blob: a3e05db8a7ae08d6169e9cd3126b5296218b5b7d [file] [log] [blame]
<!DOCTYPE html><html lang="en"><head><meta charset="utf-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><meta name="generator" content="rustdoc"><meta name="description" content="Source of the Rust file `/root/.cargo/registry/src/github.com-1ecc6299db9ec823/aho-corasick-1.0.2/src/util/remapper.rs`."><meta name="keywords" content="rust, rustlang, rust-lang"><title>remapper.rs - source</title><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceSerif4-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../FiraSans-Regular.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../FiraSans-Medium.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceCodePro-Regular.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceSerif4-Bold.ttf.woff2"><link rel="preload" as="font" type="font/woff2" crossorigin href="../../../SourceCodePro-Semibold.ttf.woff2"><link rel="stylesheet" href="../../../normalize.css"><link rel="stylesheet" href="../../../rustdoc.css" id="mainThemeStyle"><link rel="stylesheet" href="../../../ayu.css" disabled><link rel="stylesheet" href="../../../dark.css" disabled><link rel="stylesheet" href="../../../light.css" id="themeStyle"><script id="default-settings" ></script><script src="../../../storage.js"></script><script defer src="../../../source-script.js"></script><script defer src="../../../source-files.js"></script><script defer src="../../../main.js"></script><noscript><link rel="stylesheet" href="../../../noscript.css"></noscript><link rel="alternate icon" type="image/png" href="../../../favicon-16x16.png"><link rel="alternate icon" type="image/png" href="../../../favicon-32x32.png"><link rel="icon" type="image/svg+xml" href="../../../favicon.svg"></head><body class="rustdoc source"><!--[if lte IE 11]><div class="warning">This old browser is unsupported and will most likely display funky things.</div><![endif]--><nav class="sidebar"><a class="sidebar-logo" href="../../../aho_corasick/index.html"><div class="logo-container"><img class="rust-logo" src="../../../rust-logo.svg" alt="logo"></div></a></nav><main><div class="width-limiter"><nav class="sub"><a class="sub-logo-container" href="../../../aho_corasick/index.html"><img class="rust-logo" src="../../../rust-logo.svg" alt="logo"></a><form class="search-form"><div class="search-container"><span></span><input class="search-input" name="search" autocomplete="off" spellcheck="false" placeholder="Click or press ‘S’ to search, ‘?’ for more options…" type="search"><div id="help-button" title="help" tabindex="-1"><a href="../../../help.html">?</a></div><div id="settings-menu" tabindex="-1"><a href="../../../settings.html" title="settings"><img width="22" height="22" alt="Change settings" src="../../../wheel.svg"></a></div></div></form></nav><section id="main-content" class="content"><div class="example-wrap"><pre class="src-line-numbers"><span id="1">1</span>
<span id="2">2</span>
<span id="3">3</span>
<span id="4">4</span>
<span id="5">5</span>
<span id="6">6</span>
<span id="7">7</span>
<span id="8">8</span>
<span id="9">9</span>
<span id="10">10</span>
<span id="11">11</span>
<span id="12">12</span>
<span id="13">13</span>
<span id="14">14</span>
<span id="15">15</span>
<span id="16">16</span>
<span id="17">17</span>
<span id="18">18</span>
<span id="19">19</span>
<span id="20">20</span>
<span id="21">21</span>
<span id="22">22</span>
<span id="23">23</span>
<span id="24">24</span>
<span id="25">25</span>
<span id="26">26</span>
<span id="27">27</span>
<span id="28">28</span>
<span id="29">29</span>
<span id="30">30</span>
<span id="31">31</span>
<span id="32">32</span>
<span id="33">33</span>
<span id="34">34</span>
<span id="35">35</span>
<span id="36">36</span>
<span id="37">37</span>
<span id="38">38</span>
<span id="39">39</span>
<span id="40">40</span>
<span id="41">41</span>
<span id="42">42</span>
<span id="43">43</span>
<span id="44">44</span>
<span id="45">45</span>
<span id="46">46</span>
<span id="47">47</span>
<span id="48">48</span>
<span id="49">49</span>
<span id="50">50</span>
<span id="51">51</span>
<span id="52">52</span>
<span id="53">53</span>
<span id="54">54</span>
<span id="55">55</span>
<span id="56">56</span>
<span id="57">57</span>
<span id="58">58</span>
<span id="59">59</span>
<span id="60">60</span>
<span id="61">61</span>
<span id="62">62</span>
<span id="63">63</span>
<span id="64">64</span>
<span id="65">65</span>
<span id="66">66</span>
<span id="67">67</span>
<span id="68">68</span>
<span id="69">69</span>
<span id="70">70</span>
<span id="71">71</span>
<span id="72">72</span>
<span id="73">73</span>
<span id="74">74</span>
<span id="75">75</span>
<span id="76">76</span>
<span id="77">77</span>
<span id="78">78</span>
<span id="79">79</span>
<span id="80">80</span>
<span id="81">81</span>
<span id="82">82</span>
<span id="83">83</span>
<span id="84">84</span>
<span id="85">85</span>
<span id="86">86</span>
<span id="87">87</span>
<span id="88">88</span>
<span id="89">89</span>
<span id="90">90</span>
<span id="91">91</span>
<span id="92">92</span>
<span id="93">93</span>
<span id="94">94</span>
<span id="95">95</span>
<span id="96">96</span>
<span id="97">97</span>
<span id="98">98</span>
<span id="99">99</span>
<span id="100">100</span>
<span id="101">101</span>
<span id="102">102</span>
<span id="103">103</span>
<span id="104">104</span>
<span id="105">105</span>
<span id="106">106</span>
<span id="107">107</span>
<span id="108">108</span>
<span id="109">109</span>
<span id="110">110</span>
<span id="111">111</span>
<span id="112">112</span>
<span id="113">113</span>
<span id="114">114</span>
<span id="115">115</span>
<span id="116">116</span>
<span id="117">117</span>
<span id="118">118</span>
<span id="119">119</span>
<span id="120">120</span>
<span id="121">121</span>
<span id="122">122</span>
<span id="123">123</span>
<span id="124">124</span>
<span id="125">125</span>
<span id="126">126</span>
<span id="127">127</span>
<span id="128">128</span>
<span id="129">129</span>
<span id="130">130</span>
<span id="131">131</span>
<span id="132">132</span>
<span id="133">133</span>
<span id="134">134</span>
<span id="135">135</span>
<span id="136">136</span>
<span id="137">137</span>
<span id="138">138</span>
<span id="139">139</span>
<span id="140">140</span>
<span id="141">141</span>
<span id="142">142</span>
<span id="143">143</span>
<span id="144">144</span>
<span id="145">145</span>
<span id="146">146</span>
<span id="147">147</span>
<span id="148">148</span>
<span id="149">149</span>
<span id="150">150</span>
<span id="151">151</span>
<span id="152">152</span>
<span id="153">153</span>
<span id="154">154</span>
<span id="155">155</span>
<span id="156">156</span>
<span id="157">157</span>
<span id="158">158</span>
<span id="159">159</span>
<span id="160">160</span>
<span id="161">161</span>
<span id="162">162</span>
<span id="163">163</span>
<span id="164">164</span>
<span id="165">165</span>
<span id="166">166</span>
<span id="167">167</span>
<span id="168">168</span>
<span id="169">169</span>
<span id="170">170</span>
<span id="171">171</span>
<span id="172">172</span>
<span id="173">173</span>
<span id="174">174</span>
<span id="175">175</span>
<span id="176">176</span>
<span id="177">177</span>
<span id="178">178</span>
<span id="179">179</span>
<span id="180">180</span>
<span id="181">181</span>
<span id="182">182</span>
<span id="183">183</span>
<span id="184">184</span>
<span id="185">185</span>
<span id="186">186</span>
<span id="187">187</span>
<span id="188">188</span>
<span id="189">189</span>
<span id="190">190</span>
<span id="191">191</span>
<span id="192">192</span>
<span id="193">193</span>
<span id="194">194</span>
<span id="195">195</span>
<span id="196">196</span>
<span id="197">197</span>
<span id="198">198</span>
<span id="199">199</span>
<span id="200">200</span>
<span id="201">201</span>
<span id="202">202</span>
<span id="203">203</span>
<span id="204">204</span>
<span id="205">205</span>
<span id="206">206</span>
<span id="207">207</span>
<span id="208">208</span>
<span id="209">209</span>
<span id="210">210</span>
<span id="211">211</span>
<span id="212">212</span>
<span id="213">213</span>
<span id="214">214</span>
</pre><pre class="rust"><code><span class="kw">use </span>alloc::vec::Vec;
<span class="kw">use crate</span>::{nfa::noncontiguous, util::primitives::StateID};
<span class="doccomment">/// Remappable is a tightly coupled abstraction that facilitates remapping
/// state identifiers in DFAs.
///
/// The main idea behind remapping state IDs is that DFAs often need to check
/// if a certain state is a &quot;special&quot; state of some kind (like a match state)
/// during a search. Since this is extremely perf critical code, we want this
/// check to be as fast as possible. Partitioning state IDs into, for example,
/// into &quot;non-match&quot; and &quot;match&quot; states means one can tell if a state is a
/// match state via a simple comparison of the state ID.
///
/// The issue is that during the DFA construction process, it&#39;s not
/// particularly easy to partition the states. Instead, the simplest thing is
/// to often just do a pass over all of the states and shuffle them into their
/// desired partitionings. To do that, we need a mechanism for swapping states.
/// Hence, this abstraction.
///
/// Normally, for such little code, I would just duplicate it. But this is a
/// key optimization and the implementation is a bit subtle. So the abstraction
/// is basically a ham-fisted attempt at DRY. The only place we use this is in
/// the dense and one-pass DFAs.
///
/// See also src/dfa/special.rs for a more detailed explanation of how dense
/// DFAs are partitioned.
</span><span class="kw">pub</span>(<span class="kw">crate</span>) <span class="kw">trait </span>Remappable: core::fmt::Debug {
<span class="doccomment">/// Return the total number of states.
</span><span class="kw">fn </span>state_len(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; usize;
<span class="doccomment">/// Swap the states pointed to by the given IDs. The underlying finite
/// state machine should be mutated such that all of the transitions in
/// `id1` are now in the memory region where the transitions for `id2`
/// were, and all of the transitions in `id2` are now in the memory region
/// where the transitions for `id1` were.
///
/// Essentially, this &quot;moves&quot; `id1` to `id2` and `id2` to `id1`.
///
/// It is expected that, after calling this, the underlying state machine
/// will be left in an inconsistent state, since any other transitions
/// pointing to, e.g., `id1` need to be updated to point to `id2`, since
/// that&#39;s where `id1` moved to.
///
/// In order to &quot;fix&quot; the underlying inconsistent state, a `Remapper`
/// should be used to guarantee that `remap` is called at the appropriate
/// time.
</span><span class="kw">fn </span>swap_states(<span class="kw-2">&amp;mut </span><span class="self">self</span>, id1: StateID, id2: StateID);
<span class="doccomment">/// This must remap every single state ID in the underlying value according
/// to the function given. For example, in a DFA, this should remap every
/// transition and every starting state ID.
</span><span class="kw">fn </span>remap(<span class="kw-2">&amp;mut </span><span class="self">self</span>, map: <span class="kw">impl </span>Fn(StateID) -&gt; StateID);
}
<span class="doccomment">/// Remapper is an abstraction the manages the remapping of state IDs in a
/// finite state machine. This is useful when one wants to shuffle states into
/// different positions in the machine.
///
/// One of the key complexities this manages is the ability to correctly move
/// one state multiple times.
///
/// Once shuffling is complete, `remap` must be called, which will rewrite
/// all pertinent transitions to updated state IDs. Neglecting to call `remap`
/// will almost certainly result in a corrupt machine.
</span><span class="attribute">#[derive(Debug)]
</span><span class="kw">pub</span>(<span class="kw">crate</span>) <span class="kw">struct </span>Remapper {
<span class="doccomment">/// A map from the index of a state to its pre-multiplied identifier.
///
/// When a state is swapped with another, then their corresponding
/// locations in this map are also swapped. Thus, its new position will
/// still point to its old pre-multiplied StateID.
///
/// While there is a bit more to it, this then allows us to rewrite the
/// state IDs in a DFA&#39;s transition table in a single pass. This is done
/// by iterating over every ID in this map, then iterating over each
/// transition for the state at that ID and re-mapping the transition from
/// `old_id` to `map[dfa.to_index(old_id)]`. That is, we find the position
/// in this map where `old_id` *started*, and set it to where it ended up
/// after all swaps have been completed.
</span>map: Vec&lt;StateID&gt;,
<span class="doccomment">/// A way to map indices to state IDs (and back).
</span>idx: IndexMapper,
}
<span class="kw">impl </span>Remapper {
<span class="doccomment">/// Create a new remapper from the given remappable implementation. The
/// remapper can then be used to swap states. The remappable value given
/// here must the same one given to `swap` and `remap`.
///
/// The given stride should be the stride of the transition table expressed
/// as a power of 2. This stride is used to map between state IDs and state
/// indices. If state IDs and state indices are equivalent, then provide
/// a `stride2` of `0`, which acts as an identity.
</span><span class="kw">pub</span>(<span class="kw">crate</span>) <span class="kw">fn </span>new(r: <span class="kw-2">&amp;</span><span class="kw">impl </span>Remappable, stride2: usize) -&gt; Remapper {
<span class="kw">let </span>idx = IndexMapper { stride2 };
<span class="kw">let </span>map = (<span class="number">0</span>..r.state_len()).map(|i| idx.to_state_id(i)).collect();
Remapper { map, idx }
}
<span class="doccomment">/// Swap two states. Once this is called, callers must follow through to
/// call `remap`, or else it&#39;s possible for the underlying remappable
/// value to be in a corrupt state.
</span><span class="kw">pub</span>(<span class="kw">crate</span>) <span class="kw">fn </span>swap(
<span class="kw-2">&amp;mut </span><span class="self">self</span>,
r: <span class="kw-2">&amp;mut </span><span class="kw">impl </span>Remappable,
id1: StateID,
id2: StateID,
) {
<span class="kw">if </span>id1 == id2 {
<span class="kw">return</span>;
}
r.swap_states(id1, id2);
<span class="self">self</span>.map.swap(<span class="self">self</span>.idx.to_index(id1), <span class="self">self</span>.idx.to_index(id2));
}
<span class="doccomment">/// Complete the remapping process by rewriting all state IDs in the
/// remappable value according to the swaps performed.
</span><span class="kw">pub</span>(<span class="kw">crate</span>) <span class="kw">fn </span>remap(<span class="kw-2">mut </span><span class="self">self</span>, r: <span class="kw-2">&amp;mut </span><span class="kw">impl </span>Remappable) {
<span class="comment">// Update the map to account for states that have been swapped
// multiple times. For example, if (A, C) and (C, G) are swapped, then
// transitions previously pointing to A should now point to G. But if
// we don&#39;t update our map, they will erroneously be set to C. All we
// do is follow the swaps in our map until we see our original state
// ID.
//
// The intuition here is to think about how changes are made to the
// map: only through pairwise swaps. That means that starting at any
// given state, it is always possible to find the loop back to that
// state by following the swaps represented in the map (which might be
// 0 swaps).
//
// We are also careful to clone the map before starting in order to
// freeze it. We use the frozen map to find our loops, since we need to
// update our map as well. Without freezing it, our updates could break
// the loops referenced above and produce incorrect results.
</span><span class="kw">let </span>oldmap = <span class="self">self</span>.map.clone();
<span class="kw">for </span>i <span class="kw">in </span><span class="number">0</span>..r.state_len() {
<span class="kw">let </span>cur_id = <span class="self">self</span>.idx.to_state_id(i);
<span class="kw">let </span><span class="kw-2">mut </span>new_id = oldmap[i];
<span class="kw">if </span>cur_id == new_id {
<span class="kw">continue</span>;
}
<span class="kw">loop </span>{
<span class="kw">let </span>id = oldmap[<span class="self">self</span>.idx.to_index(new_id)];
<span class="kw">if </span>cur_id == id {
<span class="self">self</span>.map[i] = new_id;
<span class="kw">break</span>;
}
new_id = id;
}
}
r.remap(|sid| <span class="self">self</span>.map[<span class="self">self</span>.idx.to_index(sid)]);
}
}
<span class="doccomment">/// A simple type for mapping between state indices and state IDs.
///
/// The reason why this exists is because state IDs are &quot;premultiplied&quot; in a
/// DFA. That is, in order to get to the transitions for a particular state,
/// one need only use the state ID as-is, instead of having to multiply it by
/// transition table&#39;s stride.
///
/// The downside of this is that it&#39;s inconvenient to map between state IDs
/// using a dense map, e.g., Vec&lt;StateID&gt;. That&#39;s because state IDs look like
/// `0`, `stride`, `2*stride`, `3*stride`, etc., instead of `0`, `1`, `2`, `3`,
/// etc.
///
/// Since our state IDs are premultiplied, we can convert back-and-forth
/// between IDs and indices by simply unmultiplying the IDs and multiplying the
/// indices.
///
/// Note that for a sparse NFA, state IDs and indices are equivalent. In this
/// case, we set the stride of the index mapped to be `0`, which acts as an
/// identity.
</span><span class="attribute">#[derive(Debug)]
</span><span class="kw">struct </span>IndexMapper {
<span class="doccomment">/// The power of 2 corresponding to the stride of the corresponding
/// transition table. &#39;id &gt;&gt; stride2&#39; de-multiplies an ID while &#39;index &lt;&lt;
/// stride2&#39; pre-multiplies an index to an ID.
</span>stride2: usize,
}
<span class="kw">impl </span>IndexMapper {
<span class="doccomment">/// Convert a state ID to a state index.
</span><span class="kw">fn </span>to_index(<span class="kw-2">&amp;</span><span class="self">self</span>, id: StateID) -&gt; usize {
id.as_usize() &gt;&gt; <span class="self">self</span>.stride2
}
<span class="doccomment">/// Convert a state index to a state ID.
</span><span class="kw">fn </span>to_state_id(<span class="kw-2">&amp;</span><span class="self">self</span>, index: usize) -&gt; StateID {
<span class="comment">// CORRECTNESS: If the given index is not valid, then it is not
// required for this to panic or return a valid state ID. We&#39;ll &quot;just&quot;
// wind up with panics or silent logic errors at some other point. But
// this is OK because if Remappable::state_len is correct and so is
// &#39;to_index&#39;, then all inputs to &#39;to_state_id&#39; should be valid indices
// and thus transform into valid state IDs.
</span>StateID::new_unchecked(index &lt;&lt; <span class="self">self</span>.stride2)
}
}
<span class="kw">impl </span>Remappable <span class="kw">for </span>noncontiguous::NFA {
<span class="kw">fn </span>state_len(<span class="kw-2">&amp;</span><span class="self">self</span>) -&gt; usize {
noncontiguous::NFA::states(<span class="self">self</span>).len()
}
<span class="kw">fn </span>swap_states(<span class="kw-2">&amp;mut </span><span class="self">self</span>, id1: StateID, id2: StateID) {
noncontiguous::NFA::swap_states(<span class="self">self</span>, id1, id2)
}
<span class="kw">fn </span>remap(<span class="kw-2">&amp;mut </span><span class="self">self</span>, map: <span class="kw">impl </span>Fn(StateID) -&gt; StateID) {
noncontiguous::NFA::remap(<span class="self">self</span>, map)
}
}
</code></pre></div>
</section></div></main><div id="rustdoc-vars" data-root-path="../../../" data-current-crate="aho_corasick" data-themes="ayu,dark,light" data-resource-suffix="" data-rustdoc-version="1.66.0-nightly (5c8bff74b 2022-10-21)" ></div></body></html>