blob: e42d5ce35327fdbab50afb5b36e9f5e93ad4726a [file] [log] [blame]
<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source of the Rust file `/root/.cargo/registry/src/github.com-1ecc6299db9ec823/itertools-0.10.5/src/lib.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>lib.rs - source</title><link rel="preload" as="font" type="font/woff2" crossorigin href="../../SourceSerif4-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../FiraSans-Regular.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../FiraSans-Medium.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../SourceCodePro-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../SourceSerif4-Bold.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../SourceCodePro-Semibold.ttf.woff2"><link rel="stylesheet" href="../../normalize.css"><link rel="stylesheet" href="../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" href="../../ayu.css" disabled><link rel="stylesheet" href="../../dark.css" disabled><link rel="stylesheet" href="../../light.css" id="themeStyle"><script id="default-settings" ></script><script src="../../storage.js"></script><script defer src="../../source-script.js"></script><script defer src="../../source-files.js"></script><script defer src="../../main.js"></script><noscript><link rel="stylesheet" href="../../noscript.css"></noscript><link rel="alternate icon" type="image/png" href="../../favicon-16x16.png"><link rel="alternate icon" type="image/png" href="../../favicon-32x32.png"><link rel="icon" type="image/svg+xml" href="../../favicon.svg"></head><body class="rustdoc source"><!--[if lte IE 11]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><a class="sidebar-logo" href="../../itertools/index.html"><div class="logo-container"><img class="rust-logo" src="../../rust-logo.svg" alt="logo"></div></a></nav><main><div class="width-limiter"><nav class="sub"><a class="sub-logo-container" href="../../itertools/index.html"><img class="rust-logo" src="../../rust-logo.svg" alt="logo"></a><form class="search-form"><div class="search-container"><span></span><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"><div id="help-button" title="help" tabindex="-1"><a href="../../help.html">?</a></div><div id="settings-menu" tabindex="-1"><a href="../../settings.html" title="settings"><img width="22" height="22" alt="Change settings" src="../../wheel.svg"></a></div></div></form></nav><section id="main-content" class="content"><div class="example-wrap"><pre class="src-line-numbers"><span id="1">1</span>
<span id="2">2</span>
<span id="3">3</span>
<span id="4">4</span>
<span id="5">5</span>
<span id="6">6</span>
<span id="7">7</span>
<span id="8">8</span>
<span id="9">9</span>
<span id="10">10</span>
<span id="11">11</span>
<span id="12">12</span>
<span id="13">13</span>
<span id="14">14</span>
<span id="15">15</span>
<span id="16">16</span>
<span id="17">17</span>
<span id="18">18</span>
<span id="19">19</span>
<span id="20">20</span>
<span id="21">21</span>
<span id="22">22</span>
<span id="23">23</span>
<span id="24">24</span>
<span id="25">25</span>
<span id="26">26</span>
<span id="27">27</span>
<span id="28">28</span>
<span id="29">29</span>
<span id="30">30</span>
<span id="31">31</span>
<span id="32">32</span>
<span id="33">33</span>
<span id="34">34</span>
<span id="35">35</span>
<span id="36">36</span>
<span id="37">37</span>
<span id="38">38</span>
<span id="39">39</span>
<span id="40">40</span>
<span id="41">41</span>
<span id="42">42</span>
<span id="43">43</span>
<span id="44">44</span>
<span id="45">45</span>
<span id="46">46</span>
<span id="47">47</span>
<span id="48">48</span>
<span id="49">49</span>
<span id="50">50</span>
<span id="51">51</span>
<span id="52">52</span>
<span id="53">53</span>
<span id="54">54</span>
<span id="55">55</span>
<span id="56">56</span>
<span id="57">57</span>
<span id="58">58</span>
<span id="59">59</span>
<span id="60">60</span>
<span id="61">61</span>
<span id="62">62</span>
<span id="63">63</span>
<span id="64">64</span>
<span id="65">65</span>
<span id="66">66</span>
<span id="67">67</span>
<span id="68">68</span>
<span id="69">69</span>
<span id="70">70</span>
<span id="71">71</span>
<span id="72">72</span>
<span id="73">73</span>
<span id="74">74</span>
<span id="75">75</span>
<span id="76">76</span>
<span id="77">77</span>
<span id="78">78</span>
<span id="79">79</span>
<span id="80">80</span>
<span id="81">81</span>
<span id="82">82</span>
<span id="83">83</span>
<span id="84">84</span>
<span id="85">85</span>
<span id="86">86</span>
<span id="87">87</span>
<span id="88">88</span>
<span id="89">89</span>
<span id="90">90</span>
<span id="91">91</span>
<span id="92">92</span>
<span id="93">93</span>
<span id="94">94</span>
<span id="95">95</span>
<span id="96">96</span>
<span id="97">97</span>
<span id="98">98</span>
<span id="99">99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
<span id="215">215</span>
<span id="216">216</span>
<span id="217">217</span>
<span id="218">218</span>
<span id="219">219</span>
<span id="220">220</span>
<span id="221">221</span>
<span id="222">222</span>
<span id="223">223</span>
<span id="224">224</span>
<span id="225">225</span>
<span id="226">226</span>
<span id="227">227</span>
<span id="228">228</span>
<span id="229">229</span>
<span id="230">230</span>
<span id="231">231</span>
<span id="232">232</span>
<span id="233">233</span>
<span id="234">234</span>
<span id="235">235</span>
<span id="236">236</span>
<span id="237">237</span>
<span id="238">238</span>
<span id="239">239</span>
<span id="240">240</span>
<span id="241">241</span>
<span id="242">242</span>
<span id="243">243</span>
<span id="244">244</span>
<span id="245">245</span>
<span id="246">246</span>
<span id="247">247</span>
<span id="248">248</span>
<span id="249">249</span>
<span id="250">250</span>
<span id="251">251</span>
<span id="252">252</span>
<span id="253">253</span>
<span id="254">254</span>
<span id="255">255</span>
<span id="256">256</span>
<span id="257">257</span>
<span id="258">258</span>
<span id="259">259</span>
<span id="260">260</span>
<span id="261">261</span>
<span id="262">262</span>
<span id="263">263</span>
<span id="264">264</span>
<span id="265">265</span>
<span id="266">266</span>
<span id="267">267</span>
<span id="268">268</span>
<span id="269">269</span>
<span id="270">270</span>
<span id="271">271</span>
<span id="272">272</span>
<span id="273">273</span>
<span id="274">274</span>
<span id="275">275</span>
<span id="276">276</span>
<span id="277">277</span>
<span id="278">278</span>
<span id="279">279</span>
<span id="280">280</span>
<span id="281">281</span>
<span id="282">282</span>
<span id="283">283</span>
<span id="284">284</span>
<span id="285">285</span>
<span id="286">286</span>
<span id="287">287</span>
<span id="288">288</span>
<span id="289">289</span>
<span id="290">290</span>
<span id="291">291</span>
<span id="292">292</span>
<span id="293">293</span>
<span id="294">294</span>
<span id="295">295</span>
<span id="296">296</span>
<span id="297">297</span>
<span id="298">298</span>
<span id="299">299</span>
<span id="300">300</span>
<span id="301">301</span>
<span id="302">302</span>
<span id="303">303</span>
<span id="304">304</span>
<span id="305">305</span>
<span id="306">306</span>
<span id="307">307</span>
<span id="308">308</span>
<span id="309">309</span>
<span id="310">310</span>
<span id="311">311</span>
<span id="312">312</span>
<span id="313">313</span>
<span id="314">314</span>
<span id="315">315</span>
<span id="316">316</span>
<span id="317">317</span>
<span id="318">318</span>
<span id="319">319</span>
<span id="320">320</span>
<span id="321">321</span>
<span id="322">322</span>
<span id="323">323</span>
<span id="324">324</span>
<span id="325">325</span>
<span id="326">326</span>
<span id="327">327</span>
<span id="328">328</span>
<span id="329">329</span>
<span id="330">330</span>
<span id="331">331</span>
<span id="332">332</span>
<span id="333">333</span>
<span id="334">334</span>
<span id="335">335</span>
<span id="336">336</span>
<span id="337">337</span>
<span id="338">338</span>
<span id="339">339</span>
<span id="340">340</span>
<span id="341">341</span>
<span id="342">342</span>
<span id="343">343</span>
<span id="344">344</span>
<span id="345">345</span>
<span id="346">346</span>
<span id="347">347</span>
<span id="348">348</span>
<span id="349">349</span>
<span id="350">350</span>
<span id="351">351</span>
<span id="352">352</span>
<span id="353">353</span>
<span id="354">354</span>
<span id="355">355</span>
<span id="356">356</span>
<span id="357">357</span>
<span id="358">358</span>
<span id="359">359</span>
<span id="360">360</span>
<span id="361">361</span>
<span id="362">362</span>
<span id="363">363</span>
<span id="364">364</span>
<span id="365">365</span>
<span id="366">366</span>
<span id="367">367</span>
<span id="368">368</span>
<span id="369">369</span>
<span id="370">370</span>
<span id="371">371</span>
<span id="372">372</span>
<span id="373">373</span>
<span id="374">374</span>
<span id="375">375</span>
<span id="376">376</span>
<span id="377">377</span>
<span id="378">378</span>
<span id="379">379</span>
<span id="380">380</span>
<span id="381">381</span>
<span id="382">382</span>
<span id="383">383</span>
<span id="384">384</span>
<span id="385">385</span>
<span id="386">386</span>
<span id="387">387</span>
<span id="388">388</span>
<span id="389">389</span>
<span id="390">390</span>
<span id="391">391</span>
<span id="392">392</span>
<span id="393">393</span>
<span id="394">394</span>
<span id="395">395</span>
<span id="396">396</span>
<span id="397">397</span>
<span id="398">398</span>
<span id="399">399</span>
<span id="400">400</span>
<span id="401">401</span>
<span id="402">402</span>
<span id="403">403</span>
<span id="404">404</span>
<span id="405">405</span>
<span id="406">406</span>
<span id="407">407</span>
<span id="408">408</span>
<span id="409">409</span>
<span id="410">410</span>
<span id="411">411</span>
<span id="412">412</span>
<span id="413">413</span>
<span id="414">414</span>
<span id="415">415</span>
<span id="416">416</span>
<span id="417">417</span>
<span id="418">418</span>
<span id="419">419</span>
<span id="420">420</span>
<span id="421">421</span>
<span id="422">422</span>
<span id="423">423</span>
<span id="424">424</span>
<span id="425">425</span>
<span id="426">426</span>
<span id="427">427</span>
<span id="428">428</span>
<span id="429">429</span>
<span id="430">430</span>
<span id="431">431</span>
<span id="432">432</span>
<span id="433">433</span>
<span id="434">434</span>
<span id="435">435</span>
<span id="436">436</span>
<span id="437">437</span>
<span id="438">438</span>
<span id="439">439</span>
<span id="440">440</span>
<span id="441">441</span>
<span id="442">442</span>
<span id="443">443</span>
<span id="444">444</span>
<span id="445">445</span>
<span id="446">446</span>
<span id="447">447</span>
<span id="448">448</span>
<span id="449">449</span>
<span id="450">450</span>
<span id="451">451</span>
<span id="452">452</span>
<span id="453">453</span>
<span id="454">454</span>
<span id="455">455</span>
<span id="456">456</span>
<span id="457">457</span>
<span id="458">458</span>
<span id="459">459</span>
<span id="460">460</span>
<span id="461">461</span>
<span id="462">462</span>
<span id="463">463</span>
<span id="464">464</span>
<span id="465">465</span>
<span id="466">466</span>
<span id="467">467</span>
<span id="468">468</span>
<span id="469">469</span>
<span id="470">470</span>
<span id="471">471</span>
<span id="472">472</span>
<span id="473">473</span>
<span id="474">474</span>
<span id="475">475</span>
<span id="476">476</span>
<span id="477">477</span>
<span id="478">478</span>
<span id="479">479</span>
<span id="480">480</span>
<span id="481">481</span>
<span id="482">482</span>
<span id="483">483</span>
<span id="484">484</span>
<span id="485">485</span>
<span id="486">486</span>
<span id="487">487</span>
<span id="488">488</span>
<span id="489">489</span>
<span id="490">490</span>
<span id="491">491</span>
<span id="492">492</span>
<span id="493">493</span>
<span id="494">494</span>
<span id="495">495</span>
<span id="496">496</span>
<span id="497">497</span>
<span id="498">498</span>
<span id="499">499</span>
<span id="500">500</span>
<span id="501">501</span>
<span id="502">502</span>
<span id="503">503</span>
<span id="504">504</span>
<span id="505">505</span>
<span id="506">506</span>
<span id="507">507</span>
<span id="508">508</span>
<span id="509">509</span>
<span id="510">510</span>
<span id="511">511</span>
<span id="512">512</span>
<span id="513">513</span>
<span id="514">514</span>
<span id="515">515</span>
<span id="516">516</span>
<span id="517">517</span>
<span id="518">518</span>
<span id="519">519</span>
<span id="520">520</span>
<span id="521">521</span>
<span id="522">522</span>
<span id="523">523</span>
<span id="524">524</span>
<span id="525">525</span>
<span id="526">526</span>
<span id="527">527</span>
<span id="528">528</span>
<span id="529">529</span>
<span id="530">530</span>
<span id="531">531</span>
<span id="532">532</span>
<span id="533">533</span>
<span id="534">534</span>
<span id="535">535</span>
<span id="536">536</span>
<span id="537">537</span>
<span id="538">538</span>
<span id="539">539</span>
<span id="540">540</span>
<span id="541">541</span>
<span id="542">542</span>
<span id="543">543</span>
<span id="544">544</span>
<span id="545">545</span>
<span id="546">546</span>
<span id="547">547</span>
<span id="548">548</span>
<span id="549">549</span>
<span id="550">550</span>
<span id="551">551</span>
<span id="552">552</span>
<span id="553">553</span>
<span id="554">554</span>
<span id="555">555</span>
<span id="556">556</span>
<span id="557">557</span>
<span id="558">558</span>
<span id="559">559</span>
<span id="560">560</span>
<span id="561">561</span>
<span id="562">562</span>
<span id="563">563</span>
<span id="564">564</span>
<span id="565">565</span>
<span id="566">566</span>
<span id="567">567</span>
<span id="568">568</span>
<span id="569">569</span>
<span id="570">570</span>
<span id="571">571</span>
<span id="572">572</span>
<span id="573">573</span>
<span id="574">574</span>
<span id="575">575</span>
<span id="576">576</span>
<span id="577">577</span>
<span id="578">578</span>
<span id="579">579</span>
<span id="580">580</span>
<span id="581">581</span>
<span id="582">582</span>
<span id="583">583</span>
<span id="584">584</span>
<span id="585">585</span>
<span id="586">586</span>
<span id="587">587</span>
<span id="588">588</span>
<span id="589">589</span>
<span id="590">590</span>
<span id="591">591</span>
<span id="592">592</span>
<span id="593">593</span>
<span id="594">594</span>
<span id="595">595</span>
<span id="596">596</span>
<span id="597">597</span>
<span id="598">598</span>
<span id="599">599</span>
<span id="600">600</span>
<span id="601">601</span>
<span id="602">602</span>
<span id="603">603</span>
<span id="604">604</span>
<span id="605">605</span>
<span id="606">606</span>
<span id="607">607</span>
<span id="608">608</span>
<span id="609">609</span>
<span id="610">610</span>
<span id="611">611</span>
<span id="612">612</span>
<span id="613">613</span>
<span id="614">614</span>
<span id="615">615</span>
<span id="616">616</span>
<span id="617">617</span>
<span id="618">618</span>
<span id="619">619</span>
<span id="620">620</span>
<span id="621">621</span>
<span id="622">622</span>
<span id="623">623</span>
<span id="624">624</span>
<span id="625">625</span>
<span id="626">626</span>
<span id="627">627</span>
<span id="628">628</span>
<span id="629">629</span>
<span id="630">630</span>
<span id="631">631</span>
<span id="632">632</span>
<span id="633">633</span>
<span id="634">634</span>
<span id="635">635</span>
<span id="636">636</span>
<span id="637">637</span>
<span id="638">638</span>
<span id="639">639</span>
<span id="640">640</span>
<span id="641">641</span>
<span id="642">642</span>
<span id="643">643</span>
<span id="644">644</span>
<span id="645">645</span>
<span id="646">646</span>
<span id="647">647</span>
<span id="648">648</span>
<span id="649">649</span>
<span id="650">650</span>
<span id="651">651</span>
<span id="652">652</span>
<span id="653">653</span>
<span id="654">654</span>
<span id="655">655</span>
<span id="656">656</span>
<span id="657">657</span>
<span id="658">658</span>
<span id="659">659</span>
<span id="660">660</span>
<span id="661">661</span>
<span id="662">662</span>
<span id="663">663</span>
<span id="664">664</span>
<span id="665">665</span>
<span id="666">666</span>
<span id="667">667</span>
<span id="668">668</span>
<span id="669">669</span>
<span id="670">670</span>
<span id="671">671</span>
<span id="672">672</span>
<span id="673">673</span>
<span id="674">674</span>
<span id="675">675</span>
<span id="676">676</span>
<span id="677">677</span>
<span id="678">678</span>
<span id="679">679</span>
<span id="680">680</span>
<span id="681">681</span>
<span id="682">682</span>
<span id="683">683</span>
<span id="684">684</span>
<span id="685">685</span>
<span id="686">686</span>
<span id="687">687</span>
<span id="688">688</span>
<span id="689">689</span>
<span id="690">690</span>
<span id="691">691</span>
<span id="692">692</span>
<span id="693">693</span>
<span id="694">694</span>
<span id="695">695</span>
<span id="696">696</span>
<span id="697">697</span>
<span id="698">698</span>
<span id="699">699</span>
<span id="700">700</span>
<span id="701">701</span>
<span id="702">702</span>
<span id="703">703</span>
<span id="704">704</span>
<span id="705">705</span>
<span id="706">706</span>
<span id="707">707</span>
<span id="708">708</span>
<span id="709">709</span>
<span id="710">710</span>
<span id="711">711</span>
<span id="712">712</span>
<span id="713">713</span>
<span id="714">714</span>
<span id="715">715</span>
<span id="716">716</span>
<span id="717">717</span>
<span id="718">718</span>
<span id="719">719</span>
<span id="720">720</span>
<span id="721">721</span>
<span id="722">722</span>
<span id="723">723</span>
<span id="724">724</span>
<span id="725">725</span>
<span id="726">726</span>
<span id="727">727</span>
<span id="728">728</span>
<span id="729">729</span>
<span id="730">730</span>
<span id="731">731</span>
<span id="732">732</span>
<span id="733">733</span>
<span id="734">734</span>
<span id="735">735</span>
<span id="736">736</span>
<span id="737">737</span>
<span id="738">738</span>
<span id="739">739</span>
<span id="740">740</span>
<span id="741">741</span>
<span id="742">742</span>
<span id="743">743</span>
<span id="744">744</span>
<span id="745">745</span>
<span id="746">746</span>
<span id="747">747</span>
<span id="748">748</span>
<span id="749">749</span>
<span id="750">750</span>
<span id="751">751</span>
<span id="752">752</span>
<span id="753">753</span>
<span id="754">754</span>
<span id="755">755</span>
<span id="756">756</span>
<span id="757">757</span>
<span id="758">758</span>
<span id="759">759</span>
<span id="760">760</span>
<span id="761">761</span>
<span id="762">762</span>
<span id="763">763</span>
<span id="764">764</span>
<span id="765">765</span>
<span id="766">766</span>
<span id="767">767</span>
<span id="768">768</span>
<span id="769">769</span>
<span id="770">770</span>
<span id="771">771</span>
<span id="772">772</span>
<span id="773">773</span>
<span id="774">774</span>
<span id="775">775</span>
<span id="776">776</span>
<span id="777">777</span>
<span id="778">778</span>
<span id="779">779</span>
<span id="780">780</span>
<span id="781">781</span>
<span id="782">782</span>
<span id="783">783</span>
<span id="784">784</span>
<span id="785">785</span>
<span id="786">786</span>
<span id="787">787</span>
<span id="788">788</span>
<span id="789">789</span>
<span id="790">790</span>
<span id="791">791</span>
<span id="792">792</span>
<span id="793">793</span>
<span id="794">794</span>
<span id="795">795</span>
<span id="796">796</span>
<span id="797">797</span>
<span id="798">798</span>
<span id="799">799</span>
<span id="800">800</span>
<span id="801">801</span>
<span id="802">802</span>
<span id="803">803</span>
<span id="804">804</span>
<span id="805">805</span>
<span id="806">806</span>
<span id="807">807</span>
<span id="808">808</span>
<span id="809">809</span>
<span id="810">810</span>
<span id="811">811</span>
<span id="812">812</span>
<span id="813">813</span>
<span id="814">814</span>
<span id="815">815</span>
<span id="816">816</span>
<span id="817">817</span>
<span id="818">818</span>
<span id="819">819</span>
<span id="820">820</span>
<span id="821">821</span>
<span id="822">822</span>
<span id="823">823</span>
<span id="824">824</span>
<span id="825">825</span>
<span id="826">826</span>
<span id="827">827</span>
<span id="828">828</span>
<span id="829">829</span>
<span id="830">830</span>
<span id="831">831</span>
<span id="832">832</span>
<span id="833">833</span>
<span id="834">834</span>
<span id="835">835</span>
<span id="836">836</span>
<span id="837">837</span>
<span id="838">838</span>
<span id="839">839</span>
<span id="840">840</span>
<span id="841">841</span>
<span id="842">842</span>
<span id="843">843</span>
<span id="844">844</span>
<span id="845">845</span>
<span id="846">846</span>
<span id="847">847</span>
<span id="848">848</span>
<span id="849">849</span>
<span id="850">850</span>
<span id="851">851</span>
<span id="852">852</span>
<span id="853">853</span>
<span id="854">854</span>
<span id="855">855</span>
<span id="856">856</span>
<span id="857">857</span>
<span id="858">858</span>
<span id="859">859</span>
<span id="860">860</span>
<span id="861">861</span>
<span id="862">862</span>
<span id="863">863</span>
<span id="864">864</span>
<span id="865">865</span>
<span id="866">866</span>
<span id="867">867</span>
<span id="868">868</span>
<span id="869">869</span>
<span id="870">870</span>
<span id="871">871</span>
<span id="872">872</span>
<span id="873">873</span>
<span id="874">874</span>
<span id="875">875</span>
<span id="876">876</span>
<span id="877">877</span>
<span id="878">878</span>
<span id="879">879</span>
<span id="880">880</span>
<span id="881">881</span>
<span id="882">882</span>
<span id="883">883</span>
<span id="884">884</span>
<span id="885">885</span>
<span id="886">886</span>
<span id="887">887</span>
<span id="888">888</span>
<span id="889">889</span>
<span id="890">890</span>
<span id="891">891</span>
<span id="892">892</span>
<span id="893">893</span>
<span id="894">894</span>
<span id="895">895</span>
<span id="896">896</span>
<span id="897">897</span>
<span id="898">898</span>
<span id="899">899</span>
<span id="900">900</span>
<span id="901">901</span>
<span id="902">902</span>
<span id="903">903</span>
<span id="904">904</span>
<span id="905">905</span>
<span id="906">906</span>
<span id="907">907</span>
<span id="908">908</span>
<span id="909">909</span>
<span id="910">910</span>
<span id="911">911</span>
<span id="912">912</span>
<span id="913">913</span>
<span id="914">914</span>
<span id="915">915</span>
<span id="916">916</span>
<span id="917">917</span>
<span id="918">918</span>
<span id="919">919</span>
<span id="920">920</span>
<span id="921">921</span>
<span id="922">922</span>
<span id="923">923</span>
<span id="924">924</span>
<span id="925">925</span>
<span id="926">926</span>
<span id="927">927</span>
<span id="928">928</span>
<span id="929">929</span>
<span id="930">930</span>
<span id="931">931</span>
<span id="932">932</span>
<span id="933">933</span>
<span id="934">934</span>
<span id="935">935</span>
<span id="936">936</span>
<span id="937">937</span>
<span id="938">938</span>
<span id="939">939</span>
<span id="940">940</span>
<span id="941">941</span>
<span id="942">942</span>
<span id="943">943</span>
<span id="944">944</span>
<span id="945">945</span>
<span id="946">946</span>
<span id="947">947</span>
<span id="948">948</span>
<span id="949">949</span>
<span id="950">950</span>
<span id="951">951</span>
<span id="952">952</span>
<span id="953">953</span>
<span id="954">954</span>
<span id="955">955</span>
<span id="956">956</span>
<span id="957">957</span>
<span id="958">958</span>
<span id="959">959</span>
<span id="960">960</span>
<span id="961">961</span>
<span id="962">962</span>
<span id="963">963</span>
<span id="964">964</span>
<span id="965">965</span>
<span id="966">966</span>
<span id="967">967</span>
<span id="968">968</span>
<span id="969">969</span>
<span id="970">970</span>
<span id="971">971</span>
<span id="972">972</span>
<span id="973">973</span>
<span id="974">974</span>
<span id="975">975</span>
<span id="976">976</span>
<span id="977">977</span>
<span id="978">978</span>
<span id="979">979</span>
<span id="980">980</span>
<span id="981">981</span>
<span id="982">982</span>
<span id="983">983</span>
<span id="984">984</span>
<span id="985">985</span>
<span id="986">986</span>
<span id="987">987</span>
<span id="988">988</span>
<span id="989">989</span>
<span id="990">990</span>
<span id="991">991</span>
<span id="992">992</span>
<span id="993">993</span>
<span id="994">994</span>
<span id="995">995</span>
<span id="996">996</span>
<span id="997">997</span>
<span id="998">998</span>
<span id="999">999</span>
<span id="1000">1000</span>
<span id="1001">1001</span>
<span id="1002">1002</span>
<span id="1003">1003</span>
<span id="1004">1004</span>
<span id="1005">1005</span>
<span id="1006">1006</span>
<span id="1007">1007</span>
<span id="1008">1008</span>
<span id="1009">1009</span>
<span id="1010">1010</span>
<span id="1011">1011</span>
<span id="1012">1012</span>
<span id="1013">1013</span>
<span id="1014">1014</span>
<span id="1015">1015</span>
<span id="1016">1016</span>
<span id="1017">1017</span>
<span id="1018">1018</span>
<span id="1019">1019</span>
<span id="1020">1020</span>
<span id="1021">1021</span>
<span id="1022">1022</span>
<span id="1023">1023</span>
<span id="1024">1024</span>
<span id="1025">1025</span>
<span id="1026">1026</span>
<span id="1027">1027</span>
<span id="1028">1028</span>
<span id="1029">1029</span>
<span id="1030">1030</span>
<span id="1031">1031</span>
<span id="1032">1032</span>
<span id="1033">1033</span>
<span id="1034">1034</span>
<span id="1035">1035</span>
<span id="1036">1036</span>
<span id="1037">1037</span>
<span id="1038">1038</span>
<span id="1039">1039</span>
<span id="1040">1040</span>
<span id="1041">1041</span>
<span id="1042">1042</span>
<span id="1043">1043</span>
<span id="1044">1044</span>
<span id="1045">1045</span>
<span id="1046">1046</span>
<span id="1047">1047</span>
<span id="1048">1048</span>
<span id="1049">1049</span>
<span id="1050">1050</span>
<span id="1051">1051</span>
<span id="1052">1052</span>
<span id="1053">1053</span>
<span id="1054">1054</span>
<span id="1055">1055</span>
<span id="1056">1056</span>
<span id="1057">1057</span>
<span id="1058">1058</span>
<span id="1059">1059</span>
<span id="1060">1060</span>
<span id="1061">1061</span>
<span id="1062">1062</span>
<span id="1063">1063</span>
<span id="1064">1064</span>
<span id="1065">1065</span>
<span id="1066">1066</span>
<span id="1067">1067</span>
<span id="1068">1068</span>
<span id="1069">1069</span>
<span id="1070">1070</span>
<span id="1071">1071</span>
<span id="1072">1072</span>
<span id="1073">1073</span>
<span id="1074">1074</span>
<span id="1075">1075</span>
<span id="1076">1076</span>
<span id="1077">1077</span>
<span id="1078">1078</span>
<span id="1079">1079</span>
<span id="1080">1080</span>
<span id="1081">1081</span>
<span id="1082">1082</span>
<span id="1083">1083</span>
<span id="1084">1084</span>
<span id="1085">1085</span>
<span id="1086">1086</span>
<span id="1087">1087</span>
<span id="1088">1088</span>
<span id="1089">1089</span>
<span id="1090">1090</span>
<span id="1091">1091</span>
<span id="1092">1092</span>
<span id="1093">1093</span>
<span id="1094">1094</span>
<span id="1095">1095</span>
<span id="1096">1096</span>
<span id="1097">1097</span>
<span id="1098">1098</span>
<span id="1099">1099</span>
<span id="1100">1100</span>
<span id="1101">1101</span>
<span id="1102">1102</span>
<span id="1103">1103</span>
<span id="1104">1104</span>
<span id="1105">1105</span>
<span id="1106">1106</span>
<span id="1107">1107</span>
<span id="1108">1108</span>
<span id="1109">1109</span>
<span id="1110">1110</span>
<span id="1111">1111</span>
<span id="1112">1112</span>
<span id="1113">1113</span>
<span id="1114">1114</span>
<span id="1115">1115</span>
<span id="1116">1116</span>
<span id="1117">1117</span>
<span id="1118">1118</span>
<span id="1119">1119</span>
<span id="1120">1120</span>
<span id="1121">1121</span>
<span id="1122">1122</span>
<span id="1123">1123</span>
<span id="1124">1124</span>
<span id="1125">1125</span>
<span id="1126">1126</span>
<span id="1127">1127</span>
<span id="1128">1128</span>
<span id="1129">1129</span>
<span id="1130">1130</span>
<span id="1131">1131</span>
<span id="1132">1132</span>
<span id="1133">1133</span>
<span id="1134">1134</span>
<span id="1135">1135</span>
<span id="1136">1136</span>
<span id="1137">1137</span>
<span id="1138">1138</span>
<span id="1139">1139</span>
<span id="1140">1140</span>
<span id="1141">1141</span>
<span id="1142">1142</span>
<span id="1143">1143</span>
<span id="1144">1144</span>
<span id="1145">1145</span>
<span id="1146">1146</span>
<span id="1147">1147</span>
<span id="1148">1148</span>
<span id="1149">1149</span>
<span id="1150">1150</span>
<span id="1151">1151</span>
<span id="1152">1152</span>
<span id="1153">1153</span>
<span id="1154">1154</span>
<span id="1155">1155</span>
<span id="1156">1156</span>
<span id="1157">1157</span>
<span id="1158">1158</span>
<span id="1159">1159</span>
<span id="1160">1160</span>
<span id="1161">1161</span>
<span id="1162">1162</span>
<span id="1163">1163</span>
<span id="1164">1164</span>
<span id="1165">1165</span>
<span id="1166">1166</span>
<span id="1167">1167</span>
<span id="1168">1168</span>
<span id="1169">1169</span>
<span id="1170">1170</span>
<span id="1171">1171</span>
<span id="1172">1172</span>
<span id="1173">1173</span>
<span id="1174">1174</span>
<span id="1175">1175</span>
<span id="1176">1176</span>
<span id="1177">1177</span>
<span id="1178">1178</span>
<span id="1179">1179</span>
<span id="1180">1180</span>
<span id="1181">1181</span>
<span id="1182">1182</span>
<span id="1183">1183</span>
<span id="1184">1184</span>
<span id="1185">1185</span>
<span id="1186">1186</span>
<span id="1187">1187</span>
<span id="1188">1188</span>
<span id="1189">1189</span>
<span id="1190">1190</span>
<span id="1191">1191</span>
<span id="1192">1192</span>
<span id="1193">1193</span>
<span id="1194">1194</span>
<span id="1195">1195</span>
<span id="1196">1196</span>
<span id="1197">1197</span>
<span id="1198">1198</span>
<span id="1199">1199</span>
<span id="1200">1200</span>
<span id="1201">1201</span>
<span id="1202">1202</span>
<span id="1203">1203</span>
<span id="1204">1204</span>
<span id="1205">1205</span>
<span id="1206">1206</span>
<span id="1207">1207</span>
<span id="1208">1208</span>
<span id="1209">1209</span>
<span id="1210">1210</span>
<span id="1211">1211</span>
<span id="1212">1212</span>
<span id="1213">1213</span>
<span id="1214">1214</span>
<span id="1215">1215</span>
<span id="1216">1216</span>
<span id="1217">1217</span>
<span id="1218">1218</span>
<span id="1219">1219</span>
<span id="1220">1220</span>
<span id="1221">1221</span>
<span id="1222">1222</span>
<span id="1223">1223</span>
<span id="1224">1224</span>
<span id="1225">1225</span>
<span id="1226">1226</span>
<span id="1227">1227</span>
<span id="1228">1228</span>
<span id="1229">1229</span>
<span id="1230">1230</span>
<span id="1231">1231</span>
<span id="1232">1232</span>
<span id="1233">1233</span>
<span id="1234">1234</span>
<span id="1235">1235</span>
<span id="1236">1236</span>
<span id="1237">1237</span>
<span id="1238">1238</span>
<span id="1239">1239</span>
<span id="1240">1240</span>
<span id="1241">1241</span>
<span id="1242">1242</span>
<span id="1243">1243</span>
<span id="1244">1244</span>
<span id="1245">1245</span>
<span id="1246">1246</span>
<span id="1247">1247</span>
<span id="1248">1248</span>
<span id="1249">1249</span>
<span id="1250">1250</span>
<span id="1251">1251</span>
<span id="1252">1252</span>
<span id="1253">1253</span>
<span id="1254">1254</span>
<span id="1255">1255</span>
<span id="1256">1256</span>
<span id="1257">1257</span>
<span id="1258">1258</span>
<span id="1259">1259</span>
<span id="1260">1260</span>
<span id="1261">1261</span>
<span id="1262">1262</span>
<span id="1263">1263</span>
<span id="1264">1264</span>
<span id="1265">1265</span>
<span id="1266">1266</span>
<span id="1267">1267</span>
<span id="1268">1268</span>
<span id="1269">1269</span>
<span id="1270">1270</span>
<span id="1271">1271</span>
<span id="1272">1272</span>
<span id="1273">1273</span>
<span id="1274">1274</span>
<span id="1275">1275</span>
<span id="1276">1276</span>
<span id="1277">1277</span>
<span id="1278">1278</span>
<span id="1279">1279</span>
<span id="1280">1280</span>
<span id="1281">1281</span>
<span id="1282">1282</span>
<span id="1283">1283</span>
<span id="1284">1284</span>
<span id="1285">1285</span>
<span id="1286">1286</span>
<span id="1287">1287</span>
<span id="1288">1288</span>
<span id="1289">1289</span>
<span id="1290">1290</span>
<span id="1291">1291</span>
<span id="1292">1292</span>
<span id="1293">1293</span>
<span id="1294">1294</span>
<span id="1295">1295</span>
<span id="1296">1296</span>
<span id="1297">1297</span>
<span id="1298">1298</span>
<span id="1299">1299</span>
<span id="1300">1300</span>
<span id="1301">1301</span>
<span id="1302">1302</span>
<span id="1303">1303</span>
<span id="1304">1304</span>
<span id="1305">1305</span>
<span id="1306">1306</span>
<span id="1307">1307</span>
<span id="1308">1308</span>
<span id="1309">1309</span>
<span id="1310">1310</span>
<span id="1311">1311</span>
<span id="1312">1312</span>
<span id="1313">1313</span>
<span id="1314">1314</span>
<span id="1315">1315</span>
<span id="1316">1316</span>
<span id="1317">1317</span>
<span id="1318">1318</span>
<span id="1319">1319</span>
<span id="1320">1320</span>
<span id="1321">1321</span>
<span id="1322">1322</span>
<span id="1323">1323</span>
<span id="1324">1324</span>
<span id="1325">1325</span>
<span id="1326">1326</span>
<span id="1327">1327</span>
<span id="1328">1328</span>
<span id="1329">1329</span>
<span id="1330">1330</span>
<span id="1331">1331</span>
<span id="1332">1332</span>
<span id="1333">1333</span>
<span id="1334">1334</span>
<span id="1335">1335</span>
<span id="1336">1336</span>
<span id="1337">1337</span>
<span id="1338">1338</span>
<span id="1339">1339</span>
<span id="1340">1340</span>
<span id="1341">1341</span>
<span id="1342">1342</span>
<span id="1343">1343</span>
<span id="1344">1344</span>
<span id="1345">1345</span>
<span id="1346">1346</span>
<span id="1347">1347</span>
<span id="1348">1348</span>
<span id="1349">1349</span>
<span id="1350">1350</span>
<span id="1351">1351</span>
<span id="1352">1352</span>
<span id="1353">1353</span>
<span id="1354">1354</span>
<span id="1355">1355</span>
<span id="1356">1356</span>
<span id="1357">1357</span>
<span id="1358">1358</span>
<span id="1359">1359</span>
<span id="1360">1360</span>
<span id="1361">1361</span>
<span id="1362">1362</span>
<span id="1363">1363</span>
<span id="1364">1364</span>
<span id="1365">1365</span>
<span id="1366">1366</span>
<span id="1367">1367</span>
<span id="1368">1368</span>
<span id="1369">1369</span>
<span id="1370">1370</span>
<span id="1371">1371</span>
<span id="1372">1372</span>
<span id="1373">1373</span>
<span id="1374">1374</span>
<span id="1375">1375</span>
<span id="1376">1376</span>
<span id="1377">1377</span>
<span id="1378">1378</span>
<span id="1379">1379</span>
<span id="1380">1380</span>
<span id="1381">1381</span>
<span id="1382">1382</span>
<span id="1383">1383</span>
<span id="1384">1384</span>
<span id="1385">1385</span>
<span id="1386">1386</span>
<span id="1387">1387</span>
<span id="1388">1388</span>
<span id="1389">1389</span>
<span id="1390">1390</span>
<span id="1391">1391</span>
<span id="1392">1392</span>
<span id="1393">1393</span>
<span id="1394">1394</span>
<span id="1395">1395</span>
<span id="1396">1396</span>
<span id="1397">1397</span>
<span id="1398">1398</span>
<span id="1399">1399</span>
<span id="1400">1400</span>
<span id="1401">1401</span>
<span id="1402">1402</span>
<span id="1403">1403</span>
<span id="1404">1404</span>
<span id="1405">1405</span>
<span id="1406">1406</span>
<span id="1407">1407</span>
<span id="1408">1408</span>
<span id="1409">1409</span>
<span id="1410">1410</span>
<span id="1411">1411</span>
<span id="1412">1412</span>
<span id="1413">1413</span>
<span id="1414">1414</span>
<span id="1415">1415</span>
<span id="1416">1416</span>
<span id="1417">1417</span>
<span id="1418">1418</span>
<span id="1419">1419</span>
<span id="1420">1420</span>
<span id="1421">1421</span>
<span id="1422">1422</span>
<span id="1423">1423</span>
<span id="1424">1424</span>
<span id="1425">1425</span>
<span id="1426">1426</span>
<span id="1427">1427</span>
<span id="1428">1428</span>
<span id="1429">1429</span>
<span id="1430">1430</span>
<span id="1431">1431</span>
<span id="1432">1432</span>
<span id="1433">1433</span>
<span id="1434">1434</span>
<span id="1435">1435</span>
<span id="1436">1436</span>
<span id="1437">1437</span>
<span id="1438">1438</span>
<span id="1439">1439</span>
<span id="1440">1440</span>
<span id="1441">1441</span>
<span id="1442">1442</span>
<span id="1443">1443</span>
<span id="1444">1444</span>
<span id="1445">1445</span>
<span id="1446">1446</span>
<span id="1447">1447</span>
<span id="1448">1448</span>
<span id="1449">1449</span>
<span id="1450">1450</span>
<span id="1451">1451</span>
<span id="1452">1452</span>
<span id="1453">1453</span>
<span id="1454">1454</span>
<span id="1455">1455</span>
<span id="1456">1456</span>
<span id="1457">1457</span>
<span id="1458">1458</span>
<span id="1459">1459</span>
<span id="1460">1460</span>
<span id="1461">1461</span>
<span id="1462">1462</span>
<span id="1463">1463</span>
<span id="1464">1464</span>
<span id="1465">1465</span>
<span id="1466">1466</span>
<span id="1467">1467</span>
<span id="1468">1468</span>
<span id="1469">1469</span>
<span id="1470">1470</span>
<span id="1471">1471</span>
<span id="1472">1472</span>
<span id="1473">1473</span>
<span id="1474">1474</span>
<span id="1475">1475</span>
<span id="1476">1476</span>
<span id="1477">1477</span>
<span id="1478">1478</span>
<span id="1479">1479</span>
<span id="1480">1480</span>
<span id="1481">1481</span>
<span id="1482">1482</span>
<span id="1483">1483</span>
<span id="1484">1484</span>
<span id="1485">1485</span>
<span id="1486">1486</span>
<span id="1487">1487</span>
<span id="1488">1488</span>
<span id="1489">1489</span>
<span id="1490">1490</span>
<span id="1491">1491</span>
<span id="1492">1492</span>
<span id="1493">1493</span>
<span id="1494">1494</span>
<span id="1495">1495</span>
<span id="1496">1496</span>
<span id="1497">1497</span>
<span id="1498">1498</span>
<span id="1499">1499</span>
<span id="1500">1500</span>
<span id="1501">1501</span>
<span id="1502">1502</span>
<span id="1503">1503</span>
<span id="1504">1504</span>
<span id="1505">1505</span>
<span id="1506">1506</span>
<span id="1507">1507</span>
<span id="1508">1508</span>
<span id="1509">1509</span>
<span id="1510">1510</span>
<span id="1511">1511</span>
<span id="1512">1512</span>
<span id="1513">1513</span>
<span id="1514">1514</span>
<span id="1515">1515</span>
<span id="1516">1516</span>
<span id="1517">1517</span>
<span id="1518">1518</span>
<span id="1519">1519</span>
<span id="1520">1520</span>
<span id="1521">1521</span>
<span id="1522">1522</span>
<span id="1523">1523</span>
<span id="1524">1524</span>
<span id="1525">1525</span>
<span id="1526">1526</span>
<span id="1527">1527</span>
<span id="1528">1528</span>
<span id="1529">1529</span>
<span id="1530">1530</span>
<span id="1531">1531</span>
<span id="1532">1532</span>
<span id="1533">1533</span>
<span id="1534">1534</span>
<span id="1535">1535</span>
<span id="1536">1536</span>
<span id="1537">1537</span>
<span id="1538">1538</span>
<span id="1539">1539</span>
<span id="1540">1540</span>
<span id="1541">1541</span>
<span id="1542">1542</span>
<span id="1543">1543</span>
<span id="1544">1544</span>
<span id="1545">1545</span>
<span id="1546">1546</span>
<span id="1547">1547</span>
<span id="1548">1548</span>
<span id="1549">1549</span>
<span id="1550">1550</span>
<span id="1551">1551</span>
<span id="1552">1552</span>
<span id="1553">1553</span>
<span id="1554">1554</span>
<span id="1555">1555</span>
<span id="1556">1556</span>
<span id="1557">1557</span>
<span id="1558">1558</span>
<span id="1559">1559</span>
<span id="1560">1560</span>
<span id="1561">1561</span>
<span id="1562">1562</span>
<span id="1563">1563</span>
<span id="1564">1564</span>
<span id="1565">1565</span>
<span id="1566">1566</span>
<span id="1567">1567</span>
<span id="1568">1568</span>
<span id="1569">1569</span>
<span id="1570">1570</span>
<span id="1571">1571</span>
<span id="1572">1572</span>
<span id="1573">1573</span>
<span id="1574">1574</span>
<span id="1575">1575</span>
<span id="1576">1576</span>
<span id="1577">1577</span>
<span id="1578">1578</span>
<span id="1579">1579</span>
<span id="1580">1580</span>
<span id="1581">1581</span>
<span id="1582">1582</span>
<span id="1583">1583</span>
<span id="1584">1584</span>
<span id="1585">1585</span>
<span id="1586">1586</span>
<span id="1587">1587</span>
<span id="1588">1588</span>
<span id="1589">1589</span>
<span id="1590">1590</span>
<span id="1591">1591</span>
<span id="1592">1592</span>
<span id="1593">1593</span>
<span id="1594">1594</span>
<span id="1595">1595</span>
<span id="1596">1596</span>
<span id="1597">1597</span>
<span id="1598">1598</span>
<span id="1599">1599</span>
<span id="1600">1600</span>
<span id="1601">1601</span>
<span id="1602">1602</span>
<span id="1603">1603</span>
<span id="1604">1604</span>
<span id="1605">1605</span>
<span id="1606">1606</span>
<span id="1607">1607</span>
<span id="1608">1608</span>
<span id="1609">1609</span>
<span id="1610">1610</span>
<span id="1611">1611</span>
<span id="1612">1612</span>
<span id="1613">1613</span>
<span id="1614">1614</span>
<span id="1615">1615</span>
<span id="1616">1616</span>
<span id="1617">1617</span>
<span id="1618">1618</span>
<span id="1619">1619</span>
<span id="1620">1620</span>
<span id="1621">1621</span>
<span id="1622">1622</span>
<span id="1623">1623</span>
<span id="1624">1624</span>
<span id="1625">1625</span>
<span id="1626">1626</span>
<span id="1627">1627</span>
<span id="1628">1628</span>
<span id="1629">1629</span>
<span id="1630">1630</span>
<span id="1631">1631</span>
<span id="1632">1632</span>
<span id="1633">1633</span>
<span id="1634">1634</span>
<span id="1635">1635</span>
<span id="1636">1636</span>
<span id="1637">1637</span>
<span id="1638">1638</span>
<span id="1639">1639</span>
<span id="1640">1640</span>
<span id="1641">1641</span>
<span id="1642">1642</span>
<span id="1643">1643</span>
<span id="1644">1644</span>
<span id="1645">1645</span>
<span id="1646">1646</span>
<span id="1647">1647</span>
<span id="1648">1648</span>
<span id="1649">1649</span>
<span id="1650">1650</span>
<span id="1651">1651</span>
<span id="1652">1652</span>
<span id="1653">1653</span>
<span id="1654">1654</span>
<span id="1655">1655</span>
<span id="1656">1656</span>
<span id="1657">1657</span>
<span id="1658">1658</span>
<span id="1659">1659</span>
<span id="1660">1660</span>
<span id="1661">1661</span>
<span id="1662">1662</span>
<span id="1663">1663</span>
<span id="1664">1664</span>
<span id="1665">1665</span>
<span id="1666">1666</span>
<span id="1667">1667</span>
<span id="1668">1668</span>
<span id="1669">1669</span>
<span id="1670">1670</span>
<span id="1671">1671</span>
<span id="1672">1672</span>
<span id="1673">1673</span>
<span id="1674">1674</span>
<span id="1675">1675</span>
<span id="1676">1676</span>
<span id="1677">1677</span>
<span id="1678">1678</span>
<span id="1679">1679</span>
<span id="1680">1680</span>
<span id="1681">1681</span>
<span id="1682">1682</span>
<span id="1683">1683</span>
<span id="1684">1684</span>
<span id="1685">1685</span>
<span id="1686">1686</span>
<span id="1687">1687</span>
<span id="1688">1688</span>
<span id="1689">1689</span>
<span id="1690">1690</span>
<span id="1691">1691</span>
<span id="1692">1692</span>
<span id="1693">1693</span>
<span id="1694">1694</span>
<span id="1695">1695</span>
<span id="1696">1696</span>
<span id="1697">1697</span>
<span id="1698">1698</span>
<span id="1699">1699</span>
<span id="1700">1700</span>
<span id="1701">1701</span>
<span id="1702">1702</span>
<span id="1703">1703</span>
<span id="1704">1704</span>
<span id="1705">1705</span>
<span id="1706">1706</span>
<span id="1707">1707</span>
<span id="1708">1708</span>
<span id="1709">1709</span>
<span id="1710">1710</span>
<span id="1711">1711</span>
<span id="1712">1712</span>
<span id="1713">1713</span>
<span id="1714">1714</span>
<span id="1715">1715</span>
<span id="1716">1716</span>
<span id="1717">1717</span>
<span id="1718">1718</span>
<span id="1719">1719</span>
<span id="1720">1720</span>
<span id="1721">1721</span>
<span id="1722">1722</span>
<span id="1723">1723</span>
<span id="1724">1724</span>
<span id="1725">1725</span>
<span id="1726">1726</span>
<span id="1727">1727</span>
<span id="1728">1728</span>
<span id="1729">1729</span>
<span id="1730">1730</span>
<span id="1731">1731</span>
<span id="1732">1732</span>
<span id="1733">1733</span>
<span id="1734">1734</span>
<span id="1735">1735</span>
<span id="1736">1736</span>
<span id="1737">1737</span>
<span id="1738">1738</span>
<span id="1739">1739</span>
<span id="1740">1740</span>
<span id="1741">1741</span>
<span id="1742">1742</span>
<span id="1743">1743</span>
<span id="1744">1744</span>
<span id="1745">1745</span>
<span id="1746">1746</span>
<span id="1747">1747</span>
<span id="1748">1748</span>
<span id="1749">1749</span>
<span id="1750">1750</span>
<span id="1751">1751</span>
<span id="1752">1752</span>
<span id="1753">1753</span>
<span id="1754">1754</span>
<span id="1755">1755</span>
<span id="1756">1756</span>
<span id="1757">1757</span>
<span id="1758">1758</span>
<span id="1759">1759</span>
<span id="1760">1760</span>
<span id="1761">1761</span>
<span id="1762">1762</span>
<span id="1763">1763</span>
<span id="1764">1764</span>
<span id="1765">1765</span>
<span id="1766">1766</span>
<span id="1767">1767</span>
<span id="1768">1768</span>
<span id="1769">1769</span>
<span id="1770">1770</span>
<span id="1771">1771</span>
<span id="1772">1772</span>
<span id="1773">1773</span>
<span id="1774">1774</span>
<span id="1775">1775</span>
<span id="1776">1776</span>
<span id="1777">1777</span>
<span id="1778">1778</span>
<span id="1779">1779</span>
<span id="1780">1780</span>
<span id="1781">1781</span>
<span id="1782">1782</span>
<span id="1783">1783</span>
<span id="1784">1784</span>
<span id="1785">1785</span>
<span id="1786">1786</span>
<span id="1787">1787</span>
<span id="1788">1788</span>
<span id="1789">1789</span>
<span id="1790">1790</span>
<span id="1791">1791</span>
<span id="1792">1792</span>
<span id="1793">1793</span>
<span id="1794">1794</span>
<span id="1795">1795</span>
<span id="1796">1796</span>
<span id="1797">1797</span>
<span id="1798">1798</span>
<span id="1799">1799</span>
<span id="1800">1800</span>
<span id="1801">1801</span>
<span id="1802">1802</span>
<span id="1803">1803</span>
<span id="1804">1804</span>
<span id="1805">1805</span>
<span id="1806">1806</span>
<span id="1807">1807</span>
<span id="1808">1808</span>
<span id="1809">1809</span>
<span id="1810">1810</span>
<span id="1811">1811</span>
<span id="1812">1812</span>
<span id="1813">1813</span>
<span id="1814">1814</span>
<span id="1815">1815</span>
<span id="1816">1816</span>
<span id="1817">1817</span>
<span id="1818">1818</span>
<span id="1819">1819</span>
<span id="1820">1820</span>
<span id="1821">1821</span>
<span id="1822">1822</span>
<span id="1823">1823</span>
<span id="1824">1824</span>
<span id="1825">1825</span>
<span id="1826">1826</span>
<span id="1827">1827</span>
<span id="1828">1828</span>
<span id="1829">1829</span>
<span id="1830">1830</span>
<span id="1831">1831</span>
<span id="1832">1832</span>
<span id="1833">1833</span>
<span id="1834">1834</span>
<span id="1835">1835</span>
<span id="1836">1836</span>
<span id="1837">1837</span>
<span id="1838">1838</span>
<span id="1839">1839</span>
<span id="1840">1840</span>
<span id="1841">1841</span>
<span id="1842">1842</span>
<span id="1843">1843</span>
<span id="1844">1844</span>
<span id="1845">1845</span>
<span id="1846">1846</span>
<span id="1847">1847</span>
<span id="1848">1848</span>
<span id="1849">1849</span>
<span id="1850">1850</span>
<span id="1851">1851</span>
<span id="1852">1852</span>
<span id="1853">1853</span>
<span id="1854">1854</span>
<span id="1855">1855</span>
<span id="1856">1856</span>
<span id="1857">1857</span>
<span id="1858">1858</span>
<span id="1859">1859</span>
<span id="1860">1860</span>
<span id="1861">1861</span>
<span id="1862">1862</span>
<span id="1863">1863</span>
<span id="1864">1864</span>
<span id="1865">1865</span>
<span id="1866">1866</span>
<span id="1867">1867</span>
<span id="1868">1868</span>
<span id="1869">1869</span>
<span id="1870">1870</span>
<span id="1871">1871</span>
<span id="1872">1872</span>
<span id="1873">1873</span>
<span id="1874">1874</span>
<span id="1875">1875</span>
<span id="1876">1876</span>
<span id="1877">1877</span>
<span id="1878">1878</span>
<span id="1879">1879</span>
<span id="1880">1880</span>
<span id="1881">1881</span>
<span id="1882">1882</span>
<span id="1883">1883</span>
<span id="1884">1884</span>
<span id="1885">1885</span>
<span id="1886">1886</span>
<span id="1887">1887</span>
<span id="1888">1888</span>
<span id="1889">1889</span>
<span id="1890">1890</span>
<span id="1891">1891</span>
<span id="1892">1892</span>
<span id="1893">1893</span>
<span id="1894">1894</span>
<span id="1895">1895</span>
<span id="1896">1896</span>
<span id="1897">1897</span>
<span id="1898">1898</span>
<span id="1899">1899</span>
<span id="1900">1900</span>
<span id="1901">1901</span>
<span id="1902">1902</span>
<span id="1903">1903</span>
<span id="1904">1904</span>
<span id="1905">1905</span>
<span id="1906">1906</span>
<span id="1907">1907</span>
<span id="1908">1908</span>
<span id="1909">1909</span>
<span id="1910">1910</span>
<span id="1911">1911</span>
<span id="1912">1912</span>
<span id="1913">1913</span>
<span id="1914">1914</span>
<span id="1915">1915</span>
<span id="1916">1916</span>
<span id="1917">1917</span>
<span id="1918">1918</span>
<span id="1919">1919</span>
<span id="1920">1920</span>
<span id="1921">1921</span>
<span id="1922">1922</span>
<span id="1923">1923</span>
<span id="1924">1924</span>
<span id="1925">1925</span>
<span id="1926">1926</span>
<span id="1927">1927</span>
<span id="1928">1928</span>
<span id="1929">1929</span>
<span id="1930">1930</span>
<span id="1931">1931</span>
<span id="1932">1932</span>
<span id="1933">1933</span>
<span id="1934">1934</span>
<span id="1935">1935</span>
<span id="1936">1936</span>
<span id="1937">1937</span>
<span id="1938">1938</span>
<span id="1939">1939</span>
<span id="1940">1940</span>
<span id="1941">1941</span>
<span id="1942">1942</span>
<span id="1943">1943</span>
<span id="1944">1944</span>
<span id="1945">1945</span>
<span id="1946">1946</span>
<span id="1947">1947</span>
<span id="1948">1948</span>
<span id="1949">1949</span>
<span id="1950">1950</span>
<span id="1951">1951</span>
<span id="1952">1952</span>
<span id="1953">1953</span>
<span id="1954">1954</span>
<span id="1955">1955</span>
<span id="1956">1956</span>
<span id="1957">1957</span>
<span id="1958">1958</span>
<span id="1959">1959</span>
<span id="1960">1960</span>
<span id="1961">1961</span>
<span id="1962">1962</span>
<span id="1963">1963</span>
<span id="1964">1964</span>
<span id="1965">1965</span>
<span id="1966">1966</span>
<span id="1967">1967</span>
<span id="1968">1968</span>
<span id="1969">1969</span>
<span id="1970">1970</span>
<span id="1971">1971</span>
<span id="1972">1972</span>
<span id="1973">1973</span>
<span id="1974">1974</span>
<span id="1975">1975</span>
<span id="1976">1976</span>
<span id="1977">1977</span>
<span id="1978">1978</span>
<span id="1979">1979</span>
<span id="1980">1980</span>
<span id="1981">1981</span>
<span id="1982">1982</span>
<span id="1983">1983</span>
<span id="1984">1984</span>
<span id="1985">1985</span>
<span id="1986">1986</span>
<span id="1987">1987</span>
<span id="1988">1988</span>
<span id="1989">1989</span>
<span id="1990">1990</span>
<span id="1991">1991</span>
<span id="1992">1992</span>
<span id="1993">1993</span>
<span id="1994">1994</span>
<span id="1995">1995</span>
<span id="1996">1996</span>
<span id="1997">1997</span>
<span id="1998">1998</span>
<span id="1999">1999</span>
<span id="2000">2000</span>
<span id="2001">2001</span>
<span id="2002">2002</span>
<span id="2003">2003</span>
<span id="2004">2004</span>
<span id="2005">2005</span>
<span id="2006">2006</span>
<span id="2007">2007</span>
<span id="2008">2008</span>
<span id="2009">2009</span>
<span id="2010">2010</span>
<span id="2011">2011</span>
<span id="2012">2012</span>
<span id="2013">2013</span>
<span id="2014">2014</span>
<span id="2015">2015</span>
<span id="2016">2016</span>
<span id="2017">2017</span>
<span id="2018">2018</span>
<span id="2019">2019</span>
<span id="2020">2020</span>
<span id="2021">2021</span>
<span id="2022">2022</span>
<span id="2023">2023</span>
<span id="2024">2024</span>
<span id="2025">2025</span>
<span id="2026">2026</span>
<span id="2027">2027</span>
<span id="2028">2028</span>
<span id="2029">2029</span>
<span id="2030">2030</span>
<span id="2031">2031</span>
<span id="2032">2032</span>
<span id="2033">2033</span>
<span id="2034">2034</span>
<span id="2035">2035</span>
<span id="2036">2036</span>
<span id="2037">2037</span>
<span id="2038">2038</span>
<span id="2039">2039</span>
<span id="2040">2040</span>
<span id="2041">2041</span>
<span id="2042">2042</span>
<span id="2043">2043</span>
<span id="2044">2044</span>
<span id="2045">2045</span>
<span id="2046">2046</span>
<span id="2047">2047</span>
<span id="2048">2048</span>
<span id="2049">2049</span>
<span id="2050">2050</span>
<span id="2051">2051</span>
<span id="2052">2052</span>
<span id="2053">2053</span>
<span id="2054">2054</span>
<span id="2055">2055</span>
<span id="2056">2056</span>
<span id="2057">2057</span>
<span id="2058">2058</span>
<span id="2059">2059</span>
<span id="2060">2060</span>
<span id="2061">2061</span>
<span id="2062">2062</span>
<span id="2063">2063</span>
<span id="2064">2064</span>
<span id="2065">2065</span>
<span id="2066">2066</span>
<span id="2067">2067</span>
<span id="2068">2068</span>
<span id="2069">2069</span>
<span id="2070">2070</span>
<span id="2071">2071</span>
<span id="2072">2072</span>
<span id="2073">2073</span>
<span id="2074">2074</span>
<span id="2075">2075</span>
<span id="2076">2076</span>
<span id="2077">2077</span>
<span id="2078">2078</span>
<span id="2079">2079</span>
<span id="2080">2080</span>
<span id="2081">2081</span>
<span id="2082">2082</span>
<span id="2083">2083</span>
<span id="2084">2084</span>
<span id="2085">2085</span>
<span id="2086">2086</span>
<span id="2087">2087</span>
<span id="2088">2088</span>
<span id="2089">2089</span>
<span id="2090">2090</span>
<span id="2091">2091</span>
<span id="2092">2092</span>
<span id="2093">2093</span>
<span id="2094">2094</span>
<span id="2095">2095</span>
<span id="2096">2096</span>
<span id="2097">2097</span>
<span id="2098">2098</span>
<span id="2099">2099</span>
<span id="2100">2100</span>
<span id="2101">2101</span>
<span id="2102">2102</span>
<span id="2103">2103</span>
<span id="2104">2104</span>
<span id="2105">2105</span>
<span id="2106">2106</span>
<span id="2107">2107</span>
<span id="2108">2108</span>
<span id="2109">2109</span>
<span id="2110">2110</span>
<span id="2111">2111</span>
<span id="2112">2112</span>
<span id="2113">2113</span>
<span id="2114">2114</span>
<span id="2115">2115</span>
<span id="2116">2116</span>
<span id="2117">2117</span>
<span id="2118">2118</span>
<span id="2119">2119</span>
<span id="2120">2120</span>
<span id="2121">2121</span>
<span id="2122">2122</span>
<span id="2123">2123</span>
<span id="2124">2124</span>
<span id="2125">2125</span>
<span id="2126">2126</span>
<span id="2127">2127</span>
<span id="2128">2128</span>
<span id="2129">2129</span>
<span id="2130">2130</span>
<span id="2131">2131</span>
<span id="2132">2132</span>
<span id="2133">2133</span>
<span id="2134">2134</span>
<span id="2135">2135</span>
<span id="2136">2136</span>
<span id="2137">2137</span>
<span id="2138">2138</span>
<span id="2139">2139</span>
<span id="2140">2140</span>
<span id="2141">2141</span>
<span id="2142">2142</span>
<span id="2143">2143</span>
<span id="2144">2144</span>
<span id="2145">2145</span>
<span id="2146">2146</span>
<span id="2147">2147</span>
<span id="2148">2148</span>
<span id="2149">2149</span>
<span id="2150">2150</span>
<span id="2151">2151</span>
<span id="2152">2152</span>
<span id="2153">2153</span>
<span id="2154">2154</span>
<span id="2155">2155</span>
<span id="2156">2156</span>
<span id="2157">2157</span>
<span id="2158">2158</span>
<span id="2159">2159</span>
<span id="2160">2160</span>
<span id="2161">2161</span>
<span id="2162">2162</span>
<span id="2163">2163</span>
<span id="2164">2164</span>
<span id="2165">2165</span>
<span id="2166">2166</span>
<span id="2167">2167</span>
<span id="2168">2168</span>
<span id="2169">2169</span>
<span id="2170">2170</span>
<span id="2171">2171</span>
<span id="2172">2172</span>
<span id="2173">2173</span>
<span id="2174">2174</span>
<span id="2175">2175</span>
<span id="2176">2176</span>
<span id="2177">2177</span>
<span id="2178">2178</span>
<span id="2179">2179</span>
<span id="2180">2180</span>
<span id="2181">2181</span>
<span id="2182">2182</span>
<span id="2183">2183</span>
<span id="2184">2184</span>
<span id="2185">2185</span>
<span id="2186">2186</span>
<span id="2187">2187</span>
<span id="2188">2188</span>
<span id="2189">2189</span>
<span id="2190">2190</span>
<span id="2191">2191</span>
<span id="2192">2192</span>
<span id="2193">2193</span>
<span id="2194">2194</span>
<span id="2195">2195</span>
<span id="2196">2196</span>
<span id="2197">2197</span>
<span id="2198">2198</span>
<span id="2199">2199</span>
<span id="2200">2200</span>
<span id="2201">2201</span>
<span id="2202">2202</span>
<span id="2203">2203</span>
<span id="2204">2204</span>
<span id="2205">2205</span>
<span id="2206">2206</span>
<span id="2207">2207</span>
<span id="2208">2208</span>
<span id="2209">2209</span>
<span id="2210">2210</span>
<span id="2211">2211</span>
<span id="2212">2212</span>
<span id="2213">2213</span>
<span id="2214">2214</span>
<span id="2215">2215</span>
<span id="2216">2216</span>
<span id="2217">2217</span>
<span id="2218">2218</span>
<span id="2219">2219</span>
<span id="2220">2220</span>
<span id="2221">2221</span>
<span id="2222">2222</span>
<span id="2223">2223</span>
<span id="2224">2224</span>
<span id="2225">2225</span>
<span id="2226">2226</span>
<span id="2227">2227</span>
<span id="2228">2228</span>
<span id="2229">2229</span>
<span id="2230">2230</span>
<span id="2231">2231</span>
<span id="2232">2232</span>
<span id="2233">2233</span>
<span id="2234">2234</span>
<span id="2235">2235</span>
<span id="2236">2236</span>
<span id="2237">2237</span>
<span id="2238">2238</span>
<span id="2239">2239</span>
<span id="2240">2240</span>
<span id="2241">2241</span>
<span id="2242">2242</span>
<span id="2243">2243</span>
<span id="2244">2244</span>
<span id="2245">2245</span>
<span id="2246">2246</span>
<span id="2247">2247</span>
<span id="2248">2248</span>
<span id="2249">2249</span>
<span id="2250">2250</span>
<span id="2251">2251</span>
<span id="2252">2252</span>
<span id="2253">2253</span>
<span id="2254">2254</span>
<span id="2255">2255</span>
<span id="2256">2256</span>
<span id="2257">2257</span>
<span id="2258">2258</span>
<span id="2259">2259</span>
<span id="2260">2260</span>
<span id="2261">2261</span>
<span id="2262">2262</span>
<span id="2263">2263</span>
<span id="2264">2264</span>
<span id="2265">2265</span>
<span id="2266">2266</span>
<span id="2267">2267</span>
<span id="2268">2268</span>
<span id="2269">2269</span>
<span id="2270">2270</span>
<span id="2271">2271</span>
<span id="2272">2272</span>
<span id="2273">2273</span>
<span id="2274">2274</span>
<span id="2275">2275</span>
<span id="2276">2276</span>
<span id="2277">2277</span>
<span id="2278">2278</span>
<span id="2279">2279</span>
<span id="2280">2280</span>
<span id="2281">2281</span>
<span id="2282">2282</span>
<span id="2283">2283</span>
<span id="2284">2284</span>
<span id="2285">2285</span>
<span id="2286">2286</span>
<span id="2287">2287</span>
<span id="2288">2288</span>
<span id="2289">2289</span>
<span id="2290">2290</span>
<span id="2291">2291</span>
<span id="2292">2292</span>
<span id="2293">2293</span>
<span id="2294">2294</span>
<span id="2295">2295</span>
<span id="2296">2296</span>
<span id="2297">2297</span>
<span id="2298">2298</span>
<span id="2299">2299</span>
<span id="2300">2300</span>
<span id="2301">2301</span>
<span id="2302">2302</span>
<span id="2303">2303</span>
<span id="2304">2304</span>
<span id="2305">2305</span>
<span id="2306">2306</span>
<span id="2307">2307</span>
<span id="2308">2308</span>
<span id="2309">2309</span>
<span id="2310">2310</span>
<span id="2311">2311</span>
<span id="2312">2312</span>
<span id="2313">2313</span>
<span id="2314">2314</span>
<span id="2315">2315</span>
<span id="2316">2316</span>
<span id="2317">2317</span>
<span id="2318">2318</span>
<span id="2319">2319</span>
<span id="2320">2320</span>
<span id="2321">2321</span>
<span id="2322">2322</span>
<span id="2323">2323</span>
<span id="2324">2324</span>
<span id="2325">2325</span>
<span id="2326">2326</span>
<span id="2327">2327</span>
<span id="2328">2328</span>
<span id="2329">2329</span>
<span id="2330">2330</span>
<span id="2331">2331</span>
<span id="2332">2332</span>
<span id="2333">2333</span>
<span id="2334">2334</span>
<span id="2335">2335</span>
<span id="2336">2336</span>
<span id="2337">2337</span>
<span id="2338">2338</span>
<span id="2339">2339</span>
<span id="2340">2340</span>
<span id="2341">2341</span>
<span id="2342">2342</span>
<span id="2343">2343</span>
<span id="2344">2344</span>
<span id="2345">2345</span>
<span id="2346">2346</span>
<span id="2347">2347</span>
<span id="2348">2348</span>
<span id="2349">2349</span>
<span id="2350">2350</span>
<span id="2351">2351</span>
<span id="2352">2352</span>
<span id="2353">2353</span>
<span id="2354">2354</span>
<span id="2355">2355</span>
<span id="2356">2356</span>
<span id="2357">2357</span>
<span id="2358">2358</span>
<span id="2359">2359</span>
<span id="2360">2360</span>
<span id="2361">2361</span>
<span id="2362">2362</span>
<span id="2363">2363</span>
<span id="2364">2364</span>
<span id="2365">2365</span>
<span id="2366">2366</span>
<span id="2367">2367</span>
<span id="2368">2368</span>
<span id="2369">2369</span>
<span id="2370">2370</span>
<span id="2371">2371</span>
<span id="2372">2372</span>
<span id="2373">2373</span>
<span id="2374">2374</span>
<span id="2375">2375</span>
<span id="2376">2376</span>
<span id="2377">2377</span>
<span id="2378">2378</span>
<span id="2379">2379</span>
<span id="2380">2380</span>
<span id="2381">2381</span>
<span id="2382">2382</span>
<span id="2383">2383</span>
<span id="2384">2384</span>
<span id="2385">2385</span>
<span id="2386">2386</span>
<span id="2387">2387</span>
<span id="2388">2388</span>
<span id="2389">2389</span>
<span id="2390">2390</span>
<span id="2391">2391</span>
<span id="2392">2392</span>
<span id="2393">2393</span>
<span id="2394">2394</span>
<span id="2395">2395</span>
<span id="2396">2396</span>
<span id="2397">2397</span>
<span id="2398">2398</span>
<span id="2399">2399</span>
<span id="2400">2400</span>
<span id="2401">2401</span>
<span id="2402">2402</span>
<span id="2403">2403</span>
<span id="2404">2404</span>
<span id="2405">2405</span>
<span id="2406">2406</span>
<span id="2407">2407</span>
<span id="2408">2408</span>
<span id="2409">2409</span>
<span id="2410">2410</span>
<span id="2411">2411</span>
<span id="2412">2412</span>
<span id="2413">2413</span>
<span id="2414">2414</span>
<span id="2415">2415</span>
<span id="2416">2416</span>
<span id="2417">2417</span>
<span id="2418">2418</span>
<span id="2419">2419</span>
<span id="2420">2420</span>
<span id="2421">2421</span>
<span id="2422">2422</span>
<span id="2423">2423</span>
<span id="2424">2424</span>
<span id="2425">2425</span>
<span id="2426">2426</span>
<span id="2427">2427</span>
<span id="2428">2428</span>
<span id="2429">2429</span>
<span id="2430">2430</span>
<span id="2431">2431</span>
<span id="2432">2432</span>
<span id="2433">2433</span>
<span id="2434">2434</span>
<span id="2435">2435</span>
<span id="2436">2436</span>
<span id="2437">2437</span>
<span id="2438">2438</span>
<span id="2439">2439</span>
<span id="2440">2440</span>
<span id="2441">2441</span>
<span id="2442">2442</span>
<span id="2443">2443</span>
<span id="2444">2444</span>
<span id="2445">2445</span>
<span id="2446">2446</span>
<span id="2447">2447</span>
<span id="2448">2448</span>
<span id="2449">2449</span>
<span id="2450">2450</span>
<span id="2451">2451</span>
<span id="2452">2452</span>
<span id="2453">2453</span>
<span id="2454">2454</span>
<span id="2455">2455</span>
<span id="2456">2456</span>
<span id="2457">2457</span>
<span id="2458">2458</span>
<span id="2459">2459</span>
<span id="2460">2460</span>
<span id="2461">2461</span>
<span id="2462">2462</span>
<span id="2463">2463</span>
<span id="2464">2464</span>
<span id="2465">2465</span>
<span id="2466">2466</span>
<span id="2467">2467</span>
<span id="2468">2468</span>
<span id="2469">2469</span>
<span id="2470">2470</span>
<span id="2471">2471</span>
<span id="2472">2472</span>
<span id="2473">2473</span>
<span id="2474">2474</span>
<span id="2475">2475</span>
<span id="2476">2476</span>
<span id="2477">2477</span>
<span id="2478">2478</span>
<span id="2479">2479</span>
<span id="2480">2480</span>
<span id="2481">2481</span>
<span id="2482">2482</span>
<span id="2483">2483</span>
<span id="2484">2484</span>
<span id="2485">2485</span>
<span id="2486">2486</span>
<span id="2487">2487</span>
<span id="2488">2488</span>
<span id="2489">2489</span>
<span id="2490">2490</span>
<span id="2491">2491</span>
<span id="2492">2492</span>
<span id="2493">2493</span>
<span id="2494">2494</span>
<span id="2495">2495</span>
<span id="2496">2496</span>
<span id="2497">2497</span>
<span id="2498">2498</span>
<span id="2499">2499</span>
<span id="2500">2500</span>
<span id="2501">2501</span>
<span id="2502">2502</span>
<span id="2503">2503</span>
<span id="2504">2504</span>
<span id="2505">2505</span>
<span id="2506">2506</span>
<span id="2507">2507</span>
<span id="2508">2508</span>
<span id="2509">2509</span>
<span id="2510">2510</span>
<span id="2511">2511</span>
<span id="2512">2512</span>
<span id="2513">2513</span>
<span id="2514">2514</span>
<span id="2515">2515</span>
<span id="2516">2516</span>
<span id="2517">2517</span>
<span id="2518">2518</span>
<span id="2519">2519</span>
<span id="2520">2520</span>
<span id="2521">2521</span>
<span id="2522">2522</span>
<span id="2523">2523</span>
<span id="2524">2524</span>
<span id="2525">2525</span>
<span id="2526">2526</span>
<span id="2527">2527</span>
<span id="2528">2528</span>
<span id="2529">2529</span>
<span id="2530">2530</span>
<span id="2531">2531</span>
<span id="2532">2532</span>
<span id="2533">2533</span>
<span id="2534">2534</span>
<span id="2535">2535</span>
<span id="2536">2536</span>
<span id="2537">2537</span>
<span id="2538">2538</span>
<span id="2539">2539</span>
<span id="2540">2540</span>
<span id="2541">2541</span>
<span id="2542">2542</span>
<span id="2543">2543</span>
<span id="2544">2544</span>
<span id="2545">2545</span>
<span id="2546">2546</span>
<span id="2547">2547</span>
<span id="2548">2548</span>
<span id="2549">2549</span>
<span id="2550">2550</span>
<span id="2551">2551</span>
<span id="2552">2552</span>
<span id="2553">2553</span>
<span id="2554">2554</span>
<span id="2555">2555</span>
<span id="2556">2556</span>
<span id="2557">2557</span>
<span id="2558">2558</span>
<span id="2559">2559</span>
<span id="2560">2560</span>
<span id="2561">2561</span>
<span id="2562">2562</span>
<span id="2563">2563</span>
<span id="2564">2564</span>
<span id="2565">2565</span>
<span id="2566">2566</span>
<span id="2567">2567</span>
<span id="2568">2568</span>
<span id="2569">2569</span>
<span id="2570">2570</span>
<span id="2571">2571</span>
<span id="2572">2572</span>
<span id="2573">2573</span>
<span id="2574">2574</span>
<span id="2575">2575</span>
<span id="2576">2576</span>
<span id="2577">2577</span>
<span id="2578">2578</span>
<span id="2579">2579</span>
<span id="2580">2580</span>
<span id="2581">2581</span>
<span id="2582">2582</span>
<span id="2583">2583</span>
<span id="2584">2584</span>
<span id="2585">2585</span>
<span id="2586">2586</span>
<span id="2587">2587</span>
<span id="2588">2588</span>
<span id="2589">2589</span>
<span id="2590">2590</span>
<span id="2591">2591</span>
<span id="2592">2592</span>
<span id="2593">2593</span>
<span id="2594">2594</span>
<span id="2595">2595</span>
<span id="2596">2596</span>
<span id="2597">2597</span>
<span id="2598">2598</span>
<span id="2599">2599</span>
<span id="2600">2600</span>
<span id="2601">2601</span>
<span id="2602">2602</span>
<span id="2603">2603</span>
<span id="2604">2604</span>
<span id="2605">2605</span>
<span id="2606">2606</span>
<span id="2607">2607</span>
<span id="2608">2608</span>
<span id="2609">2609</span>
<span id="2610">2610</span>
<span id="2611">2611</span>
<span id="2612">2612</span>
<span id="2613">2613</span>
<span id="2614">2614</span>
<span id="2615">2615</span>
<span id="2616">2616</span>
<span id="2617">2617</span>
<span id="2618">2618</span>
<span id="2619">2619</span>
<span id="2620">2620</span>
<span id="2621">2621</span>
<span id="2622">2622</span>
<span id="2623">2623</span>
<span id="2624">2624</span>
<span id="2625">2625</span>
<span id="2626">2626</span>
<span id="2627">2627</span>
<span id="2628">2628</span>
<span id="2629">2629</span>
<span id="2630">2630</span>
<span id="2631">2631</span>
<span id="2632">2632</span>
<span id="2633">2633</span>
<span id="2634">2634</span>
<span id="2635">2635</span>
<span id="2636">2636</span>
<span id="2637">2637</span>
<span id="2638">2638</span>
<span id="2639">2639</span>
<span id="2640">2640</span>
<span id="2641">2641</span>
<span id="2642">2642</span>
<span id="2643">2643</span>
<span id="2644">2644</span>
<span id="2645">2645</span>
<span id="2646">2646</span>
<span id="2647">2647</span>
<span id="2648">2648</span>
<span id="2649">2649</span>
<span id="2650">2650</span>
<span id="2651">2651</span>
<span id="2652">2652</span>
<span id="2653">2653</span>
<span id="2654">2654</span>
<span id="2655">2655</span>
<span id="2656">2656</span>
<span id="2657">2657</span>
<span id="2658">2658</span>
<span id="2659">2659</span>
<span id="2660">2660</span>
<span id="2661">2661</span>
<span id="2662">2662</span>
<span id="2663">2663</span>
<span id="2664">2664</span>
<span id="2665">2665</span>
<span id="2666">2666</span>
<span id="2667">2667</span>
<span id="2668">2668</span>
<span id="2669">2669</span>
<span id="2670">2670</span>
<span id="2671">2671</span>
<span id="2672">2672</span>
<span id="2673">2673</span>
<span id="2674">2674</span>
<span id="2675">2675</span>
<span id="2676">2676</span>
<span id="2677">2677</span>
<span id="2678">2678</span>
<span id="2679">2679</span>
<span id="2680">2680</span>
<span id="2681">2681</span>
<span id="2682">2682</span>
<span id="2683">2683</span>
<span id="2684">2684</span>
<span id="2685">2685</span>
<span id="2686">2686</span>
<span id="2687">2687</span>
<span id="2688">2688</span>
<span id="2689">2689</span>
<span id="2690">2690</span>
<span id="2691">2691</span>
<span id="2692">2692</span>
<span id="2693">2693</span>
<span id="2694">2694</span>
<span id="2695">2695</span>
<span id="2696">2696</span>
<span id="2697">2697</span>
<span id="2698">2698</span>
<span id="2699">2699</span>
<span id="2700">2700</span>
<span id="2701">2701</span>
<span id="2702">2702</span>
<span id="2703">2703</span>
<span id="2704">2704</span>
<span id="2705">2705</span>
<span id="2706">2706</span>
<span id="2707">2707</span>
<span id="2708">2708</span>
<span id="2709">2709</span>
<span id="2710">2710</span>
<span id="2711">2711</span>
<span id="2712">2712</span>
<span id="2713">2713</span>
<span id="2714">2714</span>
<span id="2715">2715</span>
<span id="2716">2716</span>
<span id="2717">2717</span>
<span id="2718">2718</span>
<span id="2719">2719</span>
<span id="2720">2720</span>
<span id="2721">2721</span>
<span id="2722">2722</span>
<span id="2723">2723</span>
<span id="2724">2724</span>
<span id="2725">2725</span>
<span id="2726">2726</span>
<span id="2727">2727</span>
<span id="2728">2728</span>
<span id="2729">2729</span>
<span id="2730">2730</span>
<span id="2731">2731</span>
<span id="2732">2732</span>
<span id="2733">2733</span>
<span id="2734">2734</span>
<span id="2735">2735</span>
<span id="2736">2736</span>
<span id="2737">2737</span>
<span id="2738">2738</span>
<span id="2739">2739</span>
<span id="2740">2740</span>
<span id="2741">2741</span>
<span id="2742">2742</span>
<span id="2743">2743</span>
<span id="2744">2744</span>
<span id="2745">2745</span>
<span id="2746">2746</span>
<span id="2747">2747</span>
<span id="2748">2748</span>
<span id="2749">2749</span>
<span id="2750">2750</span>
<span id="2751">2751</span>
<span id="2752">2752</span>
<span id="2753">2753</span>
<span id="2754">2754</span>
<span id="2755">2755</span>
<span id="2756">2756</span>
<span id="2757">2757</span>
<span id="2758">2758</span>
<span id="2759">2759</span>
<span id="2760">2760</span>
<span id="2761">2761</span>
<span id="2762">2762</span>
<span id="2763">2763</span>
<span id="2764">2764</span>
<span id="2765">2765</span>
<span id="2766">2766</span>
<span id="2767">2767</span>
<span id="2768">2768</span>
<span id="2769">2769</span>
<span id="2770">2770</span>
<span id="2771">2771</span>
<span id="2772">2772</span>
<span id="2773">2773</span>
<span id="2774">2774</span>
<span id="2775">2775</span>
<span id="2776">2776</span>
<span id="2777">2777</span>
<span id="2778">2778</span>
<span id="2779">2779</span>
<span id="2780">2780</span>
<span id="2781">2781</span>
<span id="2782">2782</span>
<span id="2783">2783</span>
<span id="2784">2784</span>
<span id="2785">2785</span>
<span id="2786">2786</span>
<span id="2787">2787</span>
<span id="2788">2788</span>
<span id="2789">2789</span>
<span id="2790">2790</span>
<span id="2791">2791</span>
<span id="2792">2792</span>
<span id="2793">2793</span>
<span id="2794">2794</span>
<span id="2795">2795</span>
<span id="2796">2796</span>
<span id="2797">2797</span>
<span id="2798">2798</span>
<span id="2799">2799</span>
<span id="2800">2800</span>
<span id="2801">2801</span>
<span id="2802">2802</span>
<span id="2803">2803</span>
<span id="2804">2804</span>
<span id="2805">2805</span>
<span id="2806">2806</span>
<span id="2807">2807</span>
<span id="2808">2808</span>
<span id="2809">2809</span>
<span id="2810">2810</span>
<span id="2811">2811</span>
<span id="2812">2812</span>
<span id="2813">2813</span>
<span id="2814">2814</span>
<span id="2815">2815</span>
<span id="2816">2816</span>
<span id="2817">2817</span>
<span id="2818">2818</span>
<span id="2819">2819</span>
<span id="2820">2820</span>
<span id="2821">2821</span>
<span id="2822">2822</span>
<span id="2823">2823</span>
<span id="2824">2824</span>
<span id="2825">2825</span>
<span id="2826">2826</span>
<span id="2827">2827</span>
<span id="2828">2828</span>
<span id="2829">2829</span>
<span id="2830">2830</span>
<span id="2831">2831</span>
<span id="2832">2832</span>
<span id="2833">2833</span>
<span id="2834">2834</span>
<span id="2835">2835</span>
<span id="2836">2836</span>
<span id="2837">2837</span>
<span id="2838">2838</span>
<span id="2839">2839</span>
<span id="2840">2840</span>
<span id="2841">2841</span>
<span id="2842">2842</span>
<span id="2843">2843</span>
<span id="2844">2844</span>
<span id="2845">2845</span>
<span id="2846">2846</span>
<span id="2847">2847</span>
<span id="2848">2848</span>
<span id="2849">2849</span>
<span id="2850">2850</span>
<span id="2851">2851</span>
<span id="2852">2852</span>
<span id="2853">2853</span>
<span id="2854">2854</span>
<span id="2855">2855</span>
<span id="2856">2856</span>
<span id="2857">2857</span>
<span id="2858">2858</span>
<span id="2859">2859</span>
<span id="2860">2860</span>
<span id="2861">2861</span>
<span id="2862">2862</span>
<span id="2863">2863</span>
<span id="2864">2864</span>
<span id="2865">2865</span>
<span id="2866">2866</span>
<span id="2867">2867</span>
<span id="2868">2868</span>
<span id="2869">2869</span>
<span id="2870">2870</span>
<span id="2871">2871</span>
<span id="2872">2872</span>
<span id="2873">2873</span>
<span id="2874">2874</span>
<span id="2875">2875</span>
<span id="2876">2876</span>
<span id="2877">2877</span>
<span id="2878">2878</span>
<span id="2879">2879</span>
<span id="2880">2880</span>
<span id="2881">2881</span>
<span id="2882">2882</span>
<span id="2883">2883</span>
<span id="2884">2884</span>
<span id="2885">2885</span>
<span id="2886">2886</span>
<span id="2887">2887</span>
<span id="2888">2888</span>
<span id="2889">2889</span>
<span id="2890">2890</span>
<span id="2891">2891</span>
<span id="2892">2892</span>
<span id="2893">2893</span>
<span id="2894">2894</span>
<span id="2895">2895</span>
<span id="2896">2896</span>
<span id="2897">2897</span>
<span id="2898">2898</span>
<span id="2899">2899</span>
<span id="2900">2900</span>
<span id="2901">2901</span>
<span id="2902">2902</span>
<span id="2903">2903</span>
<span id="2904">2904</span>
<span id="2905">2905</span>
<span id="2906">2906</span>
<span id="2907">2907</span>
<span id="2908">2908</span>
<span id="2909">2909</span>
<span id="2910">2910</span>
<span id="2911">2911</span>
<span id="2912">2912</span>
<span id="2913">2913</span>
<span id="2914">2914</span>
<span id="2915">2915</span>
<span id="2916">2916</span>
<span id="2917">2917</span>
<span id="2918">2918</span>
<span id="2919">2919</span>
<span id="2920">2920</span>
<span id="2921">2921</span>
<span id="2922">2922</span>
<span id="2923">2923</span>
<span id="2924">2924</span>
<span id="2925">2925</span>
<span id="2926">2926</span>
<span id="2927">2927</span>
<span id="2928">2928</span>
<span id="2929">2929</span>
<span id="2930">2930</span>
<span id="2931">2931</span>
<span id="2932">2932</span>
<span id="2933">2933</span>
<span id="2934">2934</span>
<span id="2935">2935</span>
<span id="2936">2936</span>
<span id="2937">2937</span>
<span id="2938">2938</span>
<span id="2939">2939</span>
<span id="2940">2940</span>
<span id="2941">2941</span>
<span id="2942">2942</span>
<span id="2943">2943</span>
<span id="2944">2944</span>
<span id="2945">2945</span>
<span id="2946">2946</span>
<span id="2947">2947</span>
<span id="2948">2948</span>
<span id="2949">2949</span>
<span id="2950">2950</span>
<span id="2951">2951</span>
<span id="2952">2952</span>
<span id="2953">2953</span>
<span id="2954">2954</span>
<span id="2955">2955</span>
<span id="2956">2956</span>
<span id="2957">2957</span>
<span id="2958">2958</span>
<span id="2959">2959</span>
<span id="2960">2960</span>
<span id="2961">2961</span>
<span id="2962">2962</span>
<span id="2963">2963</span>
<span id="2964">2964</span>
<span id="2965">2965</span>
<span id="2966">2966</span>
<span id="2967">2967</span>
<span id="2968">2968</span>
<span id="2969">2969</span>
<span id="2970">2970</span>
<span id="2971">2971</span>
<span id="2972">2972</span>
<span id="2973">2973</span>
<span id="2974">2974</span>
<span id="2975">2975</span>
<span id="2976">2976</span>
<span id="2977">2977</span>
<span id="2978">2978</span>
<span id="2979">2979</span>
<span id="2980">2980</span>
<span id="2981">2981</span>
<span id="2982">2982</span>
<span id="2983">2983</span>
<span id="2984">2984</span>
<span id="2985">2985</span>
<span id="2986">2986</span>
<span id="2987">2987</span>
<span id="2988">2988</span>
<span id="2989">2989</span>
<span id="2990">2990</span>
<span id="2991">2991</span>
<span id="2992">2992</span>
<span id="2993">2993</span>
<span id="2994">2994</span>
<span id="2995">2995</span>
<span id="2996">2996</span>
<span id="2997">2997</span>
<span id="2998">2998</span>
<span id="2999">2999</span>
<span id="3000">3000</span>
<span id="3001">3001</span>
<span id="3002">3002</span>
<span id="3003">3003</span>
<span id="3004">3004</span>
<span id="3005">3005</span>
<span id="3006">3006</span>
<span id="3007">3007</span>
<span id="3008">3008</span>
<span id="3009">3009</span>
<span id="3010">3010</span>
<span id="3011">3011</span>
<span id="3012">3012</span>
<span id="3013">3013</span>
<span id="3014">3014</span>
<span id="3015">3015</span>
<span id="3016">3016</span>
<span id="3017">3017</span>
<span id="3018">3018</span>
<span id="3019">3019</span>
<span id="3020">3020</span>
<span id="3021">3021</span>
<span id="3022">3022</span>
<span id="3023">3023</span>
<span id="3024">3024</span>
<span id="3025">3025</span>
<span id="3026">3026</span>
<span id="3027">3027</span>
<span id="3028">3028</span>
<span id="3029">3029</span>
<span id="3030">3030</span>
<span id="3031">3031</span>
<span id="3032">3032</span>
<span id="3033">3033</span>
<span id="3034">3034</span>
<span id="3035">3035</span>
<span id="3036">3036</span>
<span id="3037">3037</span>
<span id="3038">3038</span>
<span id="3039">3039</span>
<span id="3040">3040</span>
<span id="3041">3041</span>
<span id="3042">3042</span>
<span id="3043">3043</span>
<span id="3044">3044</span>
<span id="3045">3045</span>
<span id="3046">3046</span>
<span id="3047">3047</span>
<span id="3048">3048</span>
<span id="3049">3049</span>
<span id="3050">3050</span>
<span id="3051">3051</span>
<span id="3052">3052</span>
<span id="3053">3053</span>
<span id="3054">3054</span>
<span id="3055">3055</span>
<span id="3056">3056</span>
<span id="3057">3057</span>
<span id="3058">3058</span>
<span id="3059">3059</span>
<span id="3060">3060</span>
<span id="3061">3061</span>
<span id="3062">3062</span>
<span id="3063">3063</span>
<span id="3064">3064</span>
<span id="3065">3065</span>
<span id="3066">3066</span>
<span id="3067">3067</span>
<span id="3068">3068</span>
<span id="3069">3069</span>
<span id="3070">3070</span>
<span id="3071">3071</span>
<span id="3072">3072</span>
<span id="3073">3073</span>
<span id="3074">3074</span>
<span id="3075">3075</span>
<span id="3076">3076</span>
<span id="3077">3077</span>
<span id="3078">3078</span>
<span id="3079">3079</span>
<span id="3080">3080</span>
<span id="3081">3081</span>
<span id="3082">3082</span>
<span id="3083">3083</span>
<span id="3084">3084</span>
<span id="3085">3085</span>
<span id="3086">3086</span>
<span id="3087">3087</span>
<span id="3088">3088</span>
<span id="3089">3089</span>
<span id="3090">3090</span>
<span id="3091">3091</span>
<span id="3092">3092</span>
<span id="3093">3093</span>
<span id="3094">3094</span>
<span id="3095">3095</span>
<span id="3096">3096</span>
<span id="3097">3097</span>
<span id="3098">3098</span>
<span id="3099">3099</span>
<span id="3100">3100</span>
<span id="3101">3101</span>
<span id="3102">3102</span>
<span id="3103">3103</span>
<span id="3104">3104</span>
<span id="3105">3105</span>
<span id="3106">3106</span>
<span id="3107">3107</span>
<span id="3108">3108</span>
<span id="3109">3109</span>
<span id="3110">3110</span>
<span id="3111">3111</span>
<span id="3112">3112</span>
<span id="3113">3113</span>
<span id="3114">3114</span>
<span id="3115">3115</span>
<span id="3116">3116</span>
<span id="3117">3117</span>
<span id="3118">3118</span>
<span id="3119">3119</span>
<span id="3120">3120</span>
<span id="3121">3121</span>
<span id="3122">3122</span>
<span id="3123">3123</span>
<span id="3124">3124</span>
<span id="3125">3125</span>
<span id="3126">3126</span>
<span id="3127">3127</span>
<span id="3128">3128</span>
<span id="3129">3129</span>
<span id="3130">3130</span>
<span id="3131">3131</span>
<span id="3132">3132</span>
<span id="3133">3133</span>
<span id="3134">3134</span>
<span id="3135">3135</span>
<span id="3136">3136</span>
<span id="3137">3137</span>
<span id="3138">3138</span>
<span id="3139">3139</span>
<span id="3140">3140</span>
<span id="3141">3141</span>
<span id="3142">3142</span>
<span id="3143">3143</span>
<span id="3144">3144</span>
<span id="3145">3145</span>
<span id="3146">3146</span>
<span id="3147">3147</span>
<span id="3148">3148</span>
<span id="3149">3149</span>
<span id="3150">3150</span>
<span id="3151">3151</span>
<span id="3152">3152</span>
<span id="3153">3153</span>
<span id="3154">3154</span>
<span id="3155">3155</span>
<span id="3156">3156</span>
<span id="3157">3157</span>
<span id="3158">3158</span>
<span id="3159">3159</span>
<span id="3160">3160</span>
<span id="3161">3161</span>
<span id="3162">3162</span>
<span id="3163">3163</span>
<span id="3164">3164</span>
<span id="3165">3165</span>
<span id="3166">3166</span>
<span id="3167">3167</span>
<span id="3168">3168</span>
<span id="3169">3169</span>
<span id="3170">3170</span>
<span id="3171">3171</span>
<span id="3172">3172</span>
<span id="3173">3173</span>
<span id="3174">3174</span>
<span id="3175">3175</span>
<span id="3176">3176</span>
<span id="3177">3177</span>
<span id="3178">3178</span>
<span id="3179">3179</span>
<span id="3180">3180</span>
<span id="3181">3181</span>
<span id="3182">3182</span>
<span id="3183">3183</span>
<span id="3184">3184</span>
<span id="3185">3185</span>
<span id="3186">3186</span>
<span id="3187">3187</span>
<span id="3188">3188</span>
<span id="3189">3189</span>
<span id="3190">3190</span>
<span id="3191">3191</span>
<span id="3192">3192</span>
<span id="3193">3193</span>
<span id="3194">3194</span>
<span id="3195">3195</span>
<span id="3196">3196</span>
<span id="3197">3197</span>
<span id="3198">3198</span>
<span id="3199">3199</span>
<span id="3200">3200</span>
<span id="3201">3201</span>
<span id="3202">3202</span>
<span id="3203">3203</span>
<span id="3204">3204</span>
<span id="3205">3205</span>
<span id="3206">3206</span>
<span id="3207">3207</span>
<span id="3208">3208</span>
<span id="3209">3209</span>
<span id="3210">3210</span>
<span id="3211">3211</span>
<span id="3212">3212</span>
<span id="3213">3213</span>
<span id="3214">3214</span>
<span id="3215">3215</span>
<span id="3216">3216</span>
<span id="3217">3217</span>
<span id="3218">3218</span>
<span id="3219">3219</span>
<span id="3220">3220</span>
<span id="3221">3221</span>
<span id="3222">3222</span>
<span id="3223">3223</span>
<span id="3224">3224</span>
<span id="3225">3225</span>
<span id="3226">3226</span>
<span id="3227">3227</span>
<span id="3228">3228</span>
<span id="3229">3229</span>
<span id="3230">3230</span>
<span id="3231">3231</span>
<span id="3232">3232</span>
<span id="3233">3233</span>
<span id="3234">3234</span>
<span id="3235">3235</span>
<span id="3236">3236</span>
<span id="3237">3237</span>
<span id="3238">3238</span>
<span id="3239">3239</span>
<span id="3240">3240</span>
<span id="3241">3241</span>
<span id="3242">3242</span>
<span id="3243">3243</span>
<span id="3244">3244</span>
<span id="3245">3245</span>
<span id="3246">3246</span>
<span id="3247">3247</span>
<span id="3248">3248</span>
<span id="3249">3249</span>
<span id="3250">3250</span>
<span id="3251">3251</span>
<span id="3252">3252</span>
<span id="3253">3253</span>
<span id="3254">3254</span>
<span id="3255">3255</span>
<span id="3256">3256</span>
<span id="3257">3257</span>
<span id="3258">3258</span>
<span id="3259">3259</span>
<span id="3260">3260</span>
<span id="3261">3261</span>
<span id="3262">3262</span>
<span id="3263">3263</span>
<span id="3264">3264</span>
<span id="3265">3265</span>
<span id="3266">3266</span>
<span id="3267">3267</span>
<span id="3268">3268</span>
<span id="3269">3269</span>
<span id="3270">3270</span>
<span id="3271">3271</span>
<span id="3272">3272</span>
<span id="3273">3273</span>
<span id="3274">3274</span>
<span id="3275">3275</span>
<span id="3276">3276</span>
<span id="3277">3277</span>
<span id="3278">3278</span>
<span id="3279">3279</span>
<span id="3280">3280</span>
<span id="3281">3281</span>
<span id="3282">3282</span>
<span id="3283">3283</span>
<span id="3284">3284</span>
<span id="3285">3285</span>
<span id="3286">3286</span>
<span id="3287">3287</span>
<span id="3288">3288</span>
<span id="3289">3289</span>
<span id="3290">3290</span>
<span id="3291">3291</span>
<span id="3292">3292</span>
<span id="3293">3293</span>
<span id="3294">3294</span>
<span id="3295">3295</span>
<span id="3296">3296</span>
<span id="3297">3297</span>
<span id="3298">3298</span>
<span id="3299">3299</span>
<span id="3300">3300</span>
<span id="3301">3301</span>
<span id="3302">3302</span>
<span id="3303">3303</span>
<span id="3304">3304</span>
<span id="3305">3305</span>
<span id="3306">3306</span>
<span id="3307">3307</span>
<span id="3308">3308</span>
<span id="3309">3309</span>
<span id="3310">3310</span>
<span id="3311">3311</span>
<span id="3312">3312</span>
<span id="3313">3313</span>
<span id="3314">3314</span>
<span id="3315">3315</span>
<span id="3316">3316</span>
<span id="3317">3317</span>
<span id="3318">3318</span>
<span id="3319">3319</span>
<span id="3320">3320</span>
<span id="3321">3321</span>
<span id="3322">3322</span>
<span id="3323">3323</span>
<span id="3324">3324</span>
<span id="3325">3325</span>
<span id="3326">3326</span>
<span id="3327">3327</span>
<span id="3328">3328</span>
<span id="3329">3329</span>
<span id="3330">3330</span>
<span id="3331">3331</span>
<span id="3332">3332</span>
<span id="3333">3333</span>
<span id="3334">3334</span>
<span id="3335">3335</span>
<span id="3336">3336</span>
<span id="3337">3337</span>
<span id="3338">3338</span>
<span id="3339">3339</span>
<span id="3340">3340</span>
<span id="3341">3341</span>
<span id="3342">3342</span>
<span id="3343">3343</span>
<span id="3344">3344</span>
<span id="3345">3345</span>
<span id="3346">3346</span>
<span id="3347">3347</span>
<span id="3348">3348</span>
<span id="3349">3349</span>
<span id="3350">3350</span>
<span id="3351">3351</span>
<span id="3352">3352</span>
<span id="3353">3353</span>
<span id="3354">3354</span>
<span id="3355">3355</span>
<span id="3356">3356</span>
<span id="3357">3357</span>
<span id="3358">3358</span>
<span id="3359">3359</span>
<span id="3360">3360</span>
<span id="3361">3361</span>
<span id="3362">3362</span>
<span id="3363">3363</span>
<span id="3364">3364</span>
<span id="3365">3365</span>
<span id="3366">3366</span>
<span id="3367">3367</span>
<span id="3368">3368</span>
<span id="3369">3369</span>
<span id="3370">3370</span>
<span id="3371">3371</span>
<span id="3372">3372</span>
<span id="3373">3373</span>
<span id="3374">3374</span>
<span id="3375">3375</span>
<span id="3376">3376</span>
<span id="3377">3377</span>
<span id="3378">3378</span>
<span id="3379">3379</span>
<span id="3380">3380</span>
<span id="3381">3381</span>
<span id="3382">3382</span>
<span id="3383">3383</span>
<span id="3384">3384</span>
<span id="3385">3385</span>
<span id="3386">3386</span>
<span id="3387">3387</span>
<span id="3388">3388</span>
<span id="3389">3389</span>
<span id="3390">3390</span>
<span id="3391">3391</span>
<span id="3392">3392</span>
<span id="3393">3393</span>
<span id="3394">3394</span>
<span id="3395">3395</span>
<span id="3396">3396</span>
<span id="3397">3397</span>
<span id="3398">3398</span>
<span id="3399">3399</span>
<span id="3400">3400</span>
<span id="3401">3401</span>
<span id="3402">3402</span>
<span id="3403">3403</span>
<span id="3404">3404</span>
<span id="3405">3405</span>
<span id="3406">3406</span>
<span id="3407">3407</span>
<span id="3408">3408</span>
<span id="3409">3409</span>
<span id="3410">3410</span>
<span id="3411">3411</span>
<span id="3412">3412</span>
<span id="3413">3413</span>
<span id="3414">3414</span>
<span id="3415">3415</span>
<span id="3416">3416</span>
<span id="3417">3417</span>
<span id="3418">3418</span>
<span id="3419">3419</span>
<span id="3420">3420</span>
<span id="3421">3421</span>
<span id="3422">3422</span>
<span id="3423">3423</span>
<span id="3424">3424</span>
<span id="3425">3425</span>
<span id="3426">3426</span>
<span id="3427">3427</span>
<span id="3428">3428</span>
<span id="3429">3429</span>
<span id="3430">3430</span>
<span id="3431">3431</span>
<span id="3432">3432</span>
<span id="3433">3433</span>
<span id="3434">3434</span>
<span id="3435">3435</span>
<span id="3436">3436</span>
<span id="3437">3437</span>
<span id="3438">3438</span>
<span id="3439">3439</span>
<span id="3440">3440</span>
<span id="3441">3441</span>
<span id="3442">3442</span>
<span id="3443">3443</span>
<span id="3444">3444</span>
<span id="3445">3445</span>
<span id="3446">3446</span>
<span id="3447">3447</span>
<span id="3448">3448</span>
<span id="3449">3449</span>
<span id="3450">3450</span>
<span id="3451">3451</span>
<span id="3452">3452</span>
<span id="3453">3453</span>
<span id="3454">3454</span>
<span id="3455">3455</span>
<span id="3456">3456</span>
<span id="3457">3457</span>
<span id="3458">3458</span>
<span id="3459">3459</span>
<span id="3460">3460</span>
<span id="3461">3461</span>
<span id="3462">3462</span>
<span id="3463">3463</span>
<span id="3464">3464</span>
<span id="3465">3465</span>
<span id="3466">3466</span>
<span id="3467">3467</span>
<span id="3468">3468</span>
<span id="3469">3469</span>
<span id="3470">3470</span>
<span id="3471">3471</span>
<span id="3472">3472</span>
<span id="3473">3473</span>
<span id="3474">3474</span>
<span id="3475">3475</span>
<span id="3476">3476</span>
<span id="3477">3477</span>
<span id="3478">3478</span>
<span id="3479">3479</span>
<span id="3480">3480</span>
<span id="3481">3481</span>
<span id="3482">3482</span>
<span id="3483">3483</span>
<span id="3484">3484</span>
<span id="3485">3485</span>
<span id="3486">3486</span>
<span id="3487">3487</span>
<span id="3488">3488</span>
<span id="3489">3489</span>
<span id="3490">3490</span>
<span id="3491">3491</span>
<span id="3492">3492</span>
<span id="3493">3493</span>
<span id="3494">3494</span>
<span id="3495">3495</span>
<span id="3496">3496</span>
<span id="3497">3497</span>
<span id="3498">3498</span>
<span id="3499">3499</span>
<span id="3500">3500</span>
<span id="3501">3501</span>
<span id="3502">3502</span>
<span id="3503">3503</span>
<span id="3504">3504</span>
<span id="3505">3505</span>
<span id="3506">3506</span>
<span id="3507">3507</span>
<span id="3508">3508</span>
<span id="3509">3509</span>
<span id="3510">3510</span>
<span id="3511">3511</span>
<span id="3512">3512</span>
<span id="3513">3513</span>
<span id="3514">3514</span>
<span id="3515">3515</span>
<span id="3516">3516</span>
<span id="3517">3517</span>
<span id="3518">3518</span>
<span id="3519">3519</span>
<span id="3520">3520</span>
<span id="3521">3521</span>
<span id="3522">3522</span>
<span id="3523">3523</span>
<span id="3524">3524</span>
<span id="3525">3525</span>
<span id="3526">3526</span>
<span id="3527">3527</span>
<span id="3528">3528</span>
<span id="3529">3529</span>
<span id="3530">3530</span>
<span id="3531">3531</span>
<span id="3532">3532</span>
<span id="3533">3533</span>
<span id="3534">3534</span>
<span id="3535">3535</span>
<span id="3536">3536</span>
<span id="3537">3537</span>
<span id="3538">3538</span>
<span id="3539">3539</span>
<span id="3540">3540</span>
<span id="3541">3541</span>
<span id="3542">3542</span>
<span id="3543">3543</span>
<span id="3544">3544</span>
<span id="3545">3545</span>
<span id="3546">3546</span>
<span id="3547">3547</span>
<span id="3548">3548</span>
<span id="3549">3549</span>
<span id="3550">3550</span>
<span id="3551">3551</span>
<span id="3552">3552</span>
<span id="3553">3553</span>
<span id="3554">3554</span>
<span id="3555">3555</span>
<span id="3556">3556</span>
<span id="3557">3557</span>
<span id="3558">3558</span>
<span id="3559">3559</span>
<span id="3560">3560</span>
<span id="3561">3561</span>
<span id="3562">3562</span>
<span id="3563">3563</span>
<span id="3564">3564</span>
<span id="3565">3565</span>
<span id="3566">3566</span>
<span id="3567">3567</span>
<span id="3568">3568</span>
<span id="3569">3569</span>
<span id="3570">3570</span>
<span id="3571">3571</span>
<span id="3572">3572</span>
<span id="3573">3573</span>
<span id="3574">3574</span>
<span id="3575">3575</span>
<span id="3576">3576</span>
<span id="3577">3577</span>
<span id="3578">3578</span>
<span id="3579">3579</span>
<span id="3580">3580</span>
<span id="3581">3581</span>
<span id="3582">3582</span>
<span id="3583">3583</span>
<span id="3584">3584</span>
<span id="3585">3585</span>
<span id="3586">3586</span>
<span id="3587">3587</span>
<span id="3588">3588</span>
<span id="3589">3589</span>
<span id="3590">3590</span>
<span id="3591">3591</span>
<span id="3592">3592</span>
<span id="3593">3593</span>
<span id="3594">3594</span>
<span id="3595">3595</span>
<span id="3596">3596</span>
<span id="3597">3597</span>
<span id="3598">3598</span>
<span id="3599">3599</span>
<span id="3600">3600</span>
<span id="3601">3601</span>
<span id="3602">3602</span>
<span id="3603">3603</span>
<span id="3604">3604</span>
<span id="3605">3605</span>
<span id="3606">3606</span>
<span id="3607">3607</span>
<span id="3608">3608</span>
<span id="3609">3609</span>
<span id="3610">3610</span>
<span id="3611">3611</span>
<span id="3612">3612</span>
<span id="3613">3613</span>
<span id="3614">3614</span>
<span id="3615">3615</span>
<span id="3616">3616</span>
<span id="3617">3617</span>
<span id="3618">3618</span>
<span id="3619">3619</span>
<span id="3620">3620</span>
<span id="3621">3621</span>
<span id="3622">3622</span>
<span id="3623">3623</span>
<span id="3624">3624</span>
<span id="3625">3625</span>
<span id="3626">3626</span>
<span id="3627">3627</span>
<span id="3628">3628</span>
<span id="3629">3629</span>
<span id="3630">3630</span>
<span id="3631">3631</span>
<span id="3632">3632</span>
<span id="3633">3633</span>
<span id="3634">3634</span>
<span id="3635">3635</span>
<span id="3636">3636</span>
<span id="3637">3637</span>
<span id="3638">3638</span>
<span id="3639">3639</span>
<span id="3640">3640</span>
<span id="3641">3641</span>
<span id="3642">3642</span>
<span id="3643">3643</span>
<span id="3644">3644</span>
<span id="3645">3645</span>
<span id="3646">3646</span>
<span id="3647">3647</span>
<span id="3648">3648</span>
<span id="3649">3649</span>
<span id="3650">3650</span>
<span id="3651">3651</span>
<span id="3652">3652</span>
<span id="3653">3653</span>
<span id="3654">3654</span>
<span id="3655">3655</span>
<span id="3656">3656</span>
<span id="3657">3657</span>
<span id="3658">3658</span>
<span id="3659">3659</span>
<span id="3660">3660</span>
<span id="3661">3661</span>
<span id="3662">3662</span>
<span id="3663">3663</span>
<span id="3664">3664</span>
<span id="3665">3665</span>
<span id="3666">3666</span>
<span id="3667">3667</span>
<span id="3668">3668</span>
<span id="3669">3669</span>
<span id="3670">3670</span>
<span id="3671">3671</span>
<span id="3672">3672</span>
<span id="3673">3673</span>
<span id="3674">3674</span>
<span id="3675">3675</span>
<span id="3676">3676</span>
<span id="3677">3677</span>
<span id="3678">3678</span>
<span id="3679">3679</span>
<span id="3680">3680</span>
<span id="3681">3681</span>
<span id="3682">3682</span>
<span id="3683">3683</span>
<span id="3684">3684</span>
<span id="3685">3685</span>
<span id="3686">3686</span>
<span id="3687">3687</span>
<span id="3688">3688</span>
<span id="3689">3689</span>
<span id="3690">3690</span>
<span id="3691">3691</span>
<span id="3692">3692</span>
<span id="3693">3693</span>
<span id="3694">3694</span>
<span id="3695">3695</span>
<span id="3696">3696</span>
<span id="3697">3697</span>
<span id="3698">3698</span>
<span id="3699">3699</span>
<span id="3700">3700</span>
<span id="3701">3701</span>
<span id="3702">3702</span>
<span id="3703">3703</span>
<span id="3704">3704</span>
<span id="3705">3705</span>
<span id="3706">3706</span>
<span id="3707">3707</span>
<span id="3708">3708</span>
<span id="3709">3709</span>
<span id="3710">3710</span>
<span id="3711">3711</span>
<span id="3712">3712</span>
<span id="3713">3713</span>
<span id="3714">3714</span>
<span id="3715">3715</span>
<span id="3716">3716</span>
<span id="3717">3717</span>
<span id="3718">3718</span>
<span id="3719">3719</span>
<span id="3720">3720</span>
<span id="3721">3721</span>
<span id="3722">3722</span>
<span id="3723">3723</span>
<span id="3724">3724</span>
<span id="3725">3725</span>
<span id="3726">3726</span>
<span id="3727">3727</span>
<span id="3728">3728</span>
<span id="3729">3729</span>
<span id="3730">3730</span>
<span id="3731">3731</span>
<span id="3732">3732</span>
<span id="3733">3733</span>
<span id="3734">3734</span>
<span id="3735">3735</span>
<span id="3736">3736</span>
<span id="3737">3737</span>
<span id="3738">3738</span>
<span id="3739">3739</span>
<span id="3740">3740</span>
<span id="3741">3741</span>
<span id="3742">3742</span>
<span id="3743">3743</span>
<span id="3744">3744</span>
<span id="3745">3745</span>
<span id="3746">3746</span>
<span id="3747">3747</span>
<span id="3748">3748</span>
<span id="3749">3749</span>
<span id="3750">3750</span>
<span id="3751">3751</span>
<span id="3752">3752</span>
<span id="3753">3753</span>
<span id="3754">3754</span>
<span id="3755">3755</span>
<span id="3756">3756</span>
<span id="3757">3757</span>
<span id="3758">3758</span>
<span id="3759">3759</span>
<span id="3760">3760</span>
<span id="3761">3761</span>
<span id="3762">3762</span>
<span id="3763">3763</span>
<span id="3764">3764</span>
<span id="3765">3765</span>
<span id="3766">3766</span>
<span id="3767">3767</span>
<span id="3768">3768</span>
<span id="3769">3769</span>
<span id="3770">3770</span>
<span id="3771">3771</span>
<span id="3772">3772</span>
<span id="3773">3773</span>
<span id="3774">3774</span>
<span id="3775">3775</span>
<span id="3776">3776</span>
<span id="3777">3777</span>
<span id="3778">3778</span>
<span id="3779">3779</span>
<span id="3780">3780</span>
<span id="3781">3781</span>
<span id="3782">3782</span>
<span id="3783">3783</span>
<span id="3784">3784</span>
</pre><pre class="rust"><code><span class="attribute">#![warn(missing_docs)]
#![crate_name=<span class="string">&quot;itertools&quot;</span>]
#![cfg_attr(not(feature = <span class="string">&quot;use_std&quot;</span>), no_std)]
</span><span class="doccomment">//! Extra iterator adaptors, functions and macros.
//!
//! To extend [`Iterator`] with methods in this crate, import
//! the [`Itertools`] trait:
//!
//! ```
//! use itertools::Itertools;
//! ```
//!
//! Now, new methods like [`interleave`](Itertools::interleave)
//! are available on all iterators:
//!
//! ```
//! use itertools::Itertools;
//!
//! let it = (1..3).interleave(vec![-1, -2]);
//! itertools::assert_equal(it, vec![1, -1, 2, -2]);
//! ```
//!
//! Most iterator methods are also provided as functions (with the benefit
//! that they convert parameters using [`IntoIterator`]):
//!
//! ```
//! use itertools::interleave;
//!
//! for elt in interleave(&amp;[1, 2, 3], &amp;[2, 3, 4]) {
//! /* loop body */
//! }
//! ```
//!
//! ## Crate Features
//!
//! - `use_std`
//! - Enabled by default.
//! - Disable to compile itertools using `#![no_std]`. This disables
//! any items that depend on collections (like `group_by`, `unique`,
//! `kmerge`, `join` and many more).
//!
//! ## Rust Version
//!
//! This version of itertools requires Rust 1.32 or later.
</span><span class="attribute">#![doc(html_root_url=<span class="string">&quot;https://docs.rs/itertools/0.8/&quot;</span>)]
#[cfg(not(feature = <span class="string">&quot;use_std&quot;</span>))]
</span><span class="kw">extern crate </span>core <span class="kw">as </span>std;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">extern crate </span>alloc;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">use </span>alloc::{
string::String,
vec::Vec,
};
<span class="kw">pub use </span>either::Either;
<span class="kw">use </span>core::borrow::Borrow;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">use </span>std::collections::HashMap;
<span class="kw">use </span>std::iter::{IntoIterator, once};
<span class="kw">use </span>std::cmp::Ordering;
<span class="kw">use </span>std::fmt;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">use </span>std::collections::HashSet;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">use </span>std::hash::Hash;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">use </span>std::fmt::Write;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">type </span>VecIntoIter&lt;T&gt; = alloc::vec::IntoIter&lt;T&gt;;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">use </span>std::iter::FromIterator;
<span class="attribute">#[macro_use]
</span><span class="kw">mod </span>impl_macros;
<span class="comment">// for compatibility with no std and macros
</span><span class="attribute">#[doc(hidden)]
</span><span class="kw">pub use </span>std::iter <span class="kw">as </span>__std_iter;
<span class="doccomment">/// The concrete iterator types.
</span><span class="kw">pub mod </span>structs {
<span class="kw">pub use </span><span class="kw">crate</span>::adaptors::{
Dedup,
DedupBy,
DedupWithCount,
DedupByWithCount,
Interleave,
InterleaveShortest,
FilterMapOk,
FilterOk,
Product,
PutBack,
Batching,
MapInto,
MapOk,
Merge,
MergeBy,
TakeWhileRef,
WhileSome,
Coalesce,
TupleCombinations,
Positions,
Update,
};
<span class="attribute">#[allow(deprecated)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::adaptors::{MapResults, Step};
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::adaptors::MultiProduct;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::combinations::Combinations;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::combinations_with_replacement::CombinationsWithReplacement;
<span class="kw">pub use </span><span class="kw">crate</span>::cons_tuples_impl::ConsTuples;
<span class="kw">pub use </span><span class="kw">crate</span>::exactly_one_err::ExactlyOneError;
<span class="kw">pub use </span><span class="kw">crate</span>::format::{Format, FormatWith};
<span class="kw">pub use </span><span class="kw">crate</span>::flatten_ok::FlattenOk;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::grouping_map::{GroupingMap, GroupingMapBy};
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::groupbylazy::{IntoChunks, Chunk, Chunks, GroupBy, Group, Groups};
<span class="kw">pub use </span><span class="kw">crate</span>::intersperse::{Intersperse, IntersperseWith};
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::kmerge_impl::{KMerge, KMergeBy};
<span class="kw">pub use </span><span class="kw">crate</span>::merge_join::MergeJoinBy;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::multipeek_impl::MultiPeek;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::peek_nth::PeekNth;
<span class="kw">pub use </span><span class="kw">crate</span>::pad_tail::PadUsing;
<span class="kw">pub use </span><span class="kw">crate</span>::peeking_take_while::PeekingTakeWhile;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::permutations::Permutations;
<span class="kw">pub use </span><span class="kw">crate</span>::process_results_impl::ProcessResults;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::powerset::Powerset;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::put_back_n_impl::PutBackN;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::rciter_impl::RcIter;
<span class="kw">pub use </span><span class="kw">crate</span>::repeatn::RepeatN;
<span class="attribute">#[allow(deprecated)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::sources::{RepeatCall, Unfold, Iterate};
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::tee::Tee;
<span class="kw">pub use </span><span class="kw">crate</span>::tuple_impl::{TupleBuffer, TupleWindows, CircularTupleWindows, Tuples};
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::duplicates_impl::{Duplicates, DuplicatesBy};
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::unique_impl::{Unique, UniqueBy};
<span class="kw">pub use </span><span class="kw">crate</span>::with_position::WithPosition;
<span class="kw">pub use </span><span class="kw">crate</span>::zip_eq_impl::ZipEq;
<span class="kw">pub use </span><span class="kw">crate</span>::zip_longest::ZipLongest;
<span class="kw">pub use </span><span class="kw">crate</span>::ziptuple::Zip;
}
<span class="doccomment">/// Traits helpful for using certain `Itertools` methods in generic contexts.
</span><span class="kw">pub mod </span>traits {
<span class="kw">pub use </span><span class="kw">crate</span>::tuple_impl::HomogeneousTuple;
}
<span class="attribute">#[allow(deprecated)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::structs::<span class="kw-2">*</span>;
<span class="kw">pub use </span><span class="kw">crate</span>::concat_impl::concat;
<span class="kw">pub use </span><span class="kw">crate</span>::cons_tuples_impl::cons_tuples;
<span class="kw">pub use </span><span class="kw">crate</span>::diff::diff_with;
<span class="kw">pub use </span><span class="kw">crate</span>::diff::Diff;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::kmerge_impl::{kmerge_by};
<span class="kw">pub use </span><span class="kw">crate</span>::minmax::MinMaxResult;
<span class="kw">pub use </span><span class="kw">crate</span>::peeking_take_while::PeekingNext;
<span class="kw">pub use </span><span class="kw">crate</span>::process_results_impl::process_results;
<span class="kw">pub use </span><span class="kw">crate</span>::repeatn::repeat_n;
<span class="attribute">#[allow(deprecated)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::sources::{repeat_call, unfold, iterate};
<span class="kw">pub use </span><span class="kw">crate</span>::with_position::Position;
<span class="kw">pub use </span><span class="kw">crate</span>::unziptuple::{multiunzip, MultiUnzip};
<span class="kw">pub use </span><span class="kw">crate</span>::ziptuple::multizip;
<span class="kw">mod </span>adaptors;
<span class="kw">mod </span>either_or_both;
<span class="kw">pub use </span><span class="kw">crate</span>::either_or_both::EitherOrBoth;
<span class="attribute">#[doc(hidden)]
</span><span class="kw">pub mod </span>free;
<span class="attribute">#[doc(inline)]
</span><span class="kw">pub use </span><span class="kw">crate</span>::free::<span class="kw-2">*</span>;
<span class="kw">mod </span>concat_impl;
<span class="kw">mod </span>cons_tuples_impl;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>combinations;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>combinations_with_replacement;
<span class="kw">mod </span>exactly_one_err;
<span class="kw">mod </span>diff;
<span class="kw">mod </span>flatten_ok;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">mod </span>extrema_set;
<span class="kw">mod </span>format;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">mod </span>grouping_map;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>group_map;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>groupbylazy;
<span class="kw">mod </span>intersperse;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>k_smallest;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>kmerge_impl;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>lazy_buffer;
<span class="kw">mod </span>merge_join;
<span class="kw">mod </span>minmax;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>multipeek_impl;
<span class="kw">mod </span>pad_tail;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>peek_nth;
<span class="kw">mod </span>peeking_take_while;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>permutations;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>powerset;
<span class="kw">mod </span>process_results_impl;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>put_back_n_impl;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>rciter_impl;
<span class="kw">mod </span>repeatn;
<span class="kw">mod </span>size_hint;
<span class="kw">mod </span>sources;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">mod </span>tee;
<span class="kw">mod </span>tuple_impl;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">mod </span>duplicates_impl;
<span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">mod </span>unique_impl;
<span class="kw">mod </span>unziptuple;
<span class="kw">mod </span>with_position;
<span class="kw">mod </span>zip_eq_impl;
<span class="kw">mod </span>zip_longest;
<span class="kw">mod </span>ziptuple;
<span class="attribute">#[macro_export]
</span><span class="doccomment">/// Create an iterator over the “cartesian product” of iterators.
///
/// Iterator element type is like `(A, B, ..., E)` if formed
/// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc.
///
/// ```
/// # use itertools::iproduct;
/// #
/// # fn main() {
/// // Iterate over the coordinates of a 4 x 4 x 4 grid
/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3)
/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) {
/// // ..
/// }
/// # }
/// ```
</span><span class="macro">macro_rules! </span>iproduct {
(@flatten <span class="macro-nonterminal">$I</span>:expr,) =&gt; (
<span class="macro-nonterminal">$I
</span>);
(@flatten <span class="macro-nonterminal">$I</span>:expr, <span class="macro-nonterminal">$J</span>:expr, $(<span class="macro-nonterminal">$K</span>:expr,)<span class="kw-2">*</span>) =&gt; (
<span class="macro-nonterminal">$</span><span class="macro">crate::iproduct!</span>(@<span class="macro-nonterminal">flatten $crate::cons_tuples</span>(<span class="macro-nonterminal">$</span><span class="macro">crate::iproduct!</span>(<span class="macro-nonterminal">$I</span>, <span class="macro-nonterminal">$J</span>)), $(<span class="macro-nonterminal">$K</span>,)<span class="kw-2">*</span>)
);
(<span class="macro-nonterminal">$I</span>:expr) =&gt; (
<span class="macro-nonterminal">$crate::__std_iter::IntoIterator::into_iter</span>(<span class="macro-nonterminal">$I</span>)
);
(<span class="macro-nonterminal">$I</span>:expr, <span class="macro-nonterminal">$J</span>:expr) =&gt; (
<span class="macro-nonterminal">$crate::Itertools::cartesian_product</span>(<span class="macro-nonterminal">$</span><span class="macro">crate::iproduct!</span>(<span class="macro-nonterminal">$I</span>), <span class="macro-nonterminal">$</span><span class="macro">crate::iproduct!</span>(<span class="macro-nonterminal">$J</span>))
);
(<span class="macro-nonterminal">$I</span>:expr, <span class="macro-nonterminal">$J</span>:expr, $(<span class="macro-nonterminal">$K</span>:expr),+) =&gt; (
<span class="macro-nonterminal">$</span><span class="macro">crate::iproduct!</span>(@<span class="macro-nonterminal">flatten $</span><span class="macro">crate::iproduct!</span>(<span class="macro-nonterminal">$I</span>, <span class="macro-nonterminal">$J</span>), $(<span class="macro-nonterminal">$K</span>,)+)
);
}
<span class="attribute">#[macro_export]
</span><span class="doccomment">/// Create an iterator running multiple iterators in lockstep.
///
/// The `izip!` iterator yields elements until any subiterator
/// returns `None`.
///
/// This is a version of the standard ``.zip()`` that&#39;s supporting more than
/// two iterators. The iterator element type is a tuple with one element
/// from each of the input iterators. Just like ``.zip()``, the iteration stops
/// when the shortest of the inputs reaches its end.
///
/// **Note:** The result of this macro is in the general case an iterator
/// composed of repeated `.zip()` and a `.map()`; it has an anonymous type.
/// The special cases of one and two arguments produce the equivalent of
/// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively.
///
/// Prefer this macro `izip!()` over [`multizip`] for the performance benefits
/// of using the standard library `.zip()`.
///
/// ```
/// # use itertools::izip;
/// #
/// # fn main() {
///
/// // iterate over three sequences side-by-side
/// let mut results = [0, 0, 0, 0];
/// let inputs = [3, 7, 9, 6];
///
/// for (r, index, input) in izip!(&amp;mut results, 0..10, &amp;inputs) {
/// *r = index * 10 + input;
/// }
///
/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
/// # }
/// ```
</span><span class="macro">macro_rules! </span>izip {
<span class="comment">// @closure creates a tuple-flattening closure for .map() call. usage:
// @closure partial_pattern =&gt; partial_tuple , rest , of , iterators
// eg. izip!( @closure ((a, b), c) =&gt; (a, b, c) , dd , ee )
</span>( @closure <span class="macro-nonterminal">$p</span>:pat =&gt; <span class="macro-nonterminal">$tup</span>:expr ) =&gt; {
|<span class="macro-nonterminal">$p</span>| <span class="macro-nonterminal">$tup
</span>};
<span class="comment">// The &quot;b&quot; identifier is a different identifier on each recursion level thanks to hygiene.
</span>( @closure <span class="macro-nonterminal">$p</span>:pat =&gt; ( $(<span class="macro-nonterminal">$tup</span>:tt)* ) , <span class="macro-nonterminal">$_iter</span>:expr $( , <span class="macro-nonterminal">$tail</span>:expr )* ) =&gt; {
<span class="macro-nonterminal">$</span><span class="macro">crate::izip!</span>(@<span class="macro-nonterminal">closure </span>(<span class="macro-nonterminal">$p</span>, b) =&gt; ( $(<span class="macro-nonterminal">$tup</span>)<span class="kw-2">*</span>, b ) $( , <span class="macro-nonterminal">$tail </span>)<span class="kw-2">*</span>)
};
<span class="comment">// unary
</span>(<span class="macro-nonterminal">$first</span>:expr $(,)<span class="kw-2">*</span>) =&gt; {
<span class="macro-nonterminal">$crate::__std_iter::IntoIterator::into_iter</span>(<span class="macro-nonterminal">$first</span>)
};
<span class="comment">// binary
</span>(<span class="macro-nonterminal">$first</span>:expr, <span class="macro-nonterminal">$second</span>:expr $(,)<span class="kw-2">*</span>) =&gt; {
<span class="macro-nonterminal">$</span><span class="macro">crate::izip!</span>(<span class="macro-nonterminal">$first</span>)
.zip(<span class="macro-nonterminal">$second</span>)
};
<span class="comment">// n-ary where n &gt; 2
</span>( <span class="macro-nonterminal">$first</span>:expr $( , <span class="macro-nonterminal">$rest</span>:expr )* $(,)* ) =&gt; {
<span class="macro-nonterminal">$</span><span class="macro">crate::izip!</span>(<span class="macro-nonterminal">$first</span>)
$(
.zip(<span class="macro-nonterminal">$rest</span>)
)*
.map(
<span class="macro-nonterminal">$</span><span class="macro">crate::izip!</span>(@<span class="macro-nonterminal">closure </span>a =&gt; (a) $( , <span class="macro-nonterminal">$rest </span>)<span class="kw-2">*</span>)
)
};
}
<span class="attribute">#[macro_export]
</span><span class="doccomment">/// [Chain][`chain`] zero or more iterators together into one sequence.
///
/// The comma-separated arguments must implement [`IntoIterator`].
/// The final argument may be followed by a trailing comma.
///
/// [`chain`]: Iterator::chain
///
/// # Examples
///
/// Empty invocations of `chain!` expand to an invocation of [`std::iter::empty`]:
/// ```
/// use std::iter;
/// use itertools::chain;
///
/// let _: iter::Empty&lt;()&gt; = chain!();
/// let _: iter::Empty&lt;i8&gt; = chain!();
/// ```
///
/// Invocations of `chain!` with one argument expand to [`arg.into_iter()`](IntoIterator):
/// ```
/// use std::{ops::Range, slice};
/// use itertools::chain;
/// let _: &lt;Range&lt;_&gt; as IntoIterator&gt;::IntoIter = chain!((2..6),); // trailing comma optional!
/// let _: &lt;&amp;[_] as IntoIterator&gt;::IntoIter = chain!(&amp;[2, 3, 4]);
/// ```
///
/// Invocations of `chain!` with multiple arguments [`.into_iter()`](IntoIterator) each
/// argument, and then [`chain`] them together:
/// ```
/// use std::{iter::*, ops::Range, slice};
/// use itertools::{assert_equal, chain};
///
/// // e.g., this:
/// let with_macro: Chain&lt;Chain&lt;Once&lt;_&gt;, Take&lt;Repeat&lt;_&gt;&gt;&gt;, slice::Iter&lt;_&gt;&gt; =
/// chain![once(&amp;0), repeat(&amp;1).take(2), &amp;[2, 3, 5],];
///
/// // ...is equivalent to this:
/// let with_method: Chain&lt;Chain&lt;Once&lt;_&gt;, Take&lt;Repeat&lt;_&gt;&gt;&gt;, slice::Iter&lt;_&gt;&gt; =
/// once(&amp;0)
/// .chain(repeat(&amp;1).take(2))
/// .chain(&amp;[2, 3, 5]);
///
/// assert_equal(with_macro, with_method);
/// ```
</span><span class="macro">macro_rules! </span>chain {
() =&gt; {
core::iter::empty()
};
(<span class="macro-nonterminal">$first</span>:expr $(, <span class="macro-nonterminal">$rest</span>:expr )* $(,)<span class="question-mark">?</span>) =&gt; {
{
<span class="kw">let </span>iter = core::iter::IntoIterator::into_iter(<span class="macro-nonterminal">$first</span>);
$(
<span class="kw">let </span>iter =
core::iter::Iterator::chain(
iter,
core::iter::IntoIterator::into_iter(<span class="macro-nonterminal">$rest</span>));
)*
iter
}
};
}
<span class="doccomment">/// An [`Iterator`] blanket implementation that provides extra adaptors and
/// methods.
///
/// This trait defines a number of methods. They are divided into two groups:
///
/// * *Adaptors* take an iterator and parameter as input, and return
/// a new iterator value. These are listed first in the trait. An example
/// of an adaptor is [`.interleave()`](Itertools::interleave)
///
/// * *Regular methods* are those that don&#39;t return iterators and instead
/// return a regular value of some other kind.
/// [`.next_tuple()`](Itertools::next_tuple) is an example and the first regular
/// method in the list.
</span><span class="kw">pub trait </span>Itertools : Iterator {
<span class="comment">// adaptors
</span><span class="doccomment">/// Alternate elements from two iterators until both have run out.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..7).interleave(vec![-1, -2]);
/// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]);
/// ```
</span><span class="kw">fn </span>interleave&lt;J&gt;(<span class="self">self</span>, other: J) -&gt; Interleave&lt;<span class="self">Self</span>, J::IntoIter&gt;
<span class="kw">where </span>J: IntoIterator&lt;Item = <span class="self">Self</span>::Item&gt;,
<span class="self">Self</span>: Sized
{
interleave(<span class="self">self</span>, other)
}
<span class="doccomment">/// Alternate elements from two iterators until at least one of them has run
/// out.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..7).interleave_shortest(vec![-1, -2]);
/// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]);
/// ```
</span><span class="kw">fn </span>interleave_shortest&lt;J&gt;(<span class="self">self</span>, other: J) -&gt; InterleaveShortest&lt;<span class="self">Self</span>, J::IntoIter&gt;
<span class="kw">where </span>J: IntoIterator&lt;Item = <span class="self">Self</span>::Item&gt;,
<span class="self">Self</span>: Sized
{
adaptors::interleave_shortest(<span class="self">self</span>, other.into_iter())
}
<span class="doccomment">/// An iterator adaptor to insert a particular value
/// between each element of the adapted iterator.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]);
/// ```
</span><span class="kw">fn </span>intersperse(<span class="self">self</span>, element: <span class="self">Self</span>::Item) -&gt; Intersperse&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Clone
{
intersperse::intersperse(<span class="self">self</span>, element)
}
<span class="doccomment">/// An iterator adaptor to insert a particular value created by a function
/// between each element of the adapted iterator.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let mut i = 10;
/// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]);
/// assert_eq!(i, 8);
/// ```
</span><span class="kw">fn </span>intersperse_with&lt;F&gt;(<span class="self">self</span>, element: F) -&gt; IntersperseWith&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut() -&gt; <span class="self">Self</span>::Item
{
intersperse::intersperse_with(<span class="self">self</span>, element)
}
<span class="doccomment">/// Create an iterator which iterates over both this and the specified
/// iterator simultaneously, yielding pairs of two optional elements.
///
/// This iterator is *fused*.
///
/// As long as neither input iterator is exhausted yet, it yields two values
/// via `EitherOrBoth::Both`.
///
/// When the parameter iterator is exhausted, it only yields a value from the
/// `self` iterator via `EitherOrBoth::Left`.
///
/// When the `self` iterator is exhausted, it only yields a value from the
/// parameter iterator via `EitherOrBoth::Right`.
///
/// When both iterators return `None`, all further invocations of `.next()`
/// will return `None`.
///
/// Iterator element type is
/// [`EitherOrBoth&lt;Self::Item, J::Item&gt;`](EitherOrBoth).
///
/// ```rust
/// use itertools::EitherOrBoth::{Both, Right};
/// use itertools::Itertools;
/// let it = (0..1).zip_longest(1..3);
/// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]);
/// ```
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>zip_longest&lt;J&gt;(<span class="self">self</span>, other: J) -&gt; ZipLongest&lt;<span class="self">Self</span>, J::IntoIter&gt;
<span class="kw">where </span>J: IntoIterator,
<span class="self">Self</span>: Sized
{
zip_longest::zip_longest(<span class="self">self</span>, other.into_iter())
}
<span class="doccomment">/// Create an iterator which iterates over both this and the specified
/// iterator simultaneously, yielding pairs of elements.
///
/// **Panics** if the iterators reach an end and they are not of equal
/// lengths.
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>zip_eq&lt;J&gt;(<span class="self">self</span>, other: J) -&gt; ZipEq&lt;<span class="self">Self</span>, J::IntoIter&gt;
<span class="kw">where </span>J: IntoIterator,
<span class="self">Self</span>: Sized
{
zip_eq(<span class="self">self</span>, other)
}
<span class="doccomment">/// A “meta iterator adaptor”. Its closure receives a reference to the
/// iterator and may pick off as many elements as it likes, to produce the
/// next iterator element.
///
/// Iterator element type is `B`.
///
/// ```
/// use itertools::Itertools;
///
/// // An adaptor that gathers elements in pairs
/// let pit = (0..4).batching(|it| {
/// match it.next() {
/// None =&gt; None,
/// Some(x) =&gt; match it.next() {
/// None =&gt; None,
/// Some(y) =&gt; Some((x, y)),
/// }
/// }
/// });
///
/// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]);
/// ```
///
</span><span class="kw">fn </span>batching&lt;B, F&gt;(<span class="self">self</span>, f: F) -&gt; Batching&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span>F: FnMut(<span class="kw-2">&amp;mut </span><span class="self">Self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;B&gt;,
<span class="self">Self</span>: Sized
{
adaptors::batching(<span class="self">self</span>, f)
}
<span class="doccomment">/// Return an *iterable* that can group iterator elements.
/// Consecutive elements that map to the same key (“runs”), are assigned
/// to the same group.
///
/// `GroupBy` is the storage for the lazy grouping operation.
///
/// If the groups are consumed in order, or if each group&#39;s iterator is
/// dropped without keeping it around, then `GroupBy` uses no
/// allocations. It needs allocations only if several group iterators
/// are alive at the same time.
///
/// This type implements [`IntoIterator`] (it is **not** an iterator
/// itself), because the group iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// Iterator element type is `(K, Group)`: the group&#39;s key and the
/// group iterator.
///
/// ```
/// use itertools::Itertools;
///
/// // group data into runs of larger than zero or not.
/// let data = vec![1, 3, -2, -2, 1, 0, 1, 2];
/// // groups: |----&gt;|------&gt;|---------&gt;|
///
/// // Note: The `&amp;` is significant here, `GroupBy` is iterable
/// // only by reference. You can also call `.into_iter()` explicitly.
/// let mut data_grouped = Vec::new();
/// for (key, group) in &amp;data.into_iter().group_by(|elt| *elt &gt;= 0) {
/// data_grouped.push((key, group.collect()));
/// }
/// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>group_by&lt;K, F&gt;(<span class="self">self</span>, key: F) -&gt; GroupBy&lt;K, <span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K,
K: PartialEq,
{
groupbylazy::new(<span class="self">self</span>, key)
}
<span class="doccomment">/// Return an *iterable* that can chunk the iterator.
///
/// Yield subiterators (chunks) that each yield a fixed number elements,
/// determined by `size`. The last chunk will be shorter if there aren&#39;t
/// enough elements.
///
/// `IntoChunks` is based on `GroupBy`: it is iterable (implements
/// `IntoIterator`, **not** `Iterator`), and it only buffers if several
/// chunk iterators are alive at the same time.
///
/// Iterator element type is `Chunk`, each chunk&#39;s iterator.
///
/// **Panics** if `size` is 0.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1, 1, 2, -2, 6, 0, 3, 1];
/// //chunk size=3 |-------&gt;|--------&gt;|---&gt;|
///
/// // Note: The `&amp;` is significant here, `IntoChunks` is iterable
/// // only by reference. You can also call `.into_iter()` explicitly.
/// for chunk in &amp;data.into_iter().chunks(3) {
/// // Check that the sum of each chunk is 4.
/// assert_eq!(4, chunk.sum());
/// }
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>chunks(<span class="self">self</span>, size: usize) -&gt; IntoChunks&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
{
<span class="macro">assert!</span>(size != <span class="number">0</span>);
groupbylazy::new_chunks(<span class="self">self</span>, size)
}
<span class="doccomment">/// Return an iterator over all contiguous windows producing tuples of
/// a specific size (up to 12).
///
/// `tuple_windows` clones the iterator elements so that they can be
/// part of successive windows, this makes it most suited for iterators
/// of references and other values that are cheap to copy.
///
/// ```
/// use itertools::Itertools;
/// let mut v = Vec::new();
///
/// // pairwise iteration
/// for (a, b) in (1..5).tuple_windows() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]);
///
/// let mut it = (1..5).tuple_windows();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((2, 3, 4)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..5).tuple_windows::&lt;(_, _, _)&gt;();
/// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
///
/// // you can also specify the complete type
/// use itertools::TupleWindows;
/// use std::ops::Range;
///
/// let it: TupleWindows&lt;Range&lt;u32&gt;, (u32, u32, u32)&gt; = (1..5).tuple_windows();
/// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]);
/// ```
</span><span class="kw">fn </span>tuple_windows&lt;T&gt;(<span class="self">self</span>) -&gt; TupleWindows&lt;<span class="self">Self</span>, T&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized + Iterator&lt;Item = T::Item&gt;,
T: traits::HomogeneousTuple,
T::Item: Clone
{
tuple_impl::tuple_windows(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator over all windows, wrapping back to the first
/// elements when the window would otherwise exceed the length of the
/// iterator, producing tuples of a specific size (up to 12).
///
/// `circular_tuple_windows` clones the iterator elements so that they can be
/// part of successive windows, this makes it most suited for iterators
/// of references and other values that are cheap to copy.
///
/// ```
/// use itertools::Itertools;
/// let mut v = Vec::new();
/// for (a, b) in (1..5).circular_tuple_windows() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]);
///
/// let mut it = (1..5).circular_tuple_windows();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((2, 3, 4)), it.next());
/// assert_eq!(Some((3, 4, 1)), it.next());
/// assert_eq!(Some((4, 1, 2)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..5).circular_tuple_windows::&lt;(_, _, _)&gt;();
/// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]);
/// ```
</span><span class="kw">fn </span>circular_tuple_windows&lt;T&gt;(<span class="self">self</span>) -&gt; CircularTupleWindows&lt;<span class="self">Self</span>, T&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized + Clone + Iterator&lt;Item = T::Item&gt; + ExactSizeIterator,
T: tuple_impl::TupleCollect + Clone,
T::Item: Clone
{
tuple_impl::circular_tuple_windows(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator that groups the items in tuples of a specific size
/// (up to 12).
///
/// See also the method [`.next_tuple()`](Itertools::next_tuple).
///
/// ```
/// use itertools::Itertools;
/// let mut v = Vec::new();
/// for (a, b) in (1..5).tuples() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (3, 4)]);
///
/// let mut it = (1..7).tuples();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((4, 5, 6)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..7).tuples::&lt;(_, _, _)&gt;();
/// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
///
/// // you can also specify the complete type
/// use itertools::Tuples;
/// use std::ops::Range;
///
/// let it: Tuples&lt;Range&lt;u32&gt;, (u32, u32, u32)&gt; = (1..7).tuples();
/// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]);
/// ```
///
/// See also [`Tuples::into_buffer`].
</span><span class="kw">fn </span>tuples&lt;T&gt;(<span class="self">self</span>) -&gt; Tuples&lt;<span class="self">Self</span>, T&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized + Iterator&lt;Item = T::Item&gt;,
T: traits::HomogeneousTuple
{
tuple_impl::tuples(<span class="self">self</span>)
}
<span class="doccomment">/// Split into an iterator pair that both yield all elements from
/// the original iterator.
///
/// **Note:** If the iterator is clonable, prefer using that instead
/// of using this method. Cloning is likely to be more efficient.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
/// let xs = vec![0, 1, 2, 3];
///
/// let (mut t1, t2) = xs.into_iter().tee();
/// itertools::assert_equal(t1.next(), Some(0));
/// itertools::assert_equal(t2, 0..4);
/// itertools::assert_equal(t1, 1..4);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>tee(<span class="self">self</span>) -&gt; (Tee&lt;<span class="self">Self</span>&gt;, Tee&lt;<span class="self">Self</span>&gt;)
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Clone
{
tee::new(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that steps `n` elements in the base iterator
/// for each iteration.
///
/// The iterator steps by yielding the next element from the base iterator,
/// then skipping forward `n - 1` elements.
///
/// Iterator element type is `Self::Item`.
///
/// **Panics** if the step is 0.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (0..8).step(3);
/// itertools::assert_equal(it, vec![0, 3, 6]);
/// ```
</span><span class="attribute">#[deprecated(note=<span class="string">&quot;Use std .step_by() instead&quot;</span>, since=<span class="string">&quot;0.8.0&quot;</span>)]
#[allow(deprecated)]
</span><span class="kw">fn </span>step(<span class="self">self</span>, n: usize) -&gt; Step&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized
{
adaptors::step(<span class="self">self</span>, n)
}
<span class="doccomment">/// Convert each item of the iterator using the [`Into`] trait.
///
/// ```rust
/// use itertools::Itertools;
///
/// (1i32..42i32).map_into::&lt;f64&gt;().collect_vec();
/// ```
</span><span class="kw">fn </span>map_into&lt;R&gt;(<span class="self">self</span>) -&gt; MapInto&lt;<span class="self">Self</span>, R&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Into&lt;R&gt;,
{
adaptors::map_into(<span class="self">self</span>)
}
<span class="doccomment">/// See [`.map_ok()`](Itertools::map_ok).
</span><span class="attribute">#[deprecated(note=<span class="string">&quot;Use .map_ok() instead&quot;</span>, since=<span class="string">&quot;0.10.0&quot;</span>)]
</span><span class="kw">fn </span>map_results&lt;F, T, U, E&gt;(<span class="self">self</span>, f: F) -&gt; MapOk&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item = <span class="prelude-ty">Result</span>&lt;T, E&gt;&gt; + Sized,
F: FnMut(T) -&gt; U,
{
<span class="self">self</span>.map_ok(f)
}
<span class="doccomment">/// Return an iterator adaptor that applies the provided closure
/// to every `Result::Ok` value. `Result::Err` values are
/// unchanged.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(41), Err(false), Ok(11)];
/// let it = input.into_iter().map_ok(|i| i + 1);
/// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]);
/// ```
</span><span class="kw">fn </span>map_ok&lt;F, T, U, E&gt;(<span class="self">self</span>, f: F) -&gt; MapOk&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item = <span class="prelude-ty">Result</span>&lt;T, E&gt;&gt; + Sized,
F: FnMut(T) -&gt; U,
{
adaptors::map_ok(<span class="self">self</span>, f)
}
<span class="doccomment">/// Return an iterator adaptor that filters every `Result::Ok`
/// value with the provided closure. `Result::Err` values are
/// unchanged.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(22), Err(false), Ok(11)];
/// let it = input.into_iter().filter_ok(|&amp;i| i &gt; 20);
/// itertools::assert_equal(it, vec![Ok(22), Err(false)]);
/// ```
</span><span class="kw">fn </span>filter_ok&lt;F, T, E&gt;(<span class="self">self</span>, f: F) -&gt; FilterOk&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item = <span class="prelude-ty">Result</span>&lt;T, E&gt;&gt; + Sized,
F: FnMut(<span class="kw-2">&amp;</span>T) -&gt; bool,
{
adaptors::filter_ok(<span class="self">self</span>, f)
}
<span class="doccomment">/// Return an iterator adaptor that filters and transforms every
/// `Result::Ok` value with the provided closure. `Result::Err`
/// values are unchanged.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(22), Err(false), Ok(11)];
/// let it = input.into_iter().filter_map_ok(|i| if i &gt; 20 { Some(i * 2) } else { None });
/// itertools::assert_equal(it, vec![Ok(44), Err(false)]);
/// ```
</span><span class="kw">fn </span>filter_map_ok&lt;F, T, U, E&gt;(<span class="self">self</span>, f: F) -&gt; FilterMapOk&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item = <span class="prelude-ty">Result</span>&lt;T, E&gt;&gt; + Sized,
F: FnMut(T) -&gt; <span class="prelude-ty">Option</span>&lt;U&gt;,
{
adaptors::filter_map_ok(<span class="self">self</span>, f)
}
<span class="doccomment">/// Return an iterator adaptor that flattens every `Result::Ok` value into
/// a series of `Result::Ok` values. `Result::Err` values are unchanged.
///
/// This is useful when you have some common error type for your crate and
/// need to propagate it upwards, but the `Result::Ok` case needs to be flattened.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![Ok(0..2), Err(false), Ok(2..4)];
/// let it = input.iter().cloned().flatten_ok();
/// itertools::assert_equal(it.clone(), vec![Ok(0), Ok(1), Err(false), Ok(2), Ok(3)]);
///
/// // This can also be used to propagate errors when collecting.
/// let output_result: Result&lt;Vec&lt;i32&gt;, bool&gt; = it.collect();
/// assert_eq!(output_result, Err(false));
/// ```
</span><span class="kw">fn </span>flatten_ok&lt;T, E&gt;(<span class="self">self</span>) -&gt; FlattenOk&lt;<span class="self">Self</span>, T, E&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item = <span class="prelude-ty">Result</span>&lt;T, E&gt;&gt; + Sized,
T: IntoIterator
{
flatten_ok::flatten_ok(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that merges the two base iterators in
/// ascending order. If both base iterators are sorted (ascending), the
/// result is sorted.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = (0..11).step(3);
/// let b = (0..11).step(5);
/// let it = a.merge(b);
/// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]);
/// ```
</span><span class="kw">fn </span>merge&lt;J&gt;(<span class="self">self</span>, other: J) -&gt; Merge&lt;<span class="self">Self</span>, J::IntoIter&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: PartialOrd,
J: IntoIterator&lt;Item = <span class="self">Self</span>::Item&gt;
{
merge(<span class="self">self</span>, other)
}
<span class="doccomment">/// Return an iterator adaptor that merges the two base iterators in order.
/// This is much like [`.merge()`](Itertools::merge) but allows for a custom ordering.
///
/// This can be especially useful for sequences of tuples.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = (0..).zip(&quot;bc&quot;.chars());
/// let b = (0..).zip(&quot;ad&quot;.chars());
/// let it = a.merge_by(b, |x, y| x.1 &lt;= y.1);
/// itertools::assert_equal(it, vec![(0, &#39;a&#39;), (0, &#39;b&#39;), (1, &#39;c&#39;), (1, &#39;d&#39;)]);
/// ```
</span><span class="kw">fn </span>merge_by&lt;J, F&gt;(<span class="self">self</span>, other: J, is_first: F) -&gt; MergeBy&lt;<span class="self">Self</span>, J::IntoIter, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
J: IntoIterator&lt;Item = <span class="self">Self</span>::Item&gt;,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; bool
{
adaptors::merge_by_new(<span class="self">self</span>, other.into_iter(), is_first)
}
<span class="doccomment">/// Create an iterator that merges items from both this and the specified
/// iterator in ascending order.
///
/// It chooses whether to pair elements based on the `Ordering` returned by the
/// specified compare function. At any point, inspecting the tip of the
/// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type
/// `J::Item` respectively, the resulting iterator will:
///
/// - Emit `EitherOrBoth::Left(i)` when `i &lt; j`,
/// and remove `i` from its source iterator
/// - Emit `EitherOrBoth::Right(j)` when `i &gt; j`,
/// and remove `j` from its source iterator
/// - Emit `EitherOrBoth::Both(i, j)` when `i == j`,
/// and remove both `i` and `j` from their respective source iterators
///
/// ```
/// use itertools::Itertools;
/// use itertools::EitherOrBoth::{Left, Right, Both};
///
/// let multiples_of_2 = (0..10).step(2);
/// let multiples_of_3 = (0..10).step(3);
///
/// itertools::assert_equal(
/// multiples_of_2.merge_join_by(multiples_of_3, |i, j| i.cmp(j)),
/// vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(8), Right(9)]
/// );
/// ```
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>merge_join_by&lt;J, F&gt;(<span class="self">self</span>, other: J, cmp_fn: F) -&gt; MergeJoinBy&lt;<span class="self">Self</span>, J::IntoIter, F&gt;
<span class="kw">where </span>J: IntoIterator,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span>J::Item) -&gt; std::cmp::Ordering,
<span class="self">Self</span>: Sized
{
merge_join_by(<span class="self">self</span>, other, cmp_fn)
}
<span class="doccomment">/// Return an iterator adaptor that flattens an iterator of iterators by
/// merging them in ascending order.
///
/// If all base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = (0..6).step(3);
/// let b = (1..6).step(3);
/// let c = (2..6).step(3);
/// let it = vec![a, b, c].into_iter().kmerge();
/// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>kmerge(<span class="self">self</span>) -&gt; KMerge&lt;&lt;<span class="self">Self</span>::Item <span class="kw">as </span>IntoIterator&gt;::IntoIter&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: IntoIterator,
&lt;<span class="self">Self</span>::Item <span class="kw">as </span>IntoIterator&gt;::Item: PartialOrd,
{
kmerge(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that flattens an iterator of iterators by
/// merging them according to the given closure.
///
/// The closure `first` is called with two elements *a*, *b* and should
/// return `true` if *a* is ordered before *b*.
///
/// If all base iterators are sorted according to `first`, the result is
/// sorted.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let a = vec![-1f64, 2., 3., -5., 6., -7.];
/// let b = vec![0., 2., -4.];
/// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() &lt; b.abs());
/// assert_eq!(it.next(), Some(0.));
/// assert_eq!(it.last(), Some(-7.));
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>kmerge_by&lt;F&gt;(<span class="self">self</span>, first: F)
-&gt; KMergeBy&lt;&lt;<span class="self">Self</span>::Item <span class="kw">as </span>IntoIterator&gt;::IntoIter, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: IntoIterator,
F: FnMut(<span class="kw-2">&amp;</span>&lt;<span class="self">Self</span>::Item <span class="kw">as </span>IntoIterator&gt;::Item,
<span class="kw-2">&amp;</span>&lt;<span class="self">Self</span>::Item <span class="kw">as </span>IntoIterator&gt;::Item) -&gt; bool
{
kmerge_by(<span class="self">self</span>, first)
}
<span class="doccomment">/// Return an iterator adaptor that iterates over the cartesian product of
/// the element sets of two iterators `self` and `J`.
///
/// Iterator element type is `(Self::Item, J::Item)`.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (0..2).cartesian_product(&quot;αβ&quot;.chars());
/// itertools::assert_equal(it, vec![(0, &#39;α&#39;), (0, &#39;β&#39;), (1, &#39;α&#39;), (1, &#39;β&#39;)]);
/// ```
</span><span class="kw">fn </span>cartesian_product&lt;J&gt;(<span class="self">self</span>, other: J) -&gt; Product&lt;<span class="self">Self</span>, J::IntoIter&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Clone,
J: IntoIterator,
J::IntoIter: Clone
{
adaptors::cartesian_product(<span class="self">self</span>, other.into_iter())
}
<span class="doccomment">/// Return an iterator adaptor that iterates over the cartesian product of
/// all subiterators returned by meta-iterator `self`.
///
/// All provided iterators must yield the same `Item` type. To generate
/// the product of iterators yielding multiple types, use the
/// [`iproduct`] macro instead.
///
///
/// The iterator element type is `Vec&lt;T&gt;`, where `T` is the iterator element
/// of the subiterators.
///
/// ```
/// use itertools::Itertools;
/// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2))
/// .multi_cartesian_product();
/// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5]));
/// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4]));
/// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5]));
/// assert_eq!(multi_prod.next(), None);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>multi_cartesian_product(<span class="self">self</span>) -&gt; MultiProduct&lt;&lt;<span class="self">Self</span>::Item <span class="kw">as </span>IntoIterator&gt;::IntoIter&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: IntoIterator,
&lt;<span class="self">Self</span>::Item <span class="kw">as </span>IntoIterator&gt;::IntoIter: Clone,
&lt;<span class="self">Self</span>::Item <span class="kw">as </span>IntoIterator&gt;::Item: Clone
{
adaptors::multi_cartesian_product(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that uses the passed-in closure to
/// optionally merge together consecutive elements.
///
/// The closure `f` is passed two elements, `previous` and `current` and may
/// return either (1) `Ok(combined)` to merge the two values or
/// (2) `Err((previous&#39;, current&#39;))` to indicate they can&#39;t be merged.
/// In (2), the value `previous&#39;` is emitted by the iterator.
/// Either (1) `combined` or (2) `current&#39;` becomes the previous value
/// when coalesce continues with the next pair of elements to merge. The
/// value that remains at the end is also emitted by the iterator.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// // sum same-sign runs together
/// let data = vec![-1., -2., -3., 3., 1., 0., -1.];
/// itertools::assert_equal(data.into_iter().coalesce(|x, y|
/// if (x &gt;= 0.) == (y &gt;= 0.) {
/// Ok(x + y)
/// } else {
/// Err((x, y))
/// }),
/// vec![-6., 4., -1.]);
/// ```
</span><span class="kw">fn </span>coalesce&lt;F&gt;(<span class="self">self</span>, f: F) -&gt; Coalesce&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut(<span class="self">Self</span>::Item, <span class="self">Self</span>::Item)
-&gt; <span class="prelude-ty">Result</span>&lt;<span class="self">Self</span>::Item, (<span class="self">Self</span>::Item, <span class="self">Self</span>::Item)&gt;
{
adaptors::coalesce(<span class="self">self</span>, f)
}
<span class="doccomment">/// Remove duplicates from sections of consecutive identical elements.
/// If the iterator is sorted, all elements will be unique.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1., 1., 2., 3., 3., 2., 2.];
/// itertools::assert_equal(data.into_iter().dedup(),
/// vec![1., 2., 3., 2.]);
/// ```
</span><span class="kw">fn </span>dedup(<span class="self">self</span>) -&gt; Dedup&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: PartialEq,
{
adaptors::dedup(<span class="self">self</span>)
}
<span class="doccomment">/// Remove duplicates from sections of consecutive identical elements,
/// determining equality using a comparison function.
/// If the iterator is sorted, all elements will be unique.
///
/// Iterator element type is `Self::Item`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![(0, 1.), (1, 1.), (0, 2.), (0, 3.), (1, 3.), (1, 2.), (2, 2.)];
/// itertools::assert_equal(data.into_iter().dedup_by(|x, y| x.1 == y.1),
/// vec![(0, 1.), (0, 2.), (0, 3.), (1, 2.)]);
/// ```
</span><span class="kw">fn </span>dedup_by&lt;Cmp&gt;(<span class="self">self</span>, cmp: Cmp) -&gt; DedupBy&lt;<span class="self">Self</span>, Cmp&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
Cmp: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item)-&gt;bool,
{
adaptors::dedup_by(<span class="self">self</span>, cmp)
}
<span class="doccomment">/// Remove duplicates from sections of consecutive identical elements, while keeping a count of
/// how many repeated elements were present.
/// If the iterator is sorted, all elements will be unique.
///
/// Iterator element type is `(usize, Self::Item)`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![&#39;a&#39;, &#39;a&#39;, &#39;b&#39;, &#39;c&#39;, &#39;c&#39;, &#39;b&#39;, &#39;b&#39;];
/// itertools::assert_equal(data.into_iter().dedup_with_count(),
/// vec![(2, &#39;a&#39;), (1, &#39;b&#39;), (2, &#39;c&#39;), (2, &#39;b&#39;)]);
/// ```
</span><span class="kw">fn </span>dedup_with_count(<span class="self">self</span>) -&gt; DedupWithCount&lt;<span class="self">Self</span>&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized,
{
adaptors::dedup_with_count(<span class="self">self</span>)
}
<span class="doccomment">/// Remove duplicates from sections of consecutive identical elements, while keeping a count of
/// how many repeated elements were present.
/// This will determine equality using a comparison function.
/// If the iterator is sorted, all elements will be unique.
///
/// Iterator element type is `(usize, Self::Item)`.
///
/// This iterator is *fused*.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![(0, &#39;a&#39;), (1, &#39;a&#39;), (0, &#39;b&#39;), (0, &#39;c&#39;), (1, &#39;c&#39;), (1, &#39;b&#39;), (2, &#39;b&#39;)];
/// itertools::assert_equal(data.into_iter().dedup_by_with_count(|x, y| x.1 == y.1),
/// vec![(2, (0, &#39;a&#39;)), (1, (0, &#39;b&#39;)), (2, (0, &#39;c&#39;)), (2, (1, &#39;b&#39;))]);
/// ```
</span><span class="kw">fn </span>dedup_by_with_count&lt;Cmp&gt;(<span class="self">self</span>, cmp: Cmp) -&gt; DedupByWithCount&lt;<span class="self">Self</span>, Cmp&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized,
Cmp: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; bool,
{
adaptors::dedup_by_with_count(<span class="self">self</span>, cmp)
}
<span class="doccomment">/// Return an iterator adaptor that produces elements that appear more than once during the
/// iteration. Duplicates are detected using hash and equality.
///
/// The iterator is stable, returning the duplicate items in the order in which they occur in
/// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more
/// than twice, the second item is the item retained and the rest are discarded.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![10, 20, 30, 20, 40, 10, 50];
/// itertools::assert_equal(data.into_iter().duplicates(),
/// vec![20, 10]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>duplicates(<span class="self">self</span>) -&gt; Duplicates&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Eq + Hash
{
duplicates_impl::duplicates(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that produces elements that appear more than once during the
/// iteration. Duplicates are detected using hash and equality.
///
/// Duplicates are detected by comparing the key they map to with the keying function `f` by
/// hash and equality. The keys are stored in a hash map in the iterator.
///
/// The iterator is stable, returning the duplicate items in the order in which they occur in
/// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more
/// than twice, the second item is the item retained and the rest are discarded.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![&quot;a&quot;, &quot;bb&quot;, &quot;aa&quot;, &quot;c&quot;, &quot;ccc&quot;];
/// itertools::assert_equal(data.into_iter().duplicates_by(|s| s.len()),
/// vec![&quot;aa&quot;, &quot;c&quot;]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>duplicates_by&lt;V, F&gt;(<span class="self">self</span>, f: F) -&gt; DuplicatesBy&lt;<span class="self">Self</span>, V, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
V: Eq + Hash,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; V
{
duplicates_impl::duplicates_by(<span class="self">self</span>, f)
}
<span class="doccomment">/// Return an iterator adaptor that filters out elements that have
/// already been produced once during the iteration. Duplicates
/// are detected using hash and equality.
///
/// Clones of visited elements are stored in a hash set in the
/// iterator.
///
/// The iterator is stable, returning the non-duplicate items in the order
/// in which they occur in the adapted iterator. In a set of duplicate
/// items, the first item encountered is the item retained.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![10, 20, 30, 20, 40, 10, 50];
/// itertools::assert_equal(data.into_iter().unique(),
/// vec![10, 20, 30, 40, 50]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>unique(<span class="self">self</span>) -&gt; Unique&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Clone + Eq + Hash
{
unique_impl::unique(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that filters out elements that have
/// already been produced once during the iteration.
///
/// Duplicates are detected by comparing the key they map to
/// with the keying function `f` by hash and equality.
/// The keys are stored in a hash set in the iterator.
///
/// The iterator is stable, returning the non-duplicate items in the order
/// in which they occur in the adapted iterator. In a set of duplicate
/// items, the first item encountered is the item retained.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![&quot;a&quot;, &quot;bb&quot;, &quot;aa&quot;, &quot;c&quot;, &quot;ccc&quot;];
/// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()),
/// vec![&quot;a&quot;, &quot;bb&quot;, &quot;ccc&quot;]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>unique_by&lt;V, F&gt;(<span class="self">self</span>, f: F) -&gt; UniqueBy&lt;<span class="self">Self</span>, V, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
V: Eq + Hash,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; V
{
unique_impl::unique_by(<span class="self">self</span>, f)
}
<span class="doccomment">/// Return an iterator adaptor that borrows from this iterator and
/// takes items while the closure `accept` returns `true`.
///
/// This adaptor can only be used on iterators that implement `PeekingNext`
/// like `.peekable()`, `put_back` and a few other collection iterators.
///
/// The last and rejected element (first `false`) is still available when
/// `peeking_take_while` is done.
///
///
/// See also [`.take_while_ref()`](Itertools::take_while_ref)
/// which is a similar adaptor.
</span><span class="kw">fn </span>peeking_take_while&lt;F&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, accept: F) -&gt; PeekingTakeWhile&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized + PeekingNext,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; bool,
{
peeking_take_while::peeking_take_while(<span class="self">self</span>, accept)
}
<span class="doccomment">/// Return an iterator adaptor that borrows from a `Clone`-able iterator
/// to only pick off elements while the predicate `accept` returns `true`.
///
/// It uses the `Clone` trait to restore the original iterator so that the
/// last and rejected element (first `false`) is still available when
/// `take_while_ref` is done.
///
/// ```
/// use itertools::Itertools;
///
/// let mut hexadecimals = &quot;0123456789abcdef&quot;.chars();
///
/// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric())
/// .collect::&lt;String&gt;();
/// assert_eq!(decimals, &quot;0123456789&quot;);
/// assert_eq!(hexadecimals.next(), Some(&#39;a&#39;));
///
/// ```
</span><span class="kw">fn </span>take_while_ref&lt;F&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, accept: F) -&gt; TakeWhileRef&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Clone,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; bool
{
adaptors::take_while_ref(<span class="self">self</span>, accept)
}
<span class="doccomment">/// Return an iterator adaptor that filters `Option&lt;A&gt;` iterator elements
/// and produces `A`. Stops on the first `None` encountered.
///
/// Iterator element type is `A`, the unwrapped element.
///
/// ```
/// use itertools::Itertools;
///
/// // List all hexadecimal digits
/// itertools::assert_equal(
/// (0..).map(|i| std::char::from_digit(i, 16)).while_some(),
/// &quot;0123456789abcdef&quot;.chars());
///
/// ```
</span><span class="kw">fn </span>while_some&lt;A&gt;(<span class="self">self</span>) -&gt; WhileSome&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized + Iterator&lt;Item = <span class="prelude-ty">Option</span>&lt;A&gt;&gt;
{
adaptors::while_some(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that iterates over the combinations of the
/// elements from an iterator.
///
/// Iterator element can be any homogeneous tuple of type `Self::Item` with
/// size up to 12.
///
/// ```
/// use itertools::Itertools;
///
/// let mut v = Vec::new();
/// for (a, b) in (1..5).tuple_combinations() {
/// v.push((a, b));
/// }
/// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]);
///
/// let mut it = (1..5).tuple_combinations();
/// assert_eq!(Some((1, 2, 3)), it.next());
/// assert_eq!(Some((1, 2, 4)), it.next());
/// assert_eq!(Some((1, 3, 4)), it.next());
/// assert_eq!(Some((2, 3, 4)), it.next());
/// assert_eq!(None, it.next());
///
/// // this requires a type hint
/// let it = (1..5).tuple_combinations::&lt;(_, _, _)&gt;();
/// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
///
/// // you can also specify the complete type
/// use itertools::TupleCombinations;
/// use std::ops::Range;
///
/// let it: TupleCombinations&lt;Range&lt;u32&gt;, (u32, u32, u32)&gt; = (1..5).tuple_combinations();
/// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]);
/// ```
</span><span class="kw">fn </span>tuple_combinations&lt;T&gt;(<span class="self">self</span>) -&gt; TupleCombinations&lt;<span class="self">Self</span>, T&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized + Clone,
<span class="self">Self</span>::Item: Clone,
T: adaptors::HasCombination&lt;<span class="self">Self</span>&gt;,
{
adaptors::tuple_combinations(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that iterates over the `k`-length combinations of
/// the elements from an iterator.
///
/// Iterator element type is `Vec&lt;Self::Item&gt;`. The iterator produces a new Vec per iteration,
/// and clones the iterator elements.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..5).combinations(3);
/// itertools::assert_equal(it, vec![
/// vec![1, 2, 3],
/// vec![1, 2, 4],
/// vec![1, 3, 4],
/// vec![2, 3, 4],
/// ]);
/// ```
///
/// Note: Combinations does not take into account the equality of the iterated values.
/// ```
/// use itertools::Itertools;
///
/// let it = vec![1, 2, 2].into_iter().combinations(2);
/// itertools::assert_equal(it, vec![
/// vec![1, 2], // Note: these are the same
/// vec![1, 2], // Note: these are the same
/// vec![2, 2],
/// ]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>combinations(<span class="self">self</span>, k: usize) -&gt; Combinations&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Clone
{
combinations::combinations(<span class="self">self</span>, k)
}
<span class="doccomment">/// Return an iterator that iterates over the `k`-length combinations of
/// the elements from an iterator, with replacement.
///
/// Iterator element type is `Vec&lt;Self::Item&gt;`. The iterator produces a new Vec per iteration,
/// and clones the iterator elements.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (1..4).combinations_with_replacement(2);
/// itertools::assert_equal(it, vec![
/// vec![1, 1],
/// vec![1, 2],
/// vec![1, 3],
/// vec![2, 2],
/// vec![2, 3],
/// vec![3, 3],
/// ]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>combinations_with_replacement(<span class="self">self</span>, k: usize) -&gt; CombinationsWithReplacement&lt;<span class="self">Self</span>&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Clone,
{
combinations_with_replacement::combinations_with_replacement(<span class="self">self</span>, k)
}
<span class="doccomment">/// Return an iterator adaptor that iterates over all k-permutations of the
/// elements from an iterator.
///
/// Iterator element type is `Vec&lt;Self::Item&gt;` with length `k`. The iterator
/// produces a new Vec per iteration, and clones the iterator elements.
///
/// If `k` is greater than the length of the input iterator, the resultant
/// iterator adaptor will be empty.
///
/// ```
/// use itertools::Itertools;
///
/// let perms = (5..8).permutations(2);
/// itertools::assert_equal(perms, vec![
/// vec![5, 6],
/// vec![5, 7],
/// vec![6, 5],
/// vec![6, 7],
/// vec![7, 5],
/// vec![7, 6],
/// ]);
/// ```
///
/// Note: Permutations does not take into account the equality of the iterated values.
///
/// ```
/// use itertools::Itertools;
///
/// let it = vec![2, 2].into_iter().permutations(2);
/// itertools::assert_equal(it, vec![
/// vec![2, 2], // Note: these are the same
/// vec![2, 2], // Note: these are the same
/// ]);
/// ```
///
/// Note: The source iterator is collected lazily, and will not be
/// re-iterated if the permutations adaptor is completed and re-iterated.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>permutations(<span class="self">self</span>, k: usize) -&gt; Permutations&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Clone
{
permutations::permutations(<span class="self">self</span>, k)
}
<span class="doccomment">/// Return an iterator that iterates through the powerset of the elements from an
/// iterator.
///
/// Iterator element type is `Vec&lt;Self::Item&gt;`. The iterator produces a new `Vec`
/// per iteration, and clones the iterator elements.
///
/// The powerset of a set contains all subsets including the empty set and the full
/// input set. A powerset has length _2^n_ where _n_ is the length of the input
/// set.
///
/// Each `Vec` produced by this iterator represents a subset of the elements
/// produced by the source iterator.
///
/// ```
/// use itertools::Itertools;
///
/// let sets = (1..4).powerset().collect::&lt;Vec&lt;_&gt;&gt;();
/// itertools::assert_equal(sets, vec![
/// vec![],
/// vec![1],
/// vec![2],
/// vec![3],
/// vec![1, 2],
/// vec![1, 3],
/// vec![2, 3],
/// vec![1, 2, 3],
/// ]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>powerset(<span class="self">self</span>) -&gt; Powerset&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Clone,
{
powerset::powerset(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that pads the sequence to a minimum length of
/// `min` by filling missing elements using a closure `f`.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::Itertools;
///
/// let it = (0..5).pad_using(10, |i| 2*i);
/// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]);
///
/// let it = (0..10).pad_using(5, |i| 2*i);
/// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
///
/// let it = (0..5).pad_using(10, |i| 2*i).rev();
/// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]);
/// ```
</span><span class="kw">fn </span>pad_using&lt;F&gt;(<span class="self">self</span>, min: usize, f: F) -&gt; PadUsing&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut(usize) -&gt; <span class="self">Self</span>::Item
{
pad_tail::pad_using(<span class="self">self</span>, min, f)
}
<span class="doccomment">/// Return an iterator adaptor that wraps each element in a `Position` to
/// ease special-case handling of the first or last elements.
///
/// Iterator element type is
/// [`Position&lt;Self::Item&gt;`](Position)
///
/// ```
/// use itertools::{Itertools, Position};
///
/// let it = (0..4).with_position();
/// itertools::assert_equal(it,
/// vec![Position::First(0),
/// Position::Middle(1),
/// Position::Middle(2),
/// Position::Last(3)]);
///
/// let it = (0..1).with_position();
/// itertools::assert_equal(it, vec![Position::Only(0)]);
/// ```
</span><span class="kw">fn </span>with_position(<span class="self">self</span>) -&gt; WithPosition&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
{
with_position::with_position(<span class="self">self</span>)
}
<span class="doccomment">/// Return an iterator adaptor that yields the indices of all elements
/// satisfying a predicate, counted from the start of the iterator.
///
/// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(v)).map(|(i, _)| i)`.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1, 2, 3, 3, 4, 6, 7, 9];
/// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]);
///
/// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]);
/// ```
</span><span class="kw">fn </span>positions&lt;P&gt;(<span class="self">self</span>, predicate: P) -&gt; Positions&lt;<span class="self">Self</span>, P&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
P: FnMut(<span class="self">Self</span>::Item) -&gt; bool,
{
adaptors::positions(<span class="self">self</span>, predicate)
}
<span class="doccomment">/// Return an iterator adaptor that applies a mutating function
/// to each element before yielding it.
///
/// ```
/// use itertools::Itertools;
///
/// let input = vec![vec![1], vec![3, 2, 1]];
/// let it = input.into_iter().update(|mut v| v.push(0));
/// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]);
/// ```
</span><span class="kw">fn </span>update&lt;F&gt;(<span class="self">self</span>, updater: F) -&gt; Update&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut(<span class="kw-2">&amp;mut </span><span class="self">Self</span>::Item),
{
adaptors::update(<span class="self">self</span>, updater)
}
<span class="comment">// non-adaptor methods
</span><span class="doccomment">/// Advances the iterator and returns the next items grouped in a tuple of
/// a specific size (up to 12).
///
/// If there are enough elements to be grouped in a tuple, then the tuple is
/// returned inside `Some`, otherwise `None` is returned.
///
/// ```
/// use itertools::Itertools;
///
/// let mut iter = 1..5;
///
/// assert_eq!(Some((1, 2)), iter.next_tuple());
/// ```
</span><span class="kw">fn </span>next_tuple&lt;T&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;T&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized + Iterator&lt;Item = T::Item&gt;,
T: traits::HomogeneousTuple
{
T::collect_from_iter_no_buf(<span class="self">self</span>)
}
<span class="doccomment">/// Collects all items from the iterator into a tuple of a specific size
/// (up to 12).
///
/// If the number of elements inside the iterator is **exactly** equal to
/// the tuple size, then the tuple is returned inside `Some`, otherwise
/// `None` is returned.
///
/// ```
/// use itertools::Itertools;
///
/// let iter = 1..3;
///
/// if let Some((x, y)) = iter.collect_tuple() {
/// assert_eq!((x, y), (1, 2))
/// } else {
/// panic!(&quot;Expected two elements&quot;)
/// }
/// ```
</span><span class="kw">fn </span>collect_tuple&lt;T&gt;(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;T&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized + Iterator&lt;Item = T::Item&gt;,
T: traits::HomogeneousTuple
{
<span class="kw">match </span><span class="self">self</span>.next_tuple() {
elt @ <span class="prelude-val">Some</span>(<span class="kw">_</span>) =&gt; <span class="kw">match </span><span class="self">self</span>.next() {
<span class="prelude-val">Some</span>(<span class="kw">_</span>) =&gt; <span class="prelude-val">None</span>,
<span class="prelude-val">None </span>=&gt; elt,
},
<span class="kw">_ </span>=&gt; <span class="prelude-val">None
</span>}
}
<span class="doccomment">/// Find the position and value of the first element satisfying a predicate.
///
/// The iterator is not advanced past the first element found.
///
/// ```
/// use itertools::Itertools;
///
/// let text = &quot;Hα&quot;;
/// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, &#39;α&#39;)));
/// ```
</span><span class="kw">fn </span>find_position&lt;P&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, <span class="kw-2">mut </span>pred: P) -&gt; <span class="prelude-ty">Option</span>&lt;(usize, <span class="self">Self</span>::Item)&gt;
<span class="kw">where </span>P: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; bool
{
<span class="kw">for </span>(index, elt) <span class="kw">in </span><span class="self">self</span>.enumerate() {
<span class="kw">if </span>pred(<span class="kw-2">&amp;</span>elt) {
<span class="kw">return </span><span class="prelude-val">Some</span>((index, elt));
}
}
<span class="prelude-val">None
</span>}
<span class="doccomment">/// Find the value of the first element satisfying a predicate or return the last element, if any.
///
/// The iterator is not advanced past the first element found.
///
/// ```
/// use itertools::Itertools;
///
/// let numbers = [1, 2, 3, 4];
/// assert_eq!(numbers.iter().find_or_last(|&amp;&amp;x| x &gt; 5), Some(&amp;4));
/// assert_eq!(numbers.iter().find_or_last(|&amp;&amp;x| x &gt; 2), Some(&amp;3));
/// assert_eq!(std::iter::empty::&lt;i32&gt;().find_or_last(|&amp;x| x &gt; 5), None);
/// ```
</span><span class="kw">fn </span>find_or_last&lt;P&gt;(<span class="kw-2">mut </span><span class="self">self</span>, <span class="kw-2">mut </span>predicate: P) -&gt; <span class="prelude-ty">Option</span>&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
P: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; bool,
{
<span class="kw">let </span><span class="kw-2">mut </span>prev = <span class="prelude-val">None</span>;
<span class="self">self</span>.find_map(|x| <span class="kw">if </span>predicate(<span class="kw-2">&amp;</span>x) { <span class="prelude-val">Some</span>(x) } <span class="kw">else </span>{ prev = <span class="prelude-val">Some</span>(x); <span class="prelude-val">None </span>})
.or(prev)
}
<span class="doccomment">/// Find the value of the first element satisfying a predicate or return the first element, if any.
///
/// The iterator is not advanced past the first element found.
///
/// ```
/// use itertools::Itertools;
///
/// let numbers = [1, 2, 3, 4];
/// assert_eq!(numbers.iter().find_or_first(|&amp;&amp;x| x &gt; 5), Some(&amp;1));
/// assert_eq!(numbers.iter().find_or_first(|&amp;&amp;x| x &gt; 2), Some(&amp;3));
/// assert_eq!(std::iter::empty::&lt;i32&gt;().find_or_first(|&amp;x| x &gt; 5), None);
/// ```
</span><span class="kw">fn </span>find_or_first&lt;P&gt;(<span class="kw-2">mut </span><span class="self">self</span>, <span class="kw-2">mut </span>predicate: P) -&gt; <span class="prelude-ty">Option</span>&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
P: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; bool,
{
<span class="kw">let </span>first = <span class="self">self</span>.next()<span class="question-mark">?</span>;
<span class="prelude-val">Some</span>(<span class="kw">if </span>predicate(<span class="kw-2">&amp;</span>first) {
first
} <span class="kw">else </span>{
<span class="self">self</span>.find(|x| predicate(x)).unwrap_or(first)
})
}
<span class="doccomment">/// Returns `true` if the given item is present in this iterator.
///
/// This method is short-circuiting. If the given item is present in this
/// iterator, this method will consume the iterator up-to-and-including
/// the item. If the given item is not present in this iterator, the
/// iterator will be exhausted.
///
/// ```
/// use itertools::Itertools;
///
/// #[derive(PartialEq, Debug)]
/// enum Enum { A, B, C, D, E, }
///
/// let mut iter = vec![Enum::A, Enum::B, Enum::C, Enum::D].into_iter();
///
/// // search `iter` for `B`
/// assert_eq!(iter.contains(&amp;Enum::B), true);
/// // `B` was found, so the iterator now rests at the item after `B` (i.e, `C`).
/// assert_eq!(iter.next(), Some(Enum::C));
///
/// // search `iter` for `E`
/// assert_eq!(iter.contains(&amp;Enum::E), false);
/// // `E` wasn&#39;t found, so `iter` is now exhausted
/// assert_eq!(iter.next(), None);
/// ```
</span><span class="kw">fn </span>contains&lt;Q&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, query: <span class="kw-2">&amp;</span>Q) -&gt; bool
<span class="kw">where
</span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Borrow&lt;Q&gt;,
Q: PartialEq,
{
<span class="self">self</span>.any(|x| x.borrow() == query)
}
<span class="doccomment">/// Check whether all elements compare equal.
///
/// Empty iterators are considered to have equal elements:
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5];
/// assert!(!data.iter().all_equal());
/// assert!(data[0..3].iter().all_equal());
/// assert!(data[3..5].iter().all_equal());
/// assert!(data[5..8].iter().all_equal());
///
/// let data : Option&lt;usize&gt; = None;
/// assert!(data.into_iter().all_equal());
/// ```
</span><span class="kw">fn </span>all_equal(<span class="kw-2">&amp;mut </span><span class="self">self</span>) -&gt; bool
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: PartialEq,
{
<span class="kw">match </span><span class="self">self</span>.next() {
<span class="prelude-val">None </span>=&gt; <span class="bool-val">true</span>,
<span class="prelude-val">Some</span>(a) =&gt; <span class="self">self</span>.all(|x| a == x),
}
}
<span class="doccomment">/// Check whether all elements are unique (non equal).
///
/// Empty iterators are considered to have unique elements:
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![1, 2, 3, 4, 1, 5];
/// assert!(!data.iter().all_unique());
/// assert!(data[0..4].iter().all_unique());
/// assert!(data[1..6].iter().all_unique());
///
/// let data : Option&lt;usize&gt; = None;
/// assert!(data.into_iter().all_unique());
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>all_unique(<span class="kw-2">&amp;mut </span><span class="self">self</span>) -&gt; bool
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Eq + Hash
{
<span class="kw">let </span><span class="kw-2">mut </span>used = HashSet::new();
<span class="self">self</span>.all(<span class="kw">move </span>|elt| used.insert(elt))
}
<span class="doccomment">/// Consume the first `n` elements from the iterator eagerly,
/// and return the same iterator again.
///
/// It works similarly to *.skip(* `n` *)* except it is eager and
/// preserves the iterator type.
///
/// ```
/// use itertools::Itertools;
///
/// let mut iter = &quot;αβγ&quot;.chars().dropping(2);
/// itertools::assert_equal(iter, &quot;γ&quot;.chars());
/// ```
///
/// *Fusing notes: if the iterator is exhausted by dropping,
/// the result of calling `.next()` again depends on the iterator implementation.*
</span><span class="kw">fn </span>dropping(<span class="kw-2">mut </span><span class="self">self</span>, n: usize) -&gt; <span class="self">Self
</span><span class="kw">where </span><span class="self">Self</span>: Sized
{
<span class="kw">if </span>n &gt; <span class="number">0 </span>{
<span class="self">self</span>.nth(n - <span class="number">1</span>);
}
<span class="self">self
</span>}
<span class="doccomment">/// Consume the last `n` elements from the iterator eagerly,
/// and return the same iterator again.
///
/// This is only possible on double ended iterators. `n` may be
/// larger than the number of elements.
///
/// Note: This method is eager, dropping the back elements immediately and
/// preserves the iterator type.
///
/// ```
/// use itertools::Itertools;
///
/// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1);
/// itertools::assert_equal(init, vec![0, 3, 6]);
/// ```
</span><span class="kw">fn </span>dropping_back(<span class="kw-2">mut </span><span class="self">self</span>, n: usize) -&gt; <span class="self">Self
</span><span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>: DoubleEndedIterator
{
<span class="kw">if </span>n &gt; <span class="number">0 </span>{
(<span class="kw-2">&amp;mut </span><span class="self">self</span>).rev().nth(n - <span class="number">1</span>);
}
<span class="self">self
</span>}
<span class="doccomment">/// Run the closure `f` eagerly on each element of the iterator.
///
/// Consumes the iterator until its end.
///
/// ```
/// use std::sync::mpsc::channel;
/// use itertools::Itertools;
///
/// let (tx, rx) = channel();
///
/// // use .foreach() to apply a function to each value -- sending it
/// (0..5).map(|x| x * 2 + 1).foreach(|x| { tx.send(x).unwrap(); } );
///
/// drop(tx);
///
/// itertools::assert_equal(rx.iter(), vec![1, 3, 5, 7, 9]);
/// ```
</span><span class="attribute">#[deprecated(note=<span class="string">&quot;Use .for_each() instead&quot;</span>, since=<span class="string">&quot;0.8.0&quot;</span>)]
</span><span class="kw">fn </span>foreach&lt;F&gt;(<span class="self">self</span>, f: F)
<span class="kw">where </span>F: FnMut(<span class="self">Self</span>::Item),
<span class="self">Self</span>: Sized,
{
<span class="self">self</span>.for_each(f);
}
<span class="doccomment">/// Combine all an iterator&#39;s elements into one element by using [`Extend`].
///
/// This combinator will extend the first item with each of the rest of the
/// items of the iterator. If the iterator is empty, the default value of
/// `I::Item` is returned.
///
/// ```rust
/// use itertools::Itertools;
///
/// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]];
/// assert_eq!(input.into_iter().concat(),
/// vec![1, 2, 3, 4, 5, 6]);
/// ```
</span><span class="kw">fn </span>concat(<span class="self">self</span>) -&gt; <span class="self">Self</span>::Item
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Extend&lt;&lt;&lt;<span class="self">Self </span><span class="kw">as </span>Iterator&gt;::Item <span class="kw">as </span>IntoIterator&gt;::Item&gt; + IntoIterator + Default
{
concat(<span class="self">self</span>)
}
<span class="doccomment">/// `.collect_vec()` is simply a type specialization of [`Iterator::collect`],
/// for convenience.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>collect_vec(<span class="self">self</span>) -&gt; Vec&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized
{
<span class="self">self</span>.collect()
}
<span class="doccomment">/// `.try_collect()` is more convenient way of writing
/// `.collect::&lt;Result&lt;_, _&gt;&gt;()`
///
/// # Example
///
/// ```
/// use std::{fs, io};
/// use itertools::Itertools;
///
/// fn process_dir_entries(entries: &amp;[fs::DirEntry]) {
/// // ...
/// }
///
/// fn do_stuff() -&gt; std::io::Result&lt;()&gt; {
/// let entries: Vec&lt;_&gt; = fs::read_dir(&quot;.&quot;)?.try_collect()?;
/// process_dir_entries(&amp;entries);
///
/// Ok(())
/// }
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>try_collect&lt;T, U, E&gt;(<span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;U, E&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized + Iterator&lt;Item = <span class="prelude-ty">Result</span>&lt;T, E&gt;&gt;,
<span class="prelude-ty">Result</span>&lt;U, E&gt;: FromIterator&lt;<span class="prelude-ty">Result</span>&lt;T, E&gt;&gt;,
{
<span class="self">self</span>.collect()
}
<span class="doccomment">/// Assign to each reference in `self` from the `from` iterator,
/// stopping at the shortest of the two iterators.
///
/// The `from` iterator is queried for its next element before the `self`
/// iterator, and if either is exhausted the method is done.
///
/// Return the number of elements written.
///
/// ```
/// use itertools::Itertools;
///
/// let mut xs = [0; 4];
/// xs.iter_mut().set_from(1..);
/// assert_eq!(xs, [1, 2, 3, 4]);
/// ```
</span><span class="attribute">#[inline]
</span><span class="kw">fn </span>set_from&lt;<span class="lifetime">&#39;a</span>, A: <span class="lifetime">&#39;a</span>, J&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, from: J) -&gt; usize
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item = <span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span><span class="kw-2">mut </span>A&gt;,
J: IntoIterator&lt;Item = A&gt;
{
<span class="kw">let </span><span class="kw-2">mut </span>count = <span class="number">0</span>;
<span class="kw">for </span>elt <span class="kw">in </span>from {
<span class="kw">match </span><span class="self">self</span>.next() {
<span class="prelude-val">None </span>=&gt; <span class="kw">break</span>,
<span class="prelude-val">Some</span>(ptr) =&gt; <span class="kw-2">*</span>ptr = elt,
}
count += <span class="number">1</span>;
}
count
}
<span class="doccomment">/// Combine all iterator elements into one String, separated by `sep`.
///
/// Use the `Display` implementation of each element.
///
/// ```
/// use itertools::Itertools;
///
/// assert_eq!([&quot;a&quot;, &quot;b&quot;, &quot;c&quot;].iter().join(&quot;, &quot;), &quot;a, b, c&quot;);
/// assert_eq!([1, 2, 3].iter().join(&quot;, &quot;), &quot;1, 2, 3&quot;);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>join(<span class="kw-2">&amp;mut </span><span class="self">self</span>, sep: <span class="kw-2">&amp;</span>str) -&gt; String
<span class="kw">where </span><span class="self">Self</span>::Item: std::fmt::Display
{
<span class="kw">match </span><span class="self">self</span>.next() {
<span class="prelude-val">None </span>=&gt; String::new(),
<span class="prelude-val">Some</span>(first_elt) =&gt; {
<span class="comment">// estimate lower bound of capacity needed
</span><span class="kw">let </span>(lower, <span class="kw">_</span>) = <span class="self">self</span>.size_hint();
<span class="kw">let </span><span class="kw-2">mut </span>result = String::with_capacity(sep.len() * lower);
<span class="macro">write!</span>(<span class="kw-2">&amp;mut </span>result, <span class="string">&quot;{}&quot;</span>, first_elt).unwrap();
<span class="self">self</span>.for_each(|elt| {
result.push_str(sep);
<span class="macro">write!</span>(<span class="kw-2">&amp;mut </span>result, <span class="string">&quot;{}&quot;</span>, elt).unwrap();
});
result
}
}
}
<span class="doccomment">/// Format all iterator elements, separated by `sep`.
///
/// All elements are formatted (any formatting trait)
/// with `sep` inserted between each element.
///
/// **Panics** if the formatter helper is formatted more than once.
///
/// ```
/// use itertools::Itertools;
///
/// let data = [1.1, 2.71828, -3.];
/// assert_eq!(
/// format!(&quot;{:.2}&quot;, data.iter().format(&quot;, &quot;)),
/// &quot;1.10, 2.72, -3.00&quot;);
/// ```
</span><span class="kw">fn </span>format(<span class="self">self</span>, sep: <span class="kw-2">&amp;</span>str) -&gt; Format&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
{
format::new_format_default(<span class="self">self</span>, sep)
}
<span class="doccomment">/// Format all iterator elements, separated by `sep`.
///
/// This is a customizable version of [`.format()`](Itertools::format).
///
/// The supplied closure `format` is called once per iterator element,
/// with two arguments: the element and a callback that takes a
/// `&amp;Display` value, i.e. any reference to type that implements `Display`.
///
/// Using `&amp;format_args!(...)` is the most versatile way to apply custom
/// element formatting. The callback can be called multiple times if needed.
///
/// **Panics** if the formatter helper is formatted more than once.
///
/// ```
/// use itertools::Itertools;
///
/// let data = [1.1, 2.71828, -3.];
/// let data_formatter = data.iter().format_with(&quot;, &quot;, |elt, f| f(&amp;format_args!(&quot;{:.2}&quot;, elt)));
/// assert_eq!(format!(&quot;{}&quot;, data_formatter),
/// &quot;1.10, 2.72, -3.00&quot;);
///
/// // .format_with() is recursively composable
/// let matrix = [[1., 2., 3.],
/// [4., 5., 6.]];
/// let matrix_formatter = matrix.iter().format_with(&quot;\n&quot;, |row, f| {
/// f(&amp;row.iter().format_with(&quot;, &quot;, |elt, g| g(&amp;elt)))
/// });
/// assert_eq!(format!(&quot;{}&quot;, matrix_formatter),
/// &quot;1, 2, 3\n4, 5, 6&quot;);
///
///
/// ```
</span><span class="kw">fn </span>format_with&lt;F&gt;(<span class="self">self</span>, sep: <span class="kw-2">&amp;</span>str, format: F) -&gt; FormatWith&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut(<span class="self">Self</span>::Item, <span class="kw-2">&amp;mut </span><span class="kw">dyn </span>FnMut(<span class="kw-2">&amp;</span><span class="kw">dyn </span>fmt::Display) -&gt; fmt::Result) -&gt; fmt::Result,
{
format::new_format(<span class="self">self</span>, sep, format)
}
<span class="doccomment">/// See [`.fold_ok()`](Itertools::fold_ok).
</span><span class="attribute">#[deprecated(note=<span class="string">&quot;Use .fold_ok() instead&quot;</span>, since=<span class="string">&quot;0.10.0&quot;</span>)]
</span><span class="kw">fn </span>fold_results&lt;A, E, B, F&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, start: B, f: F) -&gt; <span class="prelude-ty">Result</span>&lt;B, E&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item = <span class="prelude-ty">Result</span>&lt;A, E&gt;&gt;,
F: FnMut(B, A) -&gt; B
{
<span class="self">self</span>.fold_ok(start, f)
}
<span class="doccomment">/// Fold `Result` values from an iterator.
///
/// Only `Ok` values are folded. If no error is encountered, the folded
/// value is returned inside `Ok`. Otherwise, the operation terminates
/// and returns the first `Err` value it encounters. No iterator elements are
/// consumed after the first error.
///
/// The first accumulator value is the `start` parameter.
/// Each iteration passes the accumulator value and the next value inside `Ok`
/// to the fold function `f` and its return value becomes the new accumulator value.
///
/// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a
/// computation like this:
///
/// ```ignore
/// let mut accum = start;
/// accum = f(accum, 1);
/// accum = f(accum, 2);
/// accum = f(accum, 3);
/// ```
///
/// With a `start` value of 0 and an addition as folding function,
/// this effectively results in *((0 + 1) + 2) + 3*
///
/// ```
/// use std::ops::Add;
/// use itertools::Itertools;
///
/// let values = [1, 2, -2, -1, 2, 1];
/// assert_eq!(
/// values.iter()
/// .map(Ok::&lt;_, ()&gt;)
/// .fold_ok(0, Add::add),
/// Ok(3)
/// );
/// assert!(
/// values.iter()
/// .map(|&amp;x| if x &gt;= 0 { Ok(x) } else { Err(&quot;Negative number&quot;) })
/// .fold_ok(0, Add::add)
/// .is_err()
/// );
/// ```
</span><span class="kw">fn </span>fold_ok&lt;A, E, B, F&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, <span class="kw-2">mut </span>start: B, <span class="kw-2">mut </span>f: F) -&gt; <span class="prelude-ty">Result</span>&lt;B, E&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item = <span class="prelude-ty">Result</span>&lt;A, E&gt;&gt;,
F: FnMut(B, A) -&gt; B
{
<span class="kw">for </span>elt <span class="kw">in </span><span class="self">self </span>{
<span class="kw">match </span>elt {
<span class="prelude-val">Ok</span>(v) =&gt; start = f(start, v),
<span class="prelude-val">Err</span>(u) =&gt; <span class="kw">return </span><span class="prelude-val">Err</span>(u),
}
}
<span class="prelude-val">Ok</span>(start)
}
<span class="doccomment">/// Fold `Option` values from an iterator.
///
/// Only `Some` values are folded. If no `None` is encountered, the folded
/// value is returned inside `Some`. Otherwise, the operation terminates
/// and returns `None`. No iterator elements are consumed after the `None`.
///
/// This is the `Option` equivalent to [`fold_ok`](Itertools::fold_ok).
///
/// ```
/// use std::ops::Add;
/// use itertools::Itertools;
///
/// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter();
/// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2));
///
/// let mut more_values = vec![Some(2), None, Some(0)].into_iter();
/// assert!(more_values.fold_options(0, Add::add).is_none());
/// assert_eq!(more_values.next().unwrap(), Some(0));
/// ```
</span><span class="kw">fn </span>fold_options&lt;A, B, F&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, <span class="kw-2">mut </span>start: B, <span class="kw-2">mut </span>f: F) -&gt; <span class="prelude-ty">Option</span>&lt;B&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item = <span class="prelude-ty">Option</span>&lt;A&gt;&gt;,
F: FnMut(B, A) -&gt; B
{
<span class="kw">for </span>elt <span class="kw">in </span><span class="self">self </span>{
<span class="kw">match </span>elt {
<span class="prelude-val">Some</span>(v) =&gt; start = f(start, v),
<span class="prelude-val">None </span>=&gt; <span class="kw">return </span><span class="prelude-val">None</span>,
}
}
<span class="prelude-val">Some</span>(start)
}
<span class="doccomment">/// Accumulator of the elements in the iterator.
///
/// Like `.fold()`, without a base case. If the iterator is
/// empty, return `None`. With just one element, return it.
/// Otherwise elements are accumulated in sequence using the closure `f`.
///
/// ```
/// use itertools::Itertools;
///
/// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45);
/// assert_eq!((0..0).fold1(|x, y| x * y), None);
/// ```
</span><span class="attribute">#[deprecated(since = <span class="string">&quot;0.10.2&quot;</span>, note = <span class="string">&quot;Use `Iterator::reduce` instead&quot;</span>)]
</span><span class="kw">fn </span>fold1&lt;F&gt;(<span class="kw-2">mut </span><span class="self">self</span>, f: F) -&gt; <span class="prelude-ty">Option</span>&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span>F: FnMut(<span class="self">Self</span>::Item, <span class="self">Self</span>::Item) -&gt; <span class="self">Self</span>::Item,
<span class="self">Self</span>: Sized,
{
<span class="self">self</span>.next().map(<span class="kw">move </span>|x| <span class="self">self</span>.fold(x, f))
}
<span class="doccomment">/// Accumulate the elements in the iterator in a tree-like manner.
///
/// You can think of it as, while there&#39;s more than one item, repeatedly
/// combining adjacent items. It does so in bottom-up-merge-sort order,
/// however, so that it needs only logarithmic stack space.
///
/// This produces a call tree like the following (where the calls under
/// an item are done after reading that item):
///
/// ```text
/// 1 2 3 4 5 6 7
/// │ │ │ │ │ │ │
/// └─f └─f └─f │
/// │ │ │ │
/// └───f └─f
/// │ │
/// └─────f
/// ```
///
/// Which, for non-associative functions, will typically produce a different
/// result than the linear call tree used by [`Iterator::reduce`]:
///
/// ```text
/// 1 2 3 4 5 6 7
/// │ │ │ │ │ │ │
/// └─f─f─f─f─f─f
/// ```
///
/// If `f` is associative, prefer the normal [`Iterator::reduce`] instead.
///
/// ```
/// use itertools::Itertools;
///
/// // The same tree as above
/// let num_strings = (1..8).map(|x| x.to_string());
/// assert_eq!(num_strings.tree_fold1(|x, y| format!(&quot;f({}, {})&quot;, x, y)),
/// Some(String::from(&quot;f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))&quot;)));
///
/// // Like fold1, an empty iterator produces None
/// assert_eq!((0..0).tree_fold1(|x, y| x * y), None);
///
/// // tree_fold1 matches fold1 for associative operations...
/// assert_eq!((0..10).tree_fold1(|x, y| x + y),
/// (0..10).fold1(|x, y| x + y));
/// // ...but not for non-associative ones
/// assert_ne!((0..10).tree_fold1(|x, y| x - y),
/// (0..10).fold1(|x, y| x - y));
/// ```
</span><span class="kw">fn </span>tree_fold1&lt;F&gt;(<span class="kw-2">mut </span><span class="self">self</span>, <span class="kw-2">mut </span>f: F) -&gt; <span class="prelude-ty">Option</span>&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span>F: FnMut(<span class="self">Self</span>::Item, <span class="self">Self</span>::Item) -&gt; <span class="self">Self</span>::Item,
<span class="self">Self</span>: Sized,
{
<span class="kw">type </span>State&lt;T&gt; = <span class="prelude-ty">Result</span>&lt;T, <span class="prelude-ty">Option</span>&lt;T&gt;&gt;;
<span class="kw">fn </span>inner0&lt;T, II, FF&gt;(it: <span class="kw-2">&amp;mut </span>II, f: <span class="kw-2">&amp;mut </span>FF) -&gt; State&lt;T&gt;
<span class="kw">where
</span>II: Iterator&lt;Item = T&gt;,
FF: FnMut(T, T) -&gt; T
{
<span class="comment">// This function could be replaced with `it.next().ok_or(None)`,
// but half the useful tree_fold1 work is combining adjacent items,
// so put that in a form that LLVM is more likely to optimize well.
</span><span class="kw">let </span>a =
<span class="kw">if let </span><span class="prelude-val">Some</span>(v) = it.next() { v }
<span class="kw">else </span>{ <span class="kw">return </span><span class="prelude-val">Err</span>(<span class="prelude-val">None</span>) };
<span class="kw">let </span>b =
<span class="kw">if let </span><span class="prelude-val">Some</span>(v) = it.next() { v }
<span class="kw">else </span>{ <span class="kw">return </span><span class="prelude-val">Err</span>(<span class="prelude-val">Some</span>(a)) };
<span class="prelude-val">Ok</span>(f(a, b))
}
<span class="kw">fn </span>inner&lt;T, II, FF&gt;(stop: usize, it: <span class="kw-2">&amp;mut </span>II, f: <span class="kw-2">&amp;mut </span>FF) -&gt; State&lt;T&gt;
<span class="kw">where
</span>II: Iterator&lt;Item = T&gt;,
FF: FnMut(T, T) -&gt; T
{
<span class="kw">let </span><span class="kw-2">mut </span>x = inner0(it, f)<span class="question-mark">?</span>;
<span class="kw">for </span>height <span class="kw">in </span><span class="number">0</span>..stop {
<span class="comment">// Try to get another tree the same size with which to combine it,
// creating a new tree that&#39;s twice as big for next time around.
</span><span class="kw">let </span>next =
<span class="kw">if </span>height == <span class="number">0 </span>{
inner0(it, f)
} <span class="kw">else </span>{
inner(height, it, f)
};
<span class="kw">match </span>next {
<span class="prelude-val">Ok</span>(y) =&gt; x = f(x, y),
<span class="comment">// If we ran out of items, combine whatever we did manage
// to get. It&#39;s better combined with the current value
// than something in a parent frame, because the tree in
// the parent is always as least as big as this one.
</span><span class="prelude-val">Err</span>(<span class="prelude-val">None</span>) =&gt; <span class="kw">return </span><span class="prelude-val">Err</span>(<span class="prelude-val">Some</span>(x)),
<span class="prelude-val">Err</span>(<span class="prelude-val">Some</span>(y)) =&gt; <span class="kw">return </span><span class="prelude-val">Err</span>(<span class="prelude-val">Some</span>(f(x, y))),
}
}
<span class="prelude-val">Ok</span>(x)
}
<span class="kw">match </span>inner(usize::max_value(), <span class="kw-2">&amp;mut </span><span class="self">self</span>, <span class="kw-2">&amp;mut </span>f) {
<span class="prelude-val">Err</span>(x) =&gt; x,
<span class="kw">_ </span>=&gt; <span class="macro">unreachable!</span>(),
}
}
<span class="doccomment">/// An iterator method that applies a function, producing a single, final value.
///
/// `fold_while()` is basically equivalent to [`Iterator::fold`] but with additional support for
/// early exit via short-circuiting.
///
/// ```
/// use itertools::Itertools;
/// use itertools::FoldWhile::{Continue, Done};
///
/// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
///
/// let mut result = 0;
///
/// // for loop:
/// for i in &amp;numbers {
/// if *i &gt; 5 {
/// break;
/// }
/// result = result + i;
/// }
///
/// // fold:
/// let result2 = numbers.iter().fold(0, |acc, x| {
/// if *x &gt; 5 { acc } else { acc + x }
/// });
///
/// // fold_while:
/// let result3 = numbers.iter().fold_while(0, |acc, x| {
/// if *x &gt; 5 { Done(acc) } else { Continue(acc + x) }
/// }).into_inner();
///
/// // they&#39;re the same
/// assert_eq!(result, result2);
/// assert_eq!(result2, result3);
/// ```
///
/// The big difference between the computations of `result2` and `result3` is that while
/// `fold()` called the provided closure for every item of the callee iterator,
/// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`.
</span><span class="kw">fn </span>fold_while&lt;B, F&gt;(<span class="kw-2">&amp;mut </span><span class="self">self</span>, init: B, <span class="kw-2">mut </span>f: F) -&gt; FoldWhile&lt;B&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut(B, <span class="self">Self</span>::Item) -&gt; FoldWhile&lt;B&gt;
{
<span class="kw">use </span><span class="prelude-ty">Result</span>::{
<span class="prelude-val">Ok </span><span class="kw">as </span>Continue,
<span class="prelude-val">Err </span><span class="kw">as </span>Break,
};
<span class="kw">let </span>result = <span class="self">self</span>.try_fold(init, <span class="attribute">#[inline(always)] </span>|acc, v|
<span class="kw">match </span>f(acc, v) {
FoldWhile::Continue(acc) =&gt; Continue(acc),
FoldWhile::Done(acc) =&gt; Break(acc),
}
);
<span class="kw">match </span>result {
Continue(acc) =&gt; FoldWhile::Continue(acc),
Break(acc) =&gt; FoldWhile::Done(acc),
}
}
<span class="doccomment">/// Iterate over the entire iterator and add all the elements.
///
/// An empty iterator returns `None`, otherwise `Some(sum)`.
///
/// # Panics
///
/// When calling `sum1()` and a primitive integer type is being returned, this
/// method will panic if the computation overflows and debug assertions are
/// enabled.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let empty_sum = (1..1).sum1::&lt;i32&gt;();
/// assert_eq!(empty_sum, None);
///
/// let nonempty_sum = (1..11).sum1::&lt;i32&gt;();
/// assert_eq!(nonempty_sum, Some(55));
/// ```
</span><span class="kw">fn </span>sum1&lt;S&gt;(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;S&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
S: std::iter::Sum&lt;<span class="self">Self</span>::Item&gt;,
{
<span class="self">self</span>.next()
.map(|first| once(first).chain(<span class="self">self</span>).sum())
}
<span class="doccomment">/// Iterate over the entire iterator and multiply all the elements.
///
/// An empty iterator returns `None`, otherwise `Some(product)`.
///
/// # Panics
///
/// When calling `product1()` and a primitive integer type is being returned,
/// method will panic if the computation overflows and debug assertions are
/// enabled.
///
/// # Examples
/// ```
/// use itertools::Itertools;
///
/// let empty_product = (1..1).product1::&lt;i32&gt;();
/// assert_eq!(empty_product, None);
///
/// let nonempty_product = (1..11).product1::&lt;i32&gt;();
/// assert_eq!(nonempty_product, Some(3628800));
/// ```
</span><span class="kw">fn </span>product1&lt;P&gt;(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;P&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
P: std::iter::Product&lt;<span class="self">Self</span>::Item&gt;,
{
<span class="self">self</span>.next()
.map(|first| once(first).chain(<span class="self">self</span>).product())
}
<span class="doccomment">/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_unstable`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort the letters of the text in ascending order
/// let text = &quot;bdacfe&quot;;
/// itertools::assert_equal(text.chars().sorted_unstable(),
/// &quot;abcdef&quot;.chars());
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>sorted_unstable(<span class="self">self</span>) -&gt; VecIntoIter&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Ord
{
<span class="comment">// Use .sort_unstable() directly since it is not quite identical with
// .sort_by(Ord::cmp)
</span><span class="kw">let </span><span class="kw-2">mut </span>v = Vec::from_iter(<span class="self">self</span>);
v.sort_unstable();
v.into_iter()
}
<span class="doccomment">/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_unstable_by`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![(&quot;Jane&quot;, 20), (&quot;John&quot;, 18), (&quot;Jill&quot;, 30), (&quot;Jack&quot;, 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_unstable_by(|a, b| Ord::cmp(&amp;b.1, &amp;a.1))
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec![&quot;Jill&quot;, &quot;Jack&quot;, &quot;Jane&quot;, &quot;John&quot;]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>sorted_unstable_by&lt;F&gt;(<span class="self">self</span>, cmp: F) -&gt; VecIntoIter&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; Ordering,
{
<span class="kw">let </span><span class="kw-2">mut </span>v = Vec::from_iter(<span class="self">self</span>);
v.sort_unstable_by(cmp);
v.into_iter()
}
<span class="doccomment">/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_unstable_by_key`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![(&quot;Jane&quot;, 20), (&quot;John&quot;, 18), (&quot;Jill&quot;, 30), (&quot;Jack&quot;, 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_unstable_by_key(|x| -x.1)
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec![&quot;Jill&quot;, &quot;Jack&quot;, &quot;Jane&quot;, &quot;John&quot;]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>sorted_unstable_by_key&lt;K, F&gt;(<span class="self">self</span>, f: F) -&gt; VecIntoIter&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
K: Ord,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K,
{
<span class="kw">let </span><span class="kw-2">mut </span>v = Vec::from_iter(<span class="self">self</span>);
v.sort_unstable_by_key(f);
v.into_iter()
}
<span class="doccomment">/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort the letters of the text in ascending order
/// let text = &quot;bdacfe&quot;;
/// itertools::assert_equal(text.chars().sorted(),
/// &quot;abcdef&quot;.chars());
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>sorted(<span class="self">self</span>) -&gt; VecIntoIter&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Ord
{
<span class="comment">// Use .sort() directly since it is not quite identical with
// .sort_by(Ord::cmp)
</span><span class="kw">let </span><span class="kw-2">mut </span>v = Vec::from_iter(<span class="self">self</span>);
v.sort();
v.into_iter()
}
<span class="doccomment">/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_by`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![(&quot;Jane&quot;, 20), (&quot;John&quot;, 18), (&quot;Jill&quot;, 30), (&quot;Jack&quot;, 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_by(|a, b| Ord::cmp(&amp;b.1, &amp;a.1))
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec![&quot;Jill&quot;, &quot;Jack&quot;, &quot;Jane&quot;, &quot;John&quot;]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>sorted_by&lt;F&gt;(<span class="self">self</span>, cmp: F) -&gt; VecIntoIter&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; Ordering,
{
<span class="kw">let </span><span class="kw-2">mut </span>v = Vec::from_iter(<span class="self">self</span>);
v.sort_by(cmp);
v.into_iter()
}
<span class="doccomment">/// Sort all iterator elements into a new iterator in ascending order.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_by_key`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![(&quot;Jane&quot;, 20), (&quot;John&quot;, 18), (&quot;Jill&quot;, 30), (&quot;Jack&quot;, 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_by_key(|x| -x.1)
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec![&quot;Jill&quot;, &quot;Jack&quot;, &quot;Jane&quot;, &quot;John&quot;]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>sorted_by_key&lt;K, F&gt;(<span class="self">self</span>, f: F) -&gt; VecIntoIter&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
K: Ord,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K,
{
<span class="kw">let </span><span class="kw-2">mut </span>v = Vec::from_iter(<span class="self">self</span>);
v.sort_by_key(f);
v.into_iter()
}
<span class="doccomment">/// Sort all iterator elements into a new iterator in ascending order. The key function is
/// called exactly once per key.
///
/// **Note:** This consumes the entire iterator, uses the
/// [`slice::sort_by_cached_key`] method and returns the result as a new
/// iterator that owns its elements.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// ```
/// use itertools::Itertools;
///
/// // sort people in descending order by age
/// let people = vec![(&quot;Jane&quot;, 20), (&quot;John&quot;, 18), (&quot;Jill&quot;, 30), (&quot;Jack&quot;, 27)];
///
/// let oldest_people_first = people
/// .into_iter()
/// .sorted_by_cached_key(|x| -x.1)
/// .map(|(person, _age)| person);
///
/// itertools::assert_equal(oldest_people_first,
/// vec![&quot;Jill&quot;, &quot;Jack&quot;, &quot;Jane&quot;, &quot;John&quot;]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>sorted_by_cached_key&lt;K, F&gt;(<span class="self">self</span>, f: F) -&gt; VecIntoIter&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized,
K: Ord,
F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K,
{
<span class="kw">let </span><span class="kw-2">mut </span>v = Vec::from_iter(<span class="self">self</span>);
v.sort_by_cached_key(f);
v.into_iter()
}
<span class="doccomment">/// Sort the k smallest elements into a new iterator, in ascending order.
///
/// **Note:** This consumes the entire iterator, and returns the result
/// as a new iterator that owns its elements. If the input contains
/// less than k elements, the result is equivalent to `self.sorted()`.
///
/// This is guaranteed to use `k * sizeof(Self::Item) + O(1)` memory
/// and `O(n log k)` time, with `n` the number of elements in the input.
///
/// The sorted iterator, if directly collected to a `Vec`, is converted
/// without any extra copying or allocation cost.
///
/// **Note:** This is functionally-equivalent to `self.sorted().take(k)`
/// but much more efficient.
///
/// ```
/// use itertools::Itertools;
///
/// // A random permutation of 0..15
/// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5];
///
/// let five_smallest = numbers
/// .into_iter()
/// .k_smallest(5);
///
/// itertools::assert_equal(five_smallest, 0..5);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>k_smallest(<span class="self">self</span>, k: usize) -&gt; VecIntoIter&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Ord
{
<span class="kw">crate</span>::k_smallest::k_smallest(<span class="self">self</span>, k)
.into_sorted_vec()
.into_iter()
}
<span class="doccomment">/// Collect all iterator elements into one of two
/// partitions. Unlike [`Iterator::partition`], each partition may
/// have a distinct type.
///
/// ```
/// use itertools::{Itertools, Either};
///
/// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
///
/// let (successes, failures): (Vec&lt;_&gt;, Vec&lt;_&gt;) = successes_and_failures
/// .into_iter()
/// .partition_map(|r| {
/// match r {
/// Ok(v) =&gt; Either::Left(v),
/// Err(v) =&gt; Either::Right(v),
/// }
/// });
///
/// assert_eq!(successes, [1, 2]);
/// assert_eq!(failures, [false, true]);
/// ```
</span><span class="kw">fn </span>partition_map&lt;A, B, F, L, R&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>predicate: F) -&gt; (A, B)
<span class="kw">where </span><span class="self">Self</span>: Sized,
F: FnMut(<span class="self">Self</span>::Item) -&gt; Either&lt;L, R&gt;,
A: Default + Extend&lt;L&gt;,
B: Default + Extend&lt;R&gt;,
{
<span class="kw">let </span><span class="kw-2">mut </span>left = A::default();
<span class="kw">let </span><span class="kw-2">mut </span>right = B::default();
<span class="self">self</span>.for_each(|val| <span class="kw">match </span>predicate(val) {
Either::Left(v) =&gt; left.extend(<span class="prelude-val">Some</span>(v)),
Either::Right(v) =&gt; right.extend(<span class="prelude-val">Some</span>(v)),
});
(left, right)
}
<span class="doccomment">/// Partition a sequence of `Result`s into one list of all the `Ok` elements
/// and another list of all the `Err` elements.
///
/// ```
/// use itertools::Itertools;
///
/// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)];
///
/// let (successes, failures): (Vec&lt;_&gt;, Vec&lt;_&gt;) = successes_and_failures
/// .into_iter()
/// .partition_result();
///
/// assert_eq!(successes, [1, 2]);
/// assert_eq!(failures, [false, true]);
/// ```
</span><span class="kw">fn </span>partition_result&lt;A, B, T, E&gt;(<span class="self">self</span>) -&gt; (A, B)
<span class="kw">where
</span><span class="self">Self</span>: Iterator&lt;Item = <span class="prelude-ty">Result</span>&lt;T, E&gt;&gt; + Sized,
A: Default + Extend&lt;T&gt;,
B: Default + Extend&lt;E&gt;,
{
<span class="self">self</span>.partition_map(|r| <span class="kw">match </span>r {
<span class="prelude-val">Ok</span>(v) =&gt; Either::Left(v),
<span class="prelude-val">Err</span>(v) =&gt; Either::Right(v),
})
}
<span class="doccomment">/// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values
/// are taken from `(Key, Value)` tuple pairs yielded by the input iterator.
///
/// Essentially a shorthand for `.into_grouping_map().collect::&lt;Vec&lt;_&gt;&gt;()`.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
/// let lookup = data.into_iter().into_group_map();
///
/// assert_eq!(lookup[&amp;0], vec![10, 20]);
/// assert_eq!(lookup.get(&amp;1), None);
/// assert_eq!(lookup[&amp;2], vec![12, 42]);
/// assert_eq!(lookup[&amp;3], vec![13, 33]);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>into_group_map&lt;K, V&gt;(<span class="self">self</span>) -&gt; HashMap&lt;K, Vec&lt;V&gt;&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item=(K, V)&gt; + Sized,
K: Hash + Eq,
{
group_map::into_group_map(<span class="self">self</span>)
}
<span class="doccomment">/// Return an `Iterator` on a `HashMap`. Keys mapped to `Vec`s of values. The key is specified
/// in the closure.
///
/// Essentially a shorthand for `.into_grouping_map_by(f).collect::&lt;Vec&lt;_&gt;&gt;()`.
///
/// ```
/// use itertools::Itertools;
/// use std::collections::HashMap;
///
/// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)];
/// let lookup: HashMap&lt;u32,Vec&lt;(u32, u32)&gt;&gt; =
/// data.clone().into_iter().into_group_map_by(|a| a.0);
///
/// assert_eq!(lookup[&amp;0], vec![(0,10),(0,20)]);
/// assert_eq!(lookup.get(&amp;1), None);
/// assert_eq!(lookup[&amp;2], vec![(2,12), (2,42)]);
/// assert_eq!(lookup[&amp;3], vec![(3,13), (3,33)]);
///
/// assert_eq!(
/// data.into_iter()
/// .into_group_map_by(|x| x.0)
/// .into_iter()
/// .map(|(key, values)| (key, values.into_iter().fold(0,|acc, (_,v)| acc + v )))
/// .collect::&lt;HashMap&lt;u32,u32&gt;&gt;()[&amp;0],
/// 30,
/// );
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>into_group_map_by&lt;K, V, F&gt;(<span class="self">self</span>, f: F) -&gt; HashMap&lt;K, Vec&lt;V&gt;&gt;
<span class="kw">where
</span><span class="self">Self</span>: Iterator&lt;Item=V&gt; + Sized,
K: Hash + Eq,
F: Fn(<span class="kw-2">&amp;</span>V) -&gt; K,
{
group_map::into_group_map_by(<span class="self">self</span>, f)
}
<span class="doccomment">/// Constructs a `GroupingMap` to be used later with one of the efficient
/// group-and-fold operations it allows to perform.
///
/// The input iterator must yield item in the form of `(K, V)` where the
/// value of type `K` will be used as key to identify the groups and the
/// value of type `V` as value for the folding operation.
///
/// See [`GroupingMap`] for more informations
/// on what operations are available.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>into_grouping_map&lt;K, V&gt;(<span class="self">self</span>) -&gt; GroupingMap&lt;<span class="self">Self</span>&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item=(K, V)&gt; + Sized,
K: Hash + Eq,
{
grouping_map::new(<span class="self">self</span>)
}
<span class="doccomment">/// Constructs a `GroupingMap` to be used later with one of the efficient
/// group-and-fold operations it allows to perform.
///
/// The values from this iterator will be used as values for the folding operation
/// while the keys will be obtained from the values by calling `key_mapper`.
///
/// See [`GroupingMap`] for more informations
/// on what operations are available.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>into_grouping_map_by&lt;K, V, F&gt;(<span class="self">self</span>, key_mapper: F) -&gt; GroupingMapBy&lt;<span class="self">Self</span>, F&gt;
<span class="kw">where </span><span class="self">Self</span>: Iterator&lt;Item=V&gt; + Sized,
K: Hash + Eq,
F: FnMut(<span class="kw-2">&amp;</span>V) -&gt; K
{
grouping_map::new(grouping_map::MapForGrouping::new(<span class="self">self</span>, key_mapper))
}
<span class="doccomment">/// Return all minimum elements of an iterator.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().min_set(), Vec::&lt;&amp;i32&gt;::new());
///
/// let a = [1];
/// assert_eq!(a.iter().min_set(), vec![&amp;1]);
///
/// let a = [1, 2, 3, 4, 5];
/// assert_eq!(a.iter().min_set(), vec![&amp;1]);
///
/// let a = [1, 1, 1, 1];
/// assert_eq!(a.iter().min_set(), vec![&amp;1, &amp;1, &amp;1, &amp;1]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>min_set(<span class="self">self</span>) -&gt; Vec&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, <span class="self">Self</span>::Item: Ord
{
extrema_set::min_set_impl(<span class="self">self</span>, |<span class="kw">_</span>| (), |x, y, <span class="kw">_</span>, <span class="kw">_</span>| x.cmp(y))
}
<span class="doccomment">/// Return all minimum elements of an iterator, as determined by
/// the specified function.
///
/// # Examples
///
/// ```
/// # use std::cmp::Ordering;
/// use itertools::Itertools;
///
/// let a: [(i32, i32); 0] = [];
/// assert_eq!(a.iter().min_set_by(|_, _| Ordering::Equal), Vec::&lt;&amp;(i32, i32)&gt;::new());
///
/// let a = [(1, 2)];
/// assert_eq!(a.iter().min_set_by(|&amp;&amp;(k1,_), &amp;&amp;(k2, _)| k1.cmp(&amp;k2)), vec![&amp;(1, 2)]);
///
/// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)];
/// assert_eq!(a.iter().min_set_by(|&amp;&amp;(_,k1), &amp;&amp;(_,k2)| k1.cmp(&amp;k2)), vec![&amp;(1, 2), &amp;(2, 2)]);
///
/// let a = [(1, 2), (1, 3), (1, 4), (1, 5)];
/// assert_eq!(a.iter().min_set_by(|&amp;&amp;(k1,_), &amp;&amp;(k2, _)| k1.cmp(&amp;k2)), vec![&amp;(1, 2), &amp;(1, 3), &amp;(1, 4), &amp;(1, 5)]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>min_set_by&lt;F&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>compare: F) -&gt; Vec&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; Ordering
{
extrema_set::min_set_impl(
<span class="self">self</span>,
|<span class="kw">_</span>| (),
|x, y, <span class="kw">_</span>, <span class="kw">_</span>| compare(x, y)
)
}
<span class="doccomment">/// Return all minimum elements of an iterator, as determined by
/// the specified function.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [(i32, i32); 0] = [];
/// assert_eq!(a.iter().min_set_by_key(|_| ()), Vec::&lt;&amp;(i32, i32)&gt;::new());
///
/// let a = [(1, 2)];
/// assert_eq!(a.iter().min_set_by_key(|&amp;&amp;(k,_)| k), vec![&amp;(1, 2)]);
///
/// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)];
/// assert_eq!(a.iter().min_set_by_key(|&amp;&amp;(_, k)| k), vec![&amp;(1, 2), &amp;(2, 2)]);
///
/// let a = [(1, 2), (1, 3), (1, 4), (1, 5)];
/// assert_eq!(a.iter().min_set_by_key(|&amp;&amp;(k, _)| k), vec![&amp;(1, 2), &amp;(1, 3), &amp;(1, 4), &amp;(1, 5)]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>min_set_by_key&lt;K, F&gt;(<span class="self">self</span>, key: F) -&gt; Vec&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, K: Ord, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K
{
extrema_set::min_set_impl(<span class="self">self</span>, key, |<span class="kw">_</span>, <span class="kw">_</span>, kx, ky| kx.cmp(ky))
}
<span class="doccomment">/// Return all maximum elements of an iterator.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().max_set(), Vec::&lt;&amp;i32&gt;::new());
///
/// let a = [1];
/// assert_eq!(a.iter().max_set(), vec![&amp;1]);
///
/// let a = [1, 2, 3, 4, 5];
/// assert_eq!(a.iter().max_set(), vec![&amp;5]);
///
/// let a = [1, 1, 1, 1];
/// assert_eq!(a.iter().max_set(), vec![&amp;1, &amp;1, &amp;1, &amp;1]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>max_set(<span class="self">self</span>) -&gt; Vec&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, <span class="self">Self</span>::Item: Ord
{
extrema_set::max_set_impl(<span class="self">self</span>, |<span class="kw">_</span>| (), |x, y, <span class="kw">_</span>, <span class="kw">_</span>| x.cmp(y))
}
<span class="doccomment">/// Return all maximum elements of an iterator, as determined by
/// the specified function.
///
/// # Examples
///
/// ```
/// # use std::cmp::Ordering;
/// use itertools::Itertools;
///
/// let a: [(i32, i32); 0] = [];
/// assert_eq!(a.iter().max_set_by(|_, _| Ordering::Equal), Vec::&lt;&amp;(i32, i32)&gt;::new());
///
/// let a = [(1, 2)];
/// assert_eq!(a.iter().max_set_by(|&amp;&amp;(k1,_), &amp;&amp;(k2, _)| k1.cmp(&amp;k2)), vec![&amp;(1, 2)]);
///
/// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)];
/// assert_eq!(a.iter().max_set_by(|&amp;&amp;(_,k1), &amp;&amp;(_,k2)| k1.cmp(&amp;k2)), vec![&amp;(3, 9), &amp;(5, 9)]);
///
/// let a = [(1, 2), (1, 3), (1, 4), (1, 5)];
/// assert_eq!(a.iter().max_set_by(|&amp;&amp;(k1,_), &amp;&amp;(k2, _)| k1.cmp(&amp;k2)), vec![&amp;(1, 2), &amp;(1, 3), &amp;(1, 4), &amp;(1, 5)]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>max_set_by&lt;F&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>compare: F) -&gt; Vec&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; Ordering
{
extrema_set::max_set_impl(
<span class="self">self</span>,
|<span class="kw">_</span>| (),
|x, y, <span class="kw">_</span>, <span class="kw">_</span>| compare(x, y)
)
}
<span class="doccomment">/// Return all minimum elements of an iterator, as determined by
/// the specified function.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [(i32, i32); 0] = [];
/// assert_eq!(a.iter().max_set_by_key(|_| ()), Vec::&lt;&amp;(i32, i32)&gt;::new());
///
/// let a = [(1, 2)];
/// assert_eq!(a.iter().max_set_by_key(|&amp;&amp;(k,_)| k), vec![&amp;(1, 2)]);
///
/// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)];
/// assert_eq!(a.iter().max_set_by_key(|&amp;&amp;(_, k)| k), vec![&amp;(3, 9), &amp;(5, 9)]);
///
/// let a = [(1, 2), (1, 3), (1, 4), (1, 5)];
/// assert_eq!(a.iter().max_set_by_key(|&amp;&amp;(k, _)| k), vec![&amp;(1, 2), &amp;(1, 3), &amp;(1, 4), &amp;(1, 5)]);
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>max_set_by_key&lt;K, F&gt;(<span class="self">self</span>, key: F) -&gt; Vec&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, K: Ord, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K
{
extrema_set::max_set_impl(<span class="self">self</span>, key, |<span class="kw">_</span>, <span class="kw">_</span>, kx, ky| kx.cmp(ky))
}
<span class="doccomment">/// Return the minimum and maximum elements in the iterator.
///
/// The return type `MinMaxResult` is an enum of three variants:
///
/// - `NoElements` if the iterator is empty.
/// - `OneElement(x)` if the iterator has exactly one element.
/// - `MinMax(x, y)` is returned otherwise, where `x &lt;= y`. Two
/// values are equal if and only if there is more than one
/// element in the iterator and all elements are equal.
///
/// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons,
/// and so is faster than calling `min` and `max` separately which does
/// `2 * n` comparisons.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().minmax(), NoElements);
///
/// let a = [1];
/// assert_eq!(a.iter().minmax(), OneElement(&amp;1));
///
/// let a = [1, 2, 3, 4, 5];
/// assert_eq!(a.iter().minmax(), MinMax(&amp;1, &amp;5));
///
/// let a = [1, 1, 1, 1];
/// assert_eq!(a.iter().minmax(), MinMax(&amp;1, &amp;1));
/// ```
///
/// The elements can be floats but no particular result is guaranteed
/// if an element is NaN.
</span><span class="kw">fn </span>minmax(<span class="self">self</span>) -&gt; MinMaxResult&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, <span class="self">Self</span>::Item: PartialOrd
{
minmax::minmax_impl(<span class="self">self</span>, |<span class="kw">_</span>| (), |x, y, <span class="kw">_</span>, <span class="kw">_</span>| x &lt; y)
}
<span class="doccomment">/// Return the minimum and maximum element of an iterator, as determined by
/// the specified function.
///
/// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax).
///
/// For the minimum, the first minimal element is returned. For the maximum,
/// the last maximal element wins. This matches the behavior of the standard
/// [`Iterator::min`] and [`Iterator::max`] methods.
///
/// The keys can be floats but no particular result is guaranteed
/// if a key is NaN.
</span><span class="kw">fn </span>minmax_by_key&lt;K, F&gt;(<span class="self">self</span>, key: F) -&gt; MinMaxResult&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, K: PartialOrd, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K
{
minmax::minmax_impl(<span class="self">self</span>, key, |<span class="kw">_</span>, <span class="kw">_</span>, xk, yk| xk &lt; yk)
}
<span class="doccomment">/// Return the minimum and maximum element of an iterator, as determined by
/// the specified comparison function.
///
/// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax).
///
/// For the minimum, the first minimal element is returned. For the maximum,
/// the last maximal element wins. This matches the behavior of the standard
/// [`Iterator::min`] and [`Iterator::max`] methods.
</span><span class="kw">fn </span>minmax_by&lt;F&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>compare: F) -&gt; MinMaxResult&lt;<span class="self">Self</span>::Item&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; Ordering
{
minmax::minmax_impl(
<span class="self">self</span>,
|<span class="kw">_</span>| (),
|x, y, <span class="kw">_</span>, <span class="kw">_</span>| Ordering::Less == compare(x, y)
)
}
<span class="doccomment">/// Return the position of the maximum element in the iterator.
///
/// If several elements are equally maximum, the position of the
/// last of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_max(), None);
///
/// let a = [-3, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_max(), Some(3));
///
/// let a = [1, 1, -1, -1];
/// assert_eq!(a.iter().position_max(), Some(1));
/// ```
</span><span class="kw">fn </span>position_max(<span class="self">self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, <span class="self">Self</span>::Item: Ord
{
<span class="self">self</span>.enumerate()
.max_by(|x, y| Ord::cmp(<span class="kw-2">&amp;</span>x.<span class="number">1</span>, <span class="kw-2">&amp;</span>y.<span class="number">1</span>))
.map(|x| x.<span class="number">0</span>)
}
<span class="doccomment">/// Return the position of the maximum element in the iterator, as
/// determined by the specified function.
///
/// If several elements are equally maximum, the position of the
/// last of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), None);
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(4));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(3));
/// ```
</span><span class="kw">fn </span>position_max_by_key&lt;K, F&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>key: F) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, K: Ord, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K
{
<span class="self">self</span>.enumerate()
.max_by(|x, y| Ord::cmp(<span class="kw-2">&amp;</span>key(<span class="kw-2">&amp;</span>x.<span class="number">1</span>), <span class="kw-2">&amp;</span>key(<span class="kw-2">&amp;</span>y.<span class="number">1</span>)))
.map(|x| x.<span class="number">0</span>)
}
<span class="doccomment">/// Return the position of the maximum element in the iterator, as
/// determined by the specified comparison function.
///
/// If several elements are equally maximum, the position of the
/// last of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), None);
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(3));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(1));
/// ```
</span><span class="kw">fn </span>position_max_by&lt;F&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>compare: F) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; Ordering
{
<span class="self">self</span>.enumerate()
.max_by(|x, y| compare(<span class="kw-2">&amp;</span>x.<span class="number">1</span>, <span class="kw-2">&amp;</span>y.<span class="number">1</span>))
.map(|x| x.<span class="number">0</span>)
}
<span class="doccomment">/// Return the position of the minimum element in the iterator.
///
/// If several elements are equally minimum, the position of the
/// first of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_min(), None);
///
/// let a = [-3, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_min(), Some(4));
///
/// let a = [1, 1, -1, -1];
/// assert_eq!(a.iter().position_min(), Some(2));
/// ```
</span><span class="kw">fn </span>position_min(<span class="self">self</span>) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, <span class="self">Self</span>::Item: Ord
{
<span class="self">self</span>.enumerate()
.min_by(|x, y| Ord::cmp(<span class="kw-2">&amp;</span>x.<span class="number">1</span>, <span class="kw-2">&amp;</span>y.<span class="number">1</span>))
.map(|x| x.<span class="number">0</span>)
}
<span class="doccomment">/// Return the position of the minimum element in the iterator, as
/// determined by the specified function.
///
/// If several elements are equally minimum, the position of the
/// first of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), None);
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(1));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(0));
/// ```
</span><span class="kw">fn </span>position_min_by_key&lt;K, F&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>key: F) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, K: Ord, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K
{
<span class="self">self</span>.enumerate()
.min_by(|x, y| Ord::cmp(<span class="kw-2">&amp;</span>key(<span class="kw-2">&amp;</span>x.<span class="number">1</span>), <span class="kw-2">&amp;</span>key(<span class="kw-2">&amp;</span>y.<span class="number">1</span>)))
.map(|x| x.<span class="number">0</span>)
}
<span class="doccomment">/// Return the position of the minimum element in the iterator, as
/// determined by the specified comparison function.
///
/// If several elements are equally minimum, the position of the
/// first of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), None);
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(4));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(2));
/// ```
</span><span class="kw">fn </span>position_min_by&lt;F&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>compare: F) -&gt; <span class="prelude-ty">Option</span>&lt;usize&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; Ordering
{
<span class="self">self</span>.enumerate()
.min_by(|x, y| compare(<span class="kw-2">&amp;</span>x.<span class="number">1</span>, <span class="kw-2">&amp;</span>y.<span class="number">1</span>))
.map(|x| x.<span class="number">0</span>)
}
<span class="doccomment">/// Return the positions of the minimum and maximum elements in
/// the iterator.
///
/// The return type [`MinMaxResult`] is an enum of three variants:
///
/// - `NoElements` if the iterator is empty.
/// - `OneElement(xpos)` if the iterator has exactly one element.
/// - `MinMax(xpos, ypos)` is returned otherwise, where the
/// element at `xpos` ≤ the element at `ypos`. While the
/// referenced elements themselves may be equal, `xpos` cannot
/// be equal to `ypos`.
///
/// On an iterator of length `n`, `position_minmax` does `1.5 * n`
/// comparisons, and so is faster than calling `position_min` and
/// `position_max` separately which does `2 * n` comparisons.
///
/// For the minimum, if several elements are equally minimum, the
/// position of the first of them is returned. For the maximum, if
/// several elements are equally maximum, the position of the last
/// of them is returned.
///
/// The elements can be floats but no particular result is
/// guaranteed if an element is NaN.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_minmax(), NoElements);
///
/// let a = [10];
/// assert_eq!(a.iter().position_minmax(), OneElement(0));
///
/// let a = [-3, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_minmax(), MinMax(4, 3));
///
/// let a = [1, 1, -1, -1];
/// assert_eq!(a.iter().position_minmax(), MinMax(2, 1));
/// ```
</span><span class="kw">fn </span>position_minmax(<span class="self">self</span>) -&gt; MinMaxResult&lt;usize&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, <span class="self">Self</span>::Item: PartialOrd
{
<span class="kw">use </span><span class="kw">crate</span>::MinMaxResult::{NoElements, OneElement, MinMax};
<span class="kw">match </span>minmax::minmax_impl(<span class="self">self</span>.enumerate(), |<span class="kw">_</span>| (), |x, y, <span class="kw">_</span>, <span class="kw">_</span>| x.<span class="number">1 </span>&lt; y.<span class="number">1</span>) {
NoElements =&gt; NoElements,
OneElement(x) =&gt; OneElement(x.<span class="number">0</span>),
MinMax(x, y) =&gt; MinMax(x.<span class="number">0</span>, y.<span class="number">0</span>),
}
}
<span class="doccomment">/// Return the postions of the minimum and maximum elements of an
/// iterator, as determined by the specified function.
///
/// The return value is a variant of [`MinMaxResult`] like for
/// [`position_minmax`].
///
/// For the minimum, if several elements are equally minimum, the
/// position of the first of them is returned. For the maximum, if
/// several elements are equally maximum, the position of the last
/// of them is returned.
///
/// The keys can be floats but no particular result is guaranteed
/// if a key is NaN.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), NoElements);
///
/// let a = [10_i32];
/// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), OneElement(0));
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(1, 4));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(0, 3));
/// ```
///
/// [`position_minmax`]: Self::position_minmax
</span><span class="kw">fn </span>position_minmax_by_key&lt;K, F&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>key: F) -&gt; MinMaxResult&lt;usize&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, K: PartialOrd, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; K
{
<span class="kw">use </span><span class="kw">crate</span>::MinMaxResult::{NoElements, OneElement, MinMax};
<span class="kw">match </span><span class="self">self</span>.enumerate().minmax_by_key(|e| key(<span class="kw-2">&amp;</span>e.<span class="number">1</span>)) {
NoElements =&gt; NoElements,
OneElement(x) =&gt; OneElement(x.<span class="number">0</span>),
MinMax(x, y) =&gt; MinMax(x.<span class="number">0</span>, y.<span class="number">0</span>),
}
}
<span class="doccomment">/// Return the postions of the minimum and maximum elements of an
/// iterator, as determined by the specified comparison function.
///
/// The return value is a variant of [`MinMaxResult`] like for
/// [`position_minmax`].
///
/// For the minimum, if several elements are equally minimum, the
/// position of the first of them is returned. For the maximum, if
/// several elements are equally maximum, the position of the last
/// of them is returned.
///
/// # Examples
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{NoElements, OneElement, MinMax};
///
/// let a: [i32; 0] = [];
/// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), NoElements);
///
/// let a = [10_i32];
/// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), OneElement(0));
///
/// let a = [-3_i32, 0, 1, 5, -10];
/// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(4, 3));
///
/// let a = [1_i32, 1, -1, -1];
/// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(2, 1));
/// ```
///
/// [`position_minmax`]: Self::position_minmax
</span><span class="kw">fn </span>position_minmax_by&lt;F&gt;(<span class="self">self</span>, <span class="kw-2">mut </span>compare: F) -&gt; MinMaxResult&lt;usize&gt;
<span class="kw">where </span><span class="self">Self</span>: Sized, F: FnMut(<span class="kw-2">&amp;</span><span class="self">Self</span>::Item, <span class="kw-2">&amp;</span><span class="self">Self</span>::Item) -&gt; Ordering
{
<span class="kw">use </span><span class="kw">crate</span>::MinMaxResult::{NoElements, OneElement, MinMax};
<span class="kw">match </span><span class="self">self</span>.enumerate().minmax_by(|x, y| compare(<span class="kw-2">&amp;</span>x.<span class="number">1</span>, <span class="kw-2">&amp;</span>y.<span class="number">1</span>)) {
NoElements =&gt; NoElements,
OneElement(x) =&gt; OneElement(x.<span class="number">0</span>),
MinMax(x, y) =&gt; MinMax(x.<span class="number">0</span>, y.<span class="number">0</span>),
}
}
<span class="doccomment">/// If the iterator yields exactly one element, that element will be returned, otherwise
/// an error will be returned containing an iterator that has the same output as the input
/// iterator.
///
/// This provides an additional layer of validation over just calling `Iterator::next()`.
/// If your assumption that there should only be one element yielded is false this provides
/// the opportunity to detect and handle that, preventing errors at a distance.
///
/// # Examples
/// ```
/// use itertools::Itertools;
///
/// assert_eq!((0..10).filter(|&amp;x| x == 2).exactly_one().unwrap(), 2);
/// assert!((0..10).filter(|&amp;x| x &gt; 1 &amp;&amp; x &lt; 4).exactly_one().unwrap_err().eq(2..4));
/// assert!((0..10).filter(|&amp;x| x &gt; 1 &amp;&amp; x &lt; 5).exactly_one().unwrap_err().eq(2..5));
/// assert!((0..10).filter(|&amp;_| false).exactly_one().unwrap_err().eq(0..0));
/// ```
</span><span class="kw">fn </span>exactly_one(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;<span class="self">Self</span>::Item, ExactlyOneError&lt;<span class="self">Self</span>&gt;&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized,
{
<span class="kw">match </span><span class="self">self</span>.next() {
<span class="prelude-val">Some</span>(first) =&gt; {
<span class="kw">match </span><span class="self">self</span>.next() {
<span class="prelude-val">Some</span>(second) =&gt; {
<span class="prelude-val">Err</span>(ExactlyOneError::new(<span class="prelude-val">Some</span>(Either::Left([first, second])), <span class="self">self</span>))
}
<span class="prelude-val">None </span>=&gt; {
<span class="prelude-val">Ok</span>(first)
}
}
}
<span class="prelude-val">None </span>=&gt; <span class="prelude-val">Err</span>(ExactlyOneError::new(<span class="prelude-val">None</span>, <span class="self">self</span>)),
}
}
<span class="doccomment">/// If the iterator yields no elements, Ok(None) will be returned. If the iterator yields
/// exactly one element, that element will be returned, otherwise an error will be returned
/// containing an iterator that has the same output as the input iterator.
///
/// This provides an additional layer of validation over just calling `Iterator::next()`.
/// If your assumption that there should be at most one element yielded is false this provides
/// the opportunity to detect and handle that, preventing errors at a distance.
///
/// # Examples
/// ```
/// use itertools::Itertools;
///
/// assert_eq!((0..10).filter(|&amp;x| x == 2).at_most_one().unwrap(), Some(2));
/// assert!((0..10).filter(|&amp;x| x &gt; 1 &amp;&amp; x &lt; 4).at_most_one().unwrap_err().eq(2..4));
/// assert!((0..10).filter(|&amp;x| x &gt; 1 &amp;&amp; x &lt; 5).at_most_one().unwrap_err().eq(2..5));
/// assert_eq!((0..10).filter(|&amp;_| false).at_most_one().unwrap(), None);
/// ```
</span><span class="kw">fn </span>at_most_one(<span class="kw-2">mut </span><span class="self">self</span>) -&gt; <span class="prelude-ty">Result</span>&lt;<span class="prelude-ty">Option</span>&lt;<span class="self">Self</span>::Item&gt;, ExactlyOneError&lt;<span class="self">Self</span>&gt;&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized,
{
<span class="kw">match </span><span class="self">self</span>.next() {
<span class="prelude-val">Some</span>(first) =&gt; {
<span class="kw">match </span><span class="self">self</span>.next() {
<span class="prelude-val">Some</span>(second) =&gt; {
<span class="prelude-val">Err</span>(ExactlyOneError::new(<span class="prelude-val">Some</span>(Either::Left([first, second])), <span class="self">self</span>))
}
<span class="prelude-val">None </span>=&gt; {
<span class="prelude-val">Ok</span>(<span class="prelude-val">Some</span>(first))
}
}
}
<span class="prelude-val">None </span>=&gt; <span class="prelude-val">Ok</span>(<span class="prelude-val">None</span>),
}
}
<span class="doccomment">/// An iterator adaptor that allows the user to peek at multiple `.next()`
/// values without advancing the base iterator.
///
/// # Examples
/// ```
/// use itertools::Itertools;
///
/// let mut iter = (0..10).multipeek();
/// assert_eq!(iter.peek(), Some(&amp;0));
/// assert_eq!(iter.peek(), Some(&amp;1));
/// assert_eq!(iter.peek(), Some(&amp;2));
/// assert_eq!(iter.next(), Some(0));
/// assert_eq!(iter.peek(), Some(&amp;1));
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_alloc&quot;</span>)]
</span><span class="kw">fn </span>multipeek(<span class="self">self</span>) -&gt; MultiPeek&lt;<span class="self">Self</span>&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized,
{
multipeek_impl::multipeek(<span class="self">self</span>)
}
<span class="doccomment">/// Collect the items in this iterator and return a `HashMap` which
/// contains each item that appears in the iterator and the number
/// of times it appears.
///
/// # Examples
/// ```
/// # use itertools::Itertools;
/// let counts = [1, 1, 1, 3, 3, 5].into_iter().counts();
/// assert_eq!(counts[&amp;1], 3);
/// assert_eq!(counts[&amp;3], 2);
/// assert_eq!(counts[&amp;5], 1);
/// assert_eq!(counts.get(&amp;0), None);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>counts(<span class="self">self</span>) -&gt; HashMap&lt;<span class="self">Self</span>::Item, usize&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized,
<span class="self">Self</span>::Item: Eq + Hash,
{
<span class="kw">let </span><span class="kw-2">mut </span>counts = HashMap::new();
<span class="self">self</span>.for_each(|item| <span class="kw-2">*</span>counts.entry(item).or_default() += <span class="number">1</span>);
counts
}
<span class="doccomment">/// Collect the items in this iterator and return a `HashMap` which
/// contains each item that appears in the iterator and the number
/// of times it appears,
/// determining identity using a keying function.
///
/// ```
/// # use itertools::Itertools;
/// struct Character {
/// first_name: &amp;&#39;static str,
/// last_name: &amp;&#39;static str,
/// }
///
/// let characters =
/// vec![
/// Character { first_name: &quot;Amy&quot;, last_name: &quot;Pond&quot; },
/// Character { first_name: &quot;Amy&quot;, last_name: &quot;Wong&quot; },
/// Character { first_name: &quot;Amy&quot;, last_name: &quot;Santiago&quot; },
/// Character { first_name: &quot;James&quot;, last_name: &quot;Bond&quot; },
/// Character { first_name: &quot;James&quot;, last_name: &quot;Sullivan&quot; },
/// Character { first_name: &quot;James&quot;, last_name: &quot;Norington&quot; },
/// Character { first_name: &quot;James&quot;, last_name: &quot;Kirk&quot; },
/// ];
///
/// let first_name_frequency =
/// characters
/// .into_iter()
/// .counts_by(|c| c.first_name);
///
/// assert_eq!(first_name_frequency[&quot;Amy&quot;], 3);
/// assert_eq!(first_name_frequency[&quot;James&quot;], 4);
/// assert_eq!(first_name_frequency.contains_key(&quot;Asha&quot;), false);
/// ```
</span><span class="attribute">#[cfg(feature = <span class="string">&quot;use_std&quot;</span>)]
</span><span class="kw">fn </span>counts_by&lt;K, F&gt;(<span class="self">self</span>, f: F) -&gt; HashMap&lt;K, usize&gt;
<span class="kw">where
</span><span class="self">Self</span>: Sized,
K: Eq + Hash,
F: FnMut(<span class="self">Self</span>::Item) -&gt; K,
{
<span class="self">self</span>.map(f).counts()
}
<span class="doccomment">/// Converts an iterator of tuples into a tuple of containers.
///
/// `unzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each
/// column.
///
/// This function is, in some sense, the opposite of [`multizip`].
///
/// ```
/// use itertools::Itertools;
///
/// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)];
///
/// let (a, b, c): (Vec&lt;_&gt;, Vec&lt;_&gt;, Vec&lt;_&gt;) = inputs
/// .into_iter()
/// .multiunzip();
///
/// assert_eq!(a, vec![1, 4, 7]);
/// assert_eq!(b, vec![2, 5, 8]);
/// assert_eq!(c, vec![3, 6, 9]);
/// ```
</span><span class="kw">fn </span>multiunzip&lt;FromI&gt;(<span class="self">self</span>) -&gt; FromI
<span class="kw">where
</span><span class="self">Self</span>: Sized + MultiUnzip&lt;FromI&gt;,
{
MultiUnzip::multiunzip(<span class="self">self</span>)
}
}
<span class="kw">impl</span>&lt;T: <span class="question-mark">?</span>Sized&gt; Itertools <span class="kw">for </span>T <span class="kw">where </span>T: Iterator { }
<span class="doccomment">/// Return `true` if both iterables produce equal sequences
/// (elements pairwise equal and sequences of the same length),
/// `false` otherwise.
///
/// [`IntoIterator`] enabled version of [`Iterator::eq`].
///
/// ```
/// assert!(itertools::equal(vec![1, 2, 3], 1..4));
/// assert!(!itertools::equal(&amp;[0, 0], &amp;[0, 0, 0]));
/// ```
</span><span class="kw">pub fn </span>equal&lt;I, J&gt;(a: I, b: J) -&gt; bool
<span class="kw">where </span>I: IntoIterator,
J: IntoIterator,
I::Item: PartialEq&lt;J::Item&gt;
{
a.into_iter().eq(b)
}
<span class="doccomment">/// Assert that two iterables produce equal sequences, with the same
/// semantics as [`equal(a, b)`](equal).
///
/// **Panics** on assertion failure with a message that shows the
/// two iteration elements.
///
/// ```ignore
/// assert_equal(&quot;exceed&quot;.split(&#39;c&#39;), &quot;excess&quot;.split(&#39;c&#39;));
/// // ^PANIC: panicked at &#39;Failed assertion Some(&quot;eed&quot;) == Some(&quot;ess&quot;) for iteration 1&#39;,
/// ```
</span><span class="kw">pub fn </span>assert_equal&lt;I, J&gt;(a: I, b: J)
<span class="kw">where </span>I: IntoIterator,
J: IntoIterator,
I::Item: fmt::Debug + PartialEq&lt;J::Item&gt;,
J::Item: fmt::Debug,
{
<span class="kw">let </span><span class="kw-2">mut </span>ia = a.into_iter();
<span class="kw">let </span><span class="kw-2">mut </span>ib = b.into_iter();
<span class="kw">let </span><span class="kw-2">mut </span>i = <span class="number">0</span>;
<span class="kw">loop </span>{
<span class="kw">match </span>(ia.next(), ib.next()) {
(<span class="prelude-val">None</span>, <span class="prelude-val">None</span>) =&gt; <span class="kw">return</span>,
(a, b) =&gt; {
<span class="kw">let </span>equal = <span class="kw">match </span>(<span class="kw-2">&amp;</span>a, <span class="kw-2">&amp;</span>b) {
(<span class="kw-2">&amp;</span><span class="prelude-val">Some</span>(<span class="kw-2">ref </span>a), <span class="kw-2">&amp;</span><span class="prelude-val">Some</span>(<span class="kw-2">ref </span>b)) =&gt; a == b,
<span class="kw">_ </span>=&gt; <span class="bool-val">false</span>,
};
<span class="macro">assert!</span>(equal, <span class="string">&quot;Failed assertion {a:?} == {b:?} for iteration {i}&quot;</span>,
i=i, a=a, b=b);
i += <span class="number">1</span>;
}
}
}
}
<span class="doccomment">/// Partition a sequence using predicate `pred` so that elements
/// that map to `true` are placed before elements which map to `false`.
///
/// The order within the partitions is arbitrary.
///
/// Return the index of the split point.
///
/// ```
/// use itertools::partition;
///
/// # // use repeated numbers to not promise any ordering
/// let mut data = [7, 1, 1, 7, 1, 1, 7];
/// let split_index = partition(&amp;mut data, |elt| *elt &gt;= 3);
///
/// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]);
/// assert_eq!(split_index, 3);
/// ```
</span><span class="kw">pub fn </span>partition&lt;<span class="lifetime">&#39;a</span>, A: <span class="lifetime">&#39;a</span>, I, F&gt;(iter: I, <span class="kw-2">mut </span>pred: F) -&gt; usize
<span class="kw">where </span>I: IntoIterator&lt;Item = <span class="kw-2">&amp;</span><span class="lifetime">&#39;a </span><span class="kw-2">mut </span>A&gt;,
I::IntoIter: DoubleEndedIterator,
F: FnMut(<span class="kw-2">&amp;</span>A) -&gt; bool
{
<span class="kw">let </span><span class="kw-2">mut </span>split_index = <span class="number">0</span>;
<span class="kw">let </span><span class="kw-2">mut </span>iter = iter.into_iter();
<span class="lifetime">&#39;main</span>: <span class="kw">while let </span><span class="prelude-val">Some</span>(front) = iter.next() {
<span class="kw">if </span>!pred(front) {
<span class="kw">loop </span>{
<span class="kw">match </span>iter.next_back() {
<span class="prelude-val">Some</span>(back) =&gt; <span class="kw">if </span>pred(back) {
std::mem::swap(front, back);
<span class="kw">break</span>;
},
<span class="prelude-val">None </span>=&gt; <span class="kw">break </span><span class="lifetime">&#39;main</span>,
}
}
}
split_index += <span class="number">1</span>;
}
split_index
}
<span class="doccomment">/// An enum used for controlling the execution of `fold_while`.
///
/// See [`.fold_while()`](Itertools::fold_while) for more information.
</span><span class="attribute">#[derive(Copy, Clone, Debug, Eq, PartialEq)]
</span><span class="kw">pub enum </span>FoldWhile&lt;T&gt; {
<span class="doccomment">/// Continue folding with this value
</span>Continue(T),
<span class="doccomment">/// Fold is complete and will return this value
</span>Done(T),
}
<span class="kw">impl</span>&lt;T&gt; FoldWhile&lt;T&gt; {
<span class="doccomment">/// Return the value in the continue or done.
</span><span class="kw">pub fn </span>into_inner(<span class="self">self</span>) -&gt; T {
<span class="kw">match </span><span class="self">self </span>{
FoldWhile::Continue(x) | FoldWhile::Done(x) =&gt; x,
}
}
<span class="doccomment">/// Return true if `self` is `Done`, false if it is `Continue`.
</span><span class="kw">pub fn </span>is_done(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; bool {
<span class="kw">match </span><span class="kw-2">*</span><span class="self">self </span>{
FoldWhile::Continue(<span class="kw">_</span>) =&gt; <span class="bool-val">false</span>,
FoldWhile::Done(<span class="kw">_</span>) =&gt; <span class="bool-val">true</span>,
}
}
}
</code></pre></div>
</section></div></main><div id="rustdoc-vars" data-root-path="../../" data-current-crate="itertools" data-themes="ayu,dark,light" data-resource-suffix="" data-rustdoc-version="1.66.0-nightly (5c8bff74b 2022-10-21)" ></div></body></html>