blob: 0f957883950c152904649ffb602a81d5986f80bf [file] [log] [blame]
<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source of the Rust file `/root/.cargo/registry/src/github.com-1ecc6299db9ec823/arc-swap-1.6.0/src/docs/internal.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>internal.rs - source</title><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceSerif4-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../FiraSans-Regular.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../FiraSans-Medium.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceCodePro-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceSerif4-Bold.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceCodePro-Semibold.ttf.woff2"><link rel="stylesheet" href="../../../normalize.css"><link rel="stylesheet" href="../../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" href="../../../ayu.css" disabled><link rel="stylesheet" href="../../../dark.css" disabled><link rel="stylesheet" href="../../../light.css" id="themeStyle"><script id="default-settings" ></script><script src="../../../storage.js"></script><script defer src="../../../source-script.js"></script><script defer src="../../../source-files.js"></script><script defer src="../../../main.js"></script><noscript><link rel="stylesheet" href="../../../noscript.css"></noscript><link rel="alternate icon" type="image/png" href="../../../favicon-16x16.png"><link rel="alternate icon" type="image/png" href="../../../favicon-32x32.png"><link rel="icon" type="image/svg+xml" href="../../../favicon.svg"></head><body class="rustdoc source"><!--[if lte IE 11]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><a class="sidebar-logo" href="../../../arc_swap/index.html"><div class="logo-container"><img class="rust-logo" src="../../../rust-logo.svg" alt="logo"></div></a></nav><main><div class="width-limiter"><nav class="sub"><a class="sub-logo-container" href="../../../arc_swap/index.html"><img class="rust-logo" src="../../../rust-logo.svg" alt="logo"></a><form class="search-form"><div class="search-container"><span></span><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"><div id="help-button" title="help" tabindex="-1"><a href="../../../help.html">?</a></div><div id="settings-menu" tabindex="-1"><a href="../../../settings.html" title="settings"><img width="22" height="22" alt="Change settings" src="../../../wheel.svg"></a></div></div></form></nav><section id="main-content" class="content"><div class="example-wrap"><pre class="src-line-numbers"><span id="1">1</span>
<span id="2">2</span>
<span id="3">3</span>
<span id="4">4</span>
<span id="5">5</span>
<span id="6">6</span>
<span id="7">7</span>
<span id="8">8</span>
<span id="9">9</span>
<span id="10">10</span>
<span id="11">11</span>
<span id="12">12</span>
<span id="13">13</span>
<span id="14">14</span>
<span id="15">15</span>
<span id="16">16</span>
<span id="17">17</span>
<span id="18">18</span>
<span id="19">19</span>
<span id="20">20</span>
<span id="21">21</span>
<span id="22">22</span>
<span id="23">23</span>
<span id="24">24</span>
<span id="25">25</span>
<span id="26">26</span>
<span id="27">27</span>
<span id="28">28</span>
<span id="29">29</span>
<span id="30">30</span>
<span id="31">31</span>
<span id="32">32</span>
<span id="33">33</span>
<span id="34">34</span>
<span id="35">35</span>
<span id="36">36</span>
<span id="37">37</span>
<span id="38">38</span>
<span id="39">39</span>
<span id="40">40</span>
<span id="41">41</span>
<span id="42">42</span>
<span id="43">43</span>
<span id="44">44</span>
<span id="45">45</span>
<span id="46">46</span>
<span id="47">47</span>
<span id="48">48</span>
<span id="49">49</span>
<span id="50">50</span>
<span id="51">51</span>
<span id="52">52</span>
<span id="53">53</span>
<span id="54">54</span>
<span id="55">55</span>
<span id="56">56</span>
<span id="57">57</span>
<span id="58">58</span>
<span id="59">59</span>
<span id="60">60</span>
<span id="61">61</span>
<span id="62">62</span>
<span id="63">63</span>
<span id="64">64</span>
<span id="65">65</span>
<span id="66">66</span>
<span id="67">67</span>
<span id="68">68</span>
<span id="69">69</span>
<span id="70">70</span>
<span id="71">71</span>
<span id="72">72</span>
<span id="73">73</span>
<span id="74">74</span>
<span id="75">75</span>
<span id="76">76</span>
<span id="77">77</span>
<span id="78">78</span>
<span id="79">79</span>
<span id="80">80</span>
<span id="81">81</span>
<span id="82">82</span>
<span id="83">83</span>
<span id="84">84</span>
<span id="85">85</span>
<span id="86">86</span>
<span id="87">87</span>
<span id="88">88</span>
<span id="89">89</span>
<span id="90">90</span>
<span id="91">91</span>
<span id="92">92</span>
<span id="93">93</span>
<span id="94">94</span>
<span id="95">95</span>
<span id="96">96</span>
<span id="97">97</span>
<span id="98">98</span>
<span id="99">99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
</pre><pre class="rust"><code><span class="doccomment">//! Internal details.
//!
//! While the other parts of documentation are useful to users of the crate, this part is probably
//! helpful only if you want to look into the code or are curious about how it works internally.
//!
//! Also note that any of these details may change in future versions and are not part of the
//! stability guarantees. Don&#39;t rely on anything here.
//!
//! # Storing the [`Arc`].
//!
//! The [`Arc`] can be turned into a raw pointer and back. This is abstracted by the [`RefCnt`]
//! trait and it is technically possible to implement it for custom types (this crate also
//! implements it for [`Rc`] and [`Weak`], though the actual usefulness of these is a bit
//! questionable).
//!
//! The raw pointer is stored inside an [`AtomicPtr`].
//!
//! # Protection of reference counts
//!
//! The first idea would be to just use [`AtomicPtr`] with whatever the [`Arc::into_raw`] returns.
//! Then replacing it would be fine (there&#39;s no need to update ref counts). The load needs to
//! increment the reference count ‒ one still stays inside and another is returned to the caller.
//! This is done by re-creating the Arc from the raw pointer and then cloning it, throwing one
//! instance away (without destroying it).
//!
//! This approach has a problem. There&#39;s a short time between we read the raw pointer and increment
//! the count. If some other thread replaces the stored Arc and throws it away, the ref count could
//! drop to 0, get destroyed and we would be trying to bump ref counts in a ghost, which would be
//! totally broken.
//!
//! To prevent this, we actually use two approaches in a hybrid manner.
//!
//! The first one is based on hazard pointers idea, but slightly modified. There&#39;s a global
//! repository of pointers that owe a reference. When someone swaps a pointer, it walks this list
//! and pays all the debts (and takes them out of the repository).
//!
//! For simplicity and performance, storing into the repository is fallible. If storing into the
//! repository fails (because the thread used up all its own slots, or because the pointer got
//! replaced in just the wrong moment and it can&#39;t confirm the reservation), unlike the full
//! hazard-pointers approach, we don&#39;t retry, but fall back onto secondary strategy.
//!
//! The secondary strategy is similar, but a bit more complex (and therefore slower, that&#39;s why it
//! is only a fallback). We first publish an intent to read a pointer (and where we are reading it
//! from). Then we actually do so and publish the debt, like previously.
//!
//! The writer pays the debts as usual. But also, if it sees the intent to read the value, it helps
//! along, reads it, bumps the reference and passes it to the reader. Therefore, if the reader
//! fails to do the protection itself, because it got interrupted by a writer, it finds a
//! ready-made replacement value it can just use and doesn&#39;t have to retry. Also, the writer
//! doesn&#39;t have to wait for the reader in any way, because it can just solve its problem and move
//! on.
//!
//! # Unsafety
//!
//! All the uses of the unsafe keyword is just to turn the raw pointer back to Arc. It originated
//! from an Arc in the first place, so the only thing to ensure is it is still valid. That means its
//! ref count never dropped to 0.
//!
//! At the beginning, there&#39;s ref count of 1 stored in the raw pointer (and maybe some others
//! elsewhere, but we can&#39;t rely on these). This 1 stays there for the whole time the pointer is
//! stored there. When the arc is replaced, this 1 is returned to the caller, so we just have to
//! make sure no more readers access it by that time.
//!
//! # Leases and debts
//!
//! Instead of incrementing the reference count, the pointer reference can be owed. In such case, it
//! is recorded into a global storage. As each thread has its own storage (the global storage is
//! composed of multiple thread storages), the readers don&#39;t contend. When the pointer is no longer
//! in use, the debt is erased.
//!
//! The writer pays all the existing debts, therefore the reader have the full Arc with ref count at
//! that time. The reader is made aware the debt was paid and decrements the reference count.
//!
//! # Memory orders
//!
//! ## Synchronizing the data pointed to by the pointer.
//!
//! We have AcqRel (well, SeqCst, but that&#39;s included) on the swap and Acquire on the loads. In case
//! of the double read around the debt allocation, we do that on the *second*, because of ABA.
//! That&#39;s also why that SeqCst on the allocation of debt itself is not enough.
//! the *latest* decrement. By making both the increment and decrement AcqRel, we effectively chain
//! the edges together.
//!
//! # Memory orders around debts
//!
//! The linked list of debt nodes only grows. The shape of the list (existence of nodes) is
//! synchronized through Release on creation and Acquire on load on the head pointer.
//!
//! The debts work similar to locks ‒ Acquire and Release make all the pointer manipulation at the
//! interval where it is written down. However, we use the SeqCst on the allocation of the debt
//! because when we see an empty slot, we need to make sure that it happened after we have
//! overwritten the pointer.
//!
//! In case the writer pays the debt, it sees the new enough data (for the same reasons the stale
//! empties are not seen). The reference count on the Arc is AcqRel and makes sure it is not
//! destroyed too soon. The writer traverses all the slots, therefore they don&#39;t need to synchronize
//! with each other.
//!
//! Further details are inside the internal `debt` module.
//!
//! [`RefCnt`]: crate::RefCnt
//! [`Arc`]: std::sync::Arc
//! [`Arc::into_raw`]: std::sync::Arc::into_raw
//! [`Rc`]: std::rc::Rc
//! [`Weak`]: std::sync::Weak
//! [`AtomicPtr`]: std::sync::atomic::AtomicPtr
</span></code></pre></div>
</section></div></main><div id="rustdoc-vars" data-root-path="../../../" data-current-crate="arc_swap" data-themes="ayu,dark,light" data-resource-suffix="" data-rustdoc-version="1.66.0-nightly (5c8bff74b 2022-10-21)" ></div></body></html>