">mut </span>tmp = v.clone();
heapsort(<span class="kw-2">&amp;mut </span>tmp, <span class="kw-2">&amp;</span>|a, b| a &gt; b);
<span class="macro">assert!</span>(tmp.windows(<span class="number">2</span>).all(|w| w[<span class="number">0</span>] &gt;= w[<span class="number">1</span>]));
}
}
}
<span class="comment">// Sort using a completely random comparison function.
// This will reorder the elements *somehow*, but won&#39;t panic.
</span><span class="kw">let </span><span class="kw-2">mut </span>v: Vec&lt;<span class="kw">_</span>&gt; = (<span class="number">0</span>..<span class="number">100</span>).collect();
heapsort(<span class="kw-2">&amp;mut </span>v, <span class="kw-2">&amp;</span>|<span class="kw">_</span>, <span class="kw">_</span>| thread_rng().gen());
heapsort(<span class="kw-2">&amp;mut </span>v, <span class="kw-2">&amp;</span>|a, b| a &lt; b);
<span class="kw">for </span>(i, <span class="kw-2">&amp;</span>entry) <span class="kw">in </span>v.iter().enumerate() {
<span class="macro">assert_eq!</span>(entry, i);
}
}
}
</code></pre></div>
</section></div></main><div id="rustdoc-vars" data-root-path="../../../" data-current-crate="rayon" data-themes="ayu,dark,light" data-resource-suffix="" data-rustdoc-version="1.66.0-nightly (5c8bff74b 2022-10-21)" ></div></body></html>