blob: d762044262b2749edd667ead80507d7031b5e2df [file] [log] [blame]
use std::prelude::v1::*;
use {IntoBuf, Buf, BufMut};
use buf::Iter;
use debug;
use std::{cmp, fmt, mem, hash, ops, slice, ptr, usize};
use std::borrow::{Borrow, BorrowMut};
use std::io::Cursor;
use std::sync::atomic::{self, AtomicUsize, AtomicPtr};
use std::sync::atomic::Ordering::{Relaxed, Acquire, Release, AcqRel};
use std::iter::{FromIterator, Iterator};
/// A reference counted contiguous slice of memory.
///
/// `Bytes` is an efficient container for storing and operating on contiguous
/// slices of memory. It is intended for use primarily in networking code, but
/// could have applications elsewhere as well.
///
/// `Bytes` values facilitate zero-copy network programming by allowing multiple
/// `Bytes` objects to point to the same underlying memory. This is managed by
/// using a reference count to track when the memory is no longer needed and can
/// be freed.
///
/// ```
/// use bytes::Bytes;
///
/// let mut mem = Bytes::from(&b"Hello world"[..]);
/// let a = mem.slice(0, 5);
///
/// assert_eq!(&a[..], b"Hello");
///
/// let b = mem.split_to(6);
///
/// assert_eq!(&mem[..], b"world");
/// assert_eq!(&b[..], b"Hello ");
/// ```
///
/// # Memory layout
///
/// The `Bytes` struct itself is fairly small, limited to a pointer to the
/// memory and 4 `usize` fields used to track information about which segment of
/// the underlying memory the `Bytes` handle has access to.
///
/// The memory layout looks like this:
///
/// ```text
/// +-------+
/// | Bytes |
/// +-------+
/// / \_____
/// | \
/// v v
/// +-----+------------------------------------+
/// | Arc | | Data | |
/// +-----+------------------------------------+
/// ```
///
/// `Bytes` keeps both a pointer to the shared `Arc` containing the full memory
/// slice and a pointer to the start of the region visible by the handle.
/// `Bytes` also tracks the length of its view into the memory.
///
/// # Sharing
///
/// The memory itself is reference counted, and multiple `Bytes` objects may
/// point to the same region. Each `Bytes` handle point to different sections within
/// the memory region, and `Bytes` handle may or may not have overlapping views
/// into the memory.
///
///
/// ```text
///
/// Arc ptrs +---------+
/// ________________________ / | Bytes 2 |
/// / +---------+
/// / +-----------+ | |
/// |_________/ | Bytes 1 | | |
/// | +-----------+ | |
/// | | | ___/ data | tail
/// | data | tail |/ |
/// v v v v
/// +-----+---------------------------------+-----+
/// | Arc | | | | |
/// +-----+---------------------------------+-----+
/// ```
///
/// # Mutating
///
/// While `Bytes` handles may potentially represent overlapping views of the
/// underlying memory slice and may not be mutated, `BytesMut` handles are
/// guaranteed to be the only handle able to view that slice of memory. As such,
/// `BytesMut` handles are able to mutate the underlying memory. Note that
/// holding a unique view to a region of memory does not mean that there are no
/// other `Bytes` and `BytesMut` handles with disjoint views of the underlying
/// memory.
///
/// # Inline bytes
///
/// As an optimization, when the slice referenced by a `Bytes` or `BytesMut`
/// handle is small enough [1], `Bytes` will avoid the allocation by inlining
/// the slice directly in the handle. In this case, a clone is no longer
/// "shallow" and the data will be copied.
///
/// [1] Small enough: 31 bytes on 64 bit systems, 15 on 32 bit systems.
///
pub struct Bytes {
inner: Inner,
}
/// A unique reference to a contiguous slice of memory.
///
/// `BytesMut` represents a unique view into a potentially shared memory region.
/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
/// mutate the memory. It is similar to a `Vec<u8>` but with less copies and
/// allocations.
///
/// For more detail, see [Bytes](struct.Bytes.html).
///
/// # Growth
///
/// One key difference from `Vec<u8>` is that most operations **do not
/// implicitly grow the buffer**. This means that calling `my_bytes.put("hello
/// world");` could panic if `my_bytes` does not have enough capacity. Before
/// writing to the buffer, ensure that there is enough remaining capacity by
/// calling `my_bytes.remaining_mut()`. In general, avoiding calls to `reserve`
/// is preferable.
///
/// The only exception is `extend` which implicitly reserves required capacity.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(64);
///
/// buf.put(b'h');
/// buf.put(b'e');
/// buf.put("llo");
///
/// assert_eq!(&buf[..], b"hello");
///
/// // Freeze the buffer so that it can be shared
/// let a = buf.freeze();
///
/// // This does not allocate, instead `b` points to the same memory.
/// let b = a.clone();
///
/// assert_eq!(&a[..], b"hello");
/// assert_eq!(&b[..], b"hello");
/// ```
pub struct BytesMut {
inner: Inner,
}
// Both `Bytes` and `BytesMut` are backed by `Inner` and functions are delegated
// to `Inner` functions. The `Bytes` and `BytesMut` shims ensure that functions
// that mutate the underlying buffer are only performed when the data range
// being mutated is only available via a single `BytesMut` handle.
//
// # Data storage modes
//
// The goal of `bytes` is to be as efficient as possible across a wide range of
// potential usage patterns. As such, `bytes` needs to be able to handle buffers
// that are never shared, shared on a single thread, and shared across many
// threads. `bytes` also needs to handle both tiny buffers as well as very large
// buffers. For example, [Cassandra](http://cassandra.apache.org) values have
// been known to be in the hundreds of megabyte, and HTTP header values can be a
// few characters in size.
//
// To achieve high performance in these various situations, `Bytes` and
// `BytesMut` use different strategies for storing the buffer depending on the
// usage pattern.
//
// ## Delayed `Arc` allocation
//
// When a `Bytes` or `BytesMut` is first created, there is only one outstanding
// handle referencing the buffer. Since sharing is not yet required, an `Arc`* is
// not used and the buffer is backed by a `Vec<u8>` directly. Using an
// `Arc<Vec<u8>>` requires two allocations, so if the buffer ends up never being
// shared, that allocation is avoided.
//
// When sharing does become necessary (`clone`, `split_to`, `split_off`), that
// is when the buffer is promoted to being shareable. The `Vec<u8>` is moved
// into an `Arc` and both the original handle and the new handle use the same
// buffer via the `Arc`.
//
// * `Arc` is being used to signify an atomically reference counted cell. We
// don't use the `Arc` implementation provided by `std` and instead use our own.
// This ends up simplifying a number of the `unsafe` code snippets.
//
// ## Inlining small buffers
//
// The `Bytes` / `BytesMut` structs require 4 pointer sized fields. On 64 bit
// systems, this ends up being 32 bytes, which is actually a lot of storage for
// cases where `Bytes` is being used to represent small byte strings, such as
// HTTP header names and values.
//
// To avoid any allocation at all in these cases, `Bytes` will use the struct
// itself for storing the buffer, reserving 1 byte for meta data. This means
// that, on 64 bit systems, 31 byte buffers require no allocation at all.
//
// The byte used for metadata stores a 2 bits flag used to indicate that the
// buffer is stored inline as well as 6 bits for tracking the buffer length (the
// return value of `Bytes::len`).
//
// ## Static buffers
//
// `Bytes` can also represent a static buffer, which is created with
// `Bytes::from_static`. No copying or allocations are required for tracking
// static buffers. The pointer to the `&'static [u8]`, the length, and a flag
// tracking that the `Bytes` instance represents a static buffer is stored in
// the `Bytes` struct.
//
// # Struct layout
//
// Both `Bytes` and `BytesMut` are wrappers around `Inner`, which provides the
// data fields as well as all of the function implementations.
//
// The `Inner` struct is carefully laid out in order to support the
// functionality described above as well as being as small as possible. Size is
// important as growing the size of the `Bytes` struct from 32 bytes to 40 bytes
// added as much as 15% overhead in benchmarks using `Bytes` in an HTTP header
// map structure.
//
// The `Inner` struct contains the following fields:
//
// * `ptr: *mut u8`
// * `len: usize`
// * `cap: usize`
// * `arc: AtomicPtr<Shared>`
//
// ## `ptr: *mut u8`
//
// A pointer to start of the handle's buffer view. When backed by a `Vec<u8>`,
// this is always the `Vec`'s pointer. When backed by an `Arc<Vec<u8>>`, `ptr`
// may have been shifted to point somewhere inside the buffer.
//
// When in "inlined" mode, `ptr` is used as part of the inlined buffer.
//
// ## `len: usize`
//
// The length of the handle's buffer view. When backed by a `Vec<u8>`, this is
// always the `Vec`'s length. The slice represented by `ptr` and `len` should
// (ideally) always be initialized memory.
//
// When in "inlined" mode, `len` is used as part of the inlined buffer.
//
// ## `cap: usize`
//
// The capacity of the handle's buffer view. When backed by a `Vec<u8>`, this is
// always the `Vec`'s capacity. The slice represented by `ptr+len` and `cap-len`
// may or may not be initialized memory.
//
// When in "inlined" mode, `cap` is used as part of the inlined buffer.
//
// ## `arc: AtomicPtr<Shared>`
//
// When `Inner` is in allocated mode (backed by Vec<u8> or Arc<Vec<u8>>), this
// will be the pointer to the `Arc` structure tracking the ref count for the
// underlying buffer. When the pointer is null, then the `Arc` has not been
// allocated yet and `self` is the only outstanding handle for the underlying
// buffer.
//
// The lower two bits of `arc` are used to track the storage mode of `Inner`.
// `0b01` indicates inline storage, `0b10` indicates static storage, and `0b11`
// indicates vector storage, not yet promoted to Arc. Since pointers to
// allocated structures are aligned, the lower two bits of a pointer will always
// be 0. This allows disambiguating between a pointer and the two flags.
//
// When in "inlined" mode, the least significant byte of `arc` is also used to
// store the length of the buffer view (vs. the capacity, which is a constant).
//
// The rest of `arc`'s bytes are used as part of the inline buffer, which means
// that those bytes need to be located next to the `ptr`, `len`, and `cap`
// fields, which make up the rest of the inline buffer. This requires special
// casing the layout of `Inner` depending on if the target platform is bit or
// little endian.
//
// On little endian platforms, the `arc` field must be the first field in the
// struct. On big endian platforms, the `arc` field must be the last field in
// the struct. Since a deterministic struct layout is required, `Inner` is
// annotated with `#[repr(C)]`.
//
// # Thread safety
//
// `Bytes::clone()` returns a new `Bytes` handle with no copying. This is done
// by bumping the buffer ref count and returning a new struct pointing to the
// same buffer. However, the `Arc` structure is lazily allocated. This means
// that if `Bytes` is stored itself in an `Arc` (`Arc<Bytes>`), the `clone`
// function can be called concurrently from multiple threads. This is why an
// `AtomicPtr` is used for the `arc` field vs. a `*const`.
//
// Care is taken to ensure that the need for synchronization is minimized. Most
// operations do not require any synchronization.
//
#[cfg(target_endian = "little")]
#[repr(C)]
struct Inner {
// WARNING: Do not access the fields directly unless you know what you are
// doing. Instead, use the fns. See implementation comment above.
arc: AtomicPtr<Shared>,
ptr: *mut u8,
len: usize,
cap: usize,
}
#[cfg(target_endian = "big")]
#[repr(C)]
struct Inner {
// WARNING: Do not access the fields directly unless you know what you are
// doing. Instead, use the fns. See implementation comment above.
ptr: *mut u8,
len: usize,
cap: usize,
arc: AtomicPtr<Shared>,
}
// Thread-safe reference-counted container for the shared storage. This mostly
// the same as `std::sync::Arc` but without the weak counter. The ref counting
// fns are based on the ones found in `std`.
//
// The main reason to use `Shared` instead of `std::sync::Arc` is that it ends
// up making the overall code simpler and easier to reason about. This is due to
// some of the logic around setting `Inner::arc` and other ways the `arc` field
// is used. Using `Arc` ended up requiring a number of funky transmutes and
// other shenanigans to make it work.
struct Shared {
vec: Vec<u8>,
original_capacity_repr: usize,
ref_count: AtomicUsize,
}
// Buffer storage strategy flags.
const KIND_ARC: usize = 0b00;
const KIND_INLINE: usize = 0b01;
const KIND_STATIC: usize = 0b10;
const KIND_VEC: usize = 0b11;
const KIND_MASK: usize = 0b11;
// The max original capacity value. Any `Bytes` allocated with a greater initial
// capacity will default to this.
const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
// The original capacity algorithm will not take effect unless the originally
// allocated capacity was at least 1kb in size.
const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
// The original capacity is stored in powers of 2 starting at 1kb to a max of
// 64kb. Representing it as such requires only 3 bits of storage.
const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
const ORIGINAL_CAPACITY_OFFSET: usize = 2;
// When the storage is in the `Vec` representation, the pointer can be advanced
// at most this value. This is due to the amount of storage available to track
// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
// bits.
const VEC_POS_OFFSET: usize = 5;
const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
const NOT_VEC_POS_MASK: usize = 0b11111;
// Bit op constants for extracting the inline length value from the `arc` field.
const INLINE_LEN_MASK: usize = 0b11111100;
const INLINE_LEN_OFFSET: usize = 2;
// Byte offset from the start of `Inner` to where the inline buffer data
// starts. On little endian platforms, the first byte of the struct is the
// storage flag, so the data is shifted by a byte. On big endian systems, the
// data starts at the beginning of the struct.
#[cfg(target_endian = "little")]
const INLINE_DATA_OFFSET: isize = 1;
#[cfg(target_endian = "big")]
const INLINE_DATA_OFFSET: isize = 0;
#[cfg(target_pointer_width = "64")]
const PTR_WIDTH: usize = 64;
#[cfg(target_pointer_width = "32")]
const PTR_WIDTH: usize = 32;
// Inline buffer capacity. This is the size of `Inner` minus 1 byte for the
// metadata.
#[cfg(target_pointer_width = "64")]
const INLINE_CAP: usize = 4 * 8 - 1;
#[cfg(target_pointer_width = "32")]
const INLINE_CAP: usize = 4 * 4 - 1;
/*
*
* ===== Bytes =====
*
*/
impl Bytes {
/// Creates a new `Bytes` with the specified capacity.
///
/// The returned `Bytes` will be able to hold at least `capacity` bytes
/// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
/// then `BytesMut` will not allocate.
///
/// It is important to note that this function does not specify the length
/// of the returned `Bytes`, but only the capacity.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut bytes = Bytes::with_capacity(64);
///
/// // `bytes` contains no data, even though there is capacity
/// assert_eq!(bytes.len(), 0);
///
/// bytes.extend_from_slice(&b"hello world"[..]);
///
/// assert_eq!(&bytes[..], b"hello world");
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> Bytes {
Bytes {
inner: Inner::with_capacity(capacity),
}
}
/// Creates a new empty `Bytes`.
///
/// This will not allocate and the returned `Bytes` handle will be empty.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::new();
/// assert_eq!(&b[..], b"");
/// ```
#[inline]
pub fn new() -> Bytes {
Bytes::with_capacity(0)
}
/// Creates a new `Bytes` from a static slice.
///
/// The returned `Bytes` will point directly to the static slice. There is
/// no allocating or copying.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::from_static(b"hello");
/// assert_eq!(&b[..], b"hello");
/// ```
#[inline]
pub fn from_static(bytes: &'static [u8]) -> Bytes {
Bytes {
inner: Inner::from_static(bytes),
}
}
/// Returns the number of bytes contained in this `Bytes`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::from(&b"hello"[..]);
/// assert_eq!(b.len(), 5);
/// ```
pub fn len(&self) -> usize {
self.inner.len()
}
/// Returns true if the `Bytes` has a length of 0.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let b = Bytes::new();
/// assert!(b.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
/// Returns a slice of self for the index range `[begin..end)`.
///
/// This will increment the reference count for the underlying memory and
/// return a new `Bytes` handle set to the slice.
///
/// This operation is `O(1)`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"hello world"[..]);
/// let b = a.slice(2, 5);
///
/// assert_eq!(&b[..], b"llo");
/// ```
///
/// # Panics
///
/// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing
/// will panic.
pub fn slice(&self, begin: usize, end: usize) -> Bytes {
assert!(begin <= end);
assert!(end <= self.len());
if end - begin <= INLINE_CAP {
return Bytes::from(&self[begin..end]);
}
let mut ret = self.clone();
unsafe {
ret.inner.set_end(end);
ret.inner.set_start(begin);
}
ret
}
/// Returns a slice of self for the index range `[begin..self.len())`.
///
/// This will increment the reference count for the underlying memory and
/// return a new `Bytes` handle set to the slice.
///
/// This operation is `O(1)` and is equivalent to `self.slice(begin,
/// self.len())`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"hello world"[..]);
/// let b = a.slice_from(6);
///
/// assert_eq!(&b[..], b"world");
/// ```
///
/// # Panics
///
/// Requires that `begin <= self.len()`, otherwise slicing will panic.
pub fn slice_from(&self, begin: usize) -> Bytes {
self.slice(begin, self.len())
}
/// Returns a slice of self for the index range `[0..end)`.
///
/// This will increment the reference count for the underlying memory and
/// return a new `Bytes` handle set to the slice.
///
/// This operation is `O(1)` and is equivalent to `self.slice(0, end)`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"hello world"[..]);
/// let b = a.slice_to(5);
///
/// assert_eq!(&b[..], b"hello");
/// ```
///
/// # Panics
///
/// Requires that `end <= self.len()`, otherwise slicing will panic.
pub fn slice_to(&self, end: usize) -> Bytes {
self.slice(0, end)
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes`
/// contains elements `[at, len)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut a = Bytes::from(&b"hello world"[..]);
/// let b = a.split_off(5);
///
/// assert_eq!(&a[..], b"hello");
/// assert_eq!(&b[..], b" world");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
pub fn split_off(&mut self, at: usize) -> Bytes {
assert!(at <= self.len());
if at == self.len() {
return Bytes::new();
}
if at == 0 {
return mem::replace(self, Bytes::new());
}
Bytes {
inner: self.inner.split_off(at),
}
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[at, len)`, and the returned
/// `Bytes` contains elements `[0, at)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut a = Bytes::from(&b"hello world"[..]);
/// let b = a.split_to(5);
///
/// assert_eq!(&a[..], b" world");
/// assert_eq!(&b[..], b"hello");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
pub fn split_to(&mut self, at: usize) -> Bytes {
assert!(at <= self.len());
if at == self.len() {
return mem::replace(self, Bytes::new());
}
if at == 0 {
return Bytes::new();
}
Bytes {
inner: self.inner.split_to(at),
}
}
#[deprecated(since = "0.4.1", note = "use split_to instead")]
#[doc(hidden)]
pub fn drain_to(&mut self, at: usize) -> Bytes {
self.split_to(at)
}
/// Shortens the buffer, keeping the first `len` bytes and dropping the
/// rest.
///
/// If `len` is greater than the buffer's current length, this has no
/// effect.
///
/// The [`split_off`] method can emulate `truncate`, but this causes the
/// excess bytes to be returned instead of dropped.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from(&b"hello world"[..]);
/// buf.truncate(5);
/// assert_eq!(buf, b"hello"[..]);
/// ```
///
/// [`split_off`]: #method.split_off
pub fn truncate(&mut self, len: usize) {
self.inner.truncate(len);
}
/// Shortens the buffer, dropping the first `cnt` bytes and keeping the
/// rest.
///
/// This is the same function as `Buf::advance`, and in the next breaking
/// release of `bytes`, this implementation will be removed in favor of
/// having `Bytes` implement `Buf`.
///
/// # Panics
///
/// This function panics if `cnt` is greater than `self.len()`
#[inline]
pub fn advance(&mut self, cnt: usize) {
assert!(cnt <= self.len(), "cannot advance past `remaining`");
unsafe { self.inner.set_start(cnt); }
}
/// Clears the buffer, removing all data.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from(&b"hello world"[..]);
/// buf.clear();
/// assert!(buf.is_empty());
/// ```
pub fn clear(&mut self) {
self.truncate(0);
}
/// Attempts to convert into a `BytesMut` handle.
///
/// This will only succeed if there are no other outstanding references to
/// the underlying chunk of memory. `Bytes` handles that contain inlined
/// bytes will always be convertable to `BytesMut`.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let a = Bytes::from(&b"Mary had a little lamb, little lamb, little lamb..."[..]);
///
/// // Create a shallow clone
/// let b = a.clone();
///
/// // This will fail because `b` shares a reference with `a`
/// let a = a.try_mut().unwrap_err();
///
/// drop(b);
///
/// // This will succeed
/// let mut a = a.try_mut().unwrap();
///
/// a[0] = b'b';
///
/// assert_eq!(&a[..4], b"bary");
/// ```
pub fn try_mut(mut self) -> Result<BytesMut, Bytes> {
if self.inner.is_mut_safe() {
Ok(BytesMut { inner: self.inner })
} else {
Err(self)
}
}
/// Appends given bytes to this object.
///
/// If this `Bytes` object has not enough capacity, it is resized first.
/// If it is shared (`refcount > 1`), it is copied first.
///
/// This operation can be less effective than the similar operation on
/// `BytesMut`, especially on small additions.
///
/// # Examples
///
/// ```
/// use bytes::Bytes;
///
/// let mut buf = Bytes::from("aabb");
/// buf.extend_from_slice(b"ccdd");
/// buf.extend_from_slice(b"eeff");
///
/// assert_eq!(b"aabbccddeeff", &buf[..]);
/// ```
pub fn extend_from_slice(&mut self, extend: &[u8]) {
if extend.is_empty() {
return;
}
let new_cap = self.len().checked_add(extend.len()).expect("capacity overflow");
let result = match mem::replace(self, Bytes::new()).try_mut() {
Ok(mut bytes_mut) => {
bytes_mut.extend_from_slice(extend);
bytes_mut
},
Err(bytes) => {
let mut bytes_mut = BytesMut::with_capacity(new_cap);
bytes_mut.put_slice(&bytes);
bytes_mut.put_slice(extend);
bytes_mut
}
};
mem::replace(self, result.freeze());
}
}
impl IntoBuf for Bytes {
type Buf = Cursor<Self>;
fn into_buf(self) -> Self::Buf {
Cursor::new(self)
}
}
impl<'a> IntoBuf for &'a Bytes {
type Buf = Cursor<Self>;
fn into_buf(self) -> Self::Buf {
Cursor::new(self)
}
}
impl Clone for Bytes {
fn clone(&self) -> Bytes {
Bytes {
inner: unsafe { self.inner.shallow_clone(false) },
}
}
}
impl AsRef<[u8]> for Bytes {
#[inline]
fn as_ref(&self) -> &[u8] {
self.inner.as_ref()
}
}
impl ops::Deref for Bytes {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.inner.as_ref()
}
}
impl From<BytesMut> for Bytes {
fn from(src: BytesMut) -> Bytes {
src.freeze()
}
}
impl From<Vec<u8>> for Bytes {
fn from(src: Vec<u8>) -> Bytes {
BytesMut::from(src).freeze()
}
}
impl From<String> for Bytes {
fn from(src: String) -> Bytes {
BytesMut::from(src).freeze()
}
}
impl<'a> From<&'a [u8]> for Bytes {
fn from(src: &'a [u8]) -> Bytes {
BytesMut::from(src).freeze()
}
}
impl<'a> From<&'a str> for Bytes {
fn from(src: &'a str) -> Bytes {
BytesMut::from(src).freeze()
}
}
impl FromIterator<u8> for BytesMut {
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
let iter = into_iter.into_iter();
let (min, maybe_max) = iter.size_hint();
let mut out = BytesMut::with_capacity(maybe_max.unwrap_or(min));
for i in iter {
out.reserve(1);
out.put(i);
}
out
}
}
impl FromIterator<u8> for Bytes {
fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
BytesMut::from_iter(into_iter).freeze()
}
}
impl PartialEq for Bytes {
fn eq(&self, other: &Bytes) -> bool {
self.inner.as_ref() == other.inner.as_ref()
}
}
impl PartialOrd for Bytes {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other.inner.as_ref())
}
}
impl Ord for Bytes {
fn cmp(&self, other: &Bytes) -> cmp::Ordering {
self.inner.as_ref().cmp(other.inner.as_ref())
}
}
impl Eq for Bytes {
}
impl Default for Bytes {
#[inline]
fn default() -> Bytes {
Bytes::new()
}
}
impl fmt::Debug for Bytes {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt)
}
}
impl hash::Hash for Bytes {
fn hash<H>(&self, state: &mut H) where H: hash::Hasher {
let s: &[u8] = self.as_ref();
s.hash(state);
}
}
impl Borrow<[u8]> for Bytes {
fn borrow(&self) -> &[u8] {
self.as_ref()
}
}
impl IntoIterator for Bytes {
type Item = u8;
type IntoIter = Iter<Cursor<Bytes>>;
fn into_iter(self) -> Self::IntoIter {
self.into_buf().iter()
}
}
impl<'a> IntoIterator for &'a Bytes {
type Item = u8;
type IntoIter = Iter<Cursor<&'a Bytes>>;
fn into_iter(self) -> Self::IntoIter {
self.into_buf().iter()
}
}
impl Extend<u8> for Bytes {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8> {
let iter = iter.into_iter();
let (lower, upper) = iter.size_hint();
// Avoid possible conversion into mut if there's nothing to add
if let Some(0) = upper {
return;
}
let mut bytes_mut = match mem::replace(self, Bytes::new()).try_mut() {
Ok(bytes_mut) => bytes_mut,
Err(bytes) => {
let mut bytes_mut = BytesMut::with_capacity(bytes.len() + lower);
bytes_mut.put_slice(&bytes);
bytes_mut
}
};
bytes_mut.extend(iter);
mem::replace(self, bytes_mut.freeze());
}
}
impl<'a> Extend<&'a u8> for Bytes {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8> {
self.extend(iter.into_iter().map(|b| *b))
}
}
/*
*
* ===== BytesMut =====
*
*/
impl BytesMut {
/// Creates a new `BytesMut` with the specified capacity.
///
/// The returned `BytesMut` will be able to hold at least `capacity` bytes
/// without reallocating. If `capacity` is under `4 * size_of::<usize>() - 1`,
/// then `BytesMut` will not allocate.
///
/// It is important to note that this function does not specify the length
/// of the returned `BytesMut`, but only the capacity.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut bytes = BytesMut::with_capacity(64);
///
/// // `bytes` contains no data, even though there is capacity
/// assert_eq!(bytes.len(), 0);
///
/// bytes.put(&b"hello world"[..]);
///
/// assert_eq!(&bytes[..], b"hello world");
/// ```
#[inline]
pub fn with_capacity(capacity: usize) -> BytesMut {
BytesMut {
inner: Inner::with_capacity(capacity),
}
}
/// Creates a new `BytesMut` with default capacity.
///
/// Resulting object has length 0 and unspecified capacity.
/// This function does not allocate.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut bytes = BytesMut::new();
///
/// assert_eq!(0, bytes.len());
///
/// bytes.reserve(2);
/// bytes.put_slice(b"xy");
///
/// assert_eq!(&b"xy"[..], &bytes[..]);
/// ```
#[inline]
pub fn new() -> BytesMut {
BytesMut::with_capacity(0)
}
/// Returns the number of bytes contained in this `BytesMut`.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::from(&b"hello"[..]);
/// assert_eq!(b.len(), 5);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.inner.len()
}
/// Returns true if the `BytesMut` has a length of 0.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::with_capacity(64);
/// assert!(b.is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns the number of bytes the `BytesMut` can hold without reallocating.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let b = BytesMut::with_capacity(64);
/// assert_eq!(b.capacity(), 64);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
self.inner.capacity()
}
/// Converts `self` into an immutable `Bytes`.
///
/// The conversion is zero cost and is used to indicate that the slice
/// referenced by the handle will no longer be mutated. Once the conversion
/// is done, the handle can be cloned and shared across threads.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
/// use std::thread;
///
/// let mut b = BytesMut::with_capacity(64);
/// b.put("hello world");
/// let b1 = b.freeze();
/// let b2 = b1.clone();
///
/// let th = thread::spawn(move || {
/// assert_eq!(&b1[..], b"hello world");
/// });
///
/// assert_eq!(&b2[..], b"hello world");
/// th.join().unwrap();
/// ```
#[inline]
pub fn freeze(self) -> Bytes {
Bytes { inner: self.inner }
}
/// Splits the bytes into two at the given index.
///
/// Afterwards `self` contains elements `[0, at)`, and the returned
/// `BytesMut` contains elements `[at, capacity)`.
///
/// This is an `O(1)` operation that just increases the reference count
/// and sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut a = BytesMut::from(&b"hello world"[..]);
/// let mut b = a.split_off(5);
///
/// a[0] = b'j';
/// b[0] = b'!';
///
/// assert_eq!(&a[..], b"jello");
/// assert_eq!(&b[..], b"!world");
/// ```
///
/// # Panics
///
/// Panics if `at > capacity`.
pub fn split_off(&mut self, at: usize) -> BytesMut {
BytesMut {
inner: self.inner.split_off(at),
}
}
/// Removes the bytes from the current view, returning them in a new
/// `BytesMut` handle.
///
/// Afterwards, `self` will be empty, but will retain any additional
/// capacity that it had before the operation. This is identical to
/// `self.split_to(self.len())`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(1024);
/// buf.put(&b"hello world"[..]);
///
/// let other = buf.take();
///
/// assert!(buf.is_empty());
/// assert_eq!(1013, buf.capacity());
///
/// assert_eq!(other, b"hello world"[..]);
/// ```
pub fn take(&mut self) -> BytesMut {
let len = self.len();
self.split_to(len)
}
#[deprecated(since = "0.4.1", note = "use take instead")]
#[doc(hidden)]
pub fn drain(&mut self) -> BytesMut {
self.take()
}
/// Splits the buffer into two at the given index.
///
/// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
/// contains elements `[0, at)`.
///
/// This is an `O(1)` operation that just increases the reference count and
/// sets a few indices.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut a = BytesMut::from(&b"hello world"[..]);
/// let mut b = a.split_to(5);
///
/// a[0] = b'!';
/// b[0] = b'j';
///
/// assert_eq!(&a[..], b"!world");
/// assert_eq!(&b[..], b"jello");
/// ```
///
/// # Panics
///
/// Panics if `at > len`.
pub fn split_to(&mut self, at: usize) -> BytesMut {
BytesMut {
inner: self.inner.split_to(at),
}
}
#[deprecated(since = "0.4.1", note = "use split_to instead")]
#[doc(hidden)]
pub fn drain_to(&mut self, at: usize) -> BytesMut {
self.split_to(at)
}
/// Shortens the buffer, keeping the first `len` bytes and dropping the
/// rest.
///
/// If `len` is greater than the buffer's current length, this has no
/// effect.
///
/// The [`split_off`] method can emulate `truncate`, but this causes the
/// excess bytes to be returned instead of dropped.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello world"[..]);
/// buf.truncate(5);
/// assert_eq!(buf, b"hello"[..]);
/// ```
///
/// [`split_off`]: #method.split_off
pub fn truncate(&mut self, len: usize) {
self.inner.truncate(len);
}
/// Shortens the buffer, dropping the first `cnt` bytes and keeping the
/// rest.
///
/// This is the same function as `Buf::advance`, and in the next breaking
/// release of `bytes`, this implementation will be removed in favor of
/// having `BytesMut` implement `Buf`.
///
/// # Panics
///
/// This function panics if `cnt` is greater than `self.len()`
#[inline]
pub fn advance(&mut self, cnt: usize) {
assert!(cnt <= self.len(), "cannot advance past `remaining`");
unsafe { self.inner.set_start(cnt); }
}
/// Clears the buffer, removing all data.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello world"[..]);
/// buf.clear();
/// assert!(buf.is_empty());
/// ```
pub fn clear(&mut self) {
self.truncate(0);
}
/// Resizes the buffer so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the buffer is extended by the
/// difference with each additional byte set to `value`. If `new_len` is
/// less than `len`, the buffer is simply truncated.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::new();
///
/// buf.resize(3, 0x1);
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
///
/// buf.resize(2, 0x2);
/// assert_eq!(&buf[..], &[0x1, 0x1]);
///
/// buf.resize(4, 0x3);
/// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
/// ```
pub fn resize(&mut self, new_len: usize, value: u8) {
self.inner.resize(new_len, value);
}
/// Sets the length of the buffer.
///
/// This will explicitly set the size of the buffer without actually
/// modifying the data, so it is up to the caller to ensure that the data
/// has been initialized.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut b = BytesMut::from(&b"hello world"[..]);
///
/// unsafe {
/// b.set_len(5);
/// }
///
/// assert_eq!(&b[..], b"hello");
///
/// unsafe {
/// b.set_len(11);
/// }
///
/// assert_eq!(&b[..], b"hello world");
/// ```
///
/// # Panics
///
/// This method will panic if `len` is out of bounds for the underlying
/// slice or if it comes after the `end` of the configured window.
pub unsafe fn set_len(&mut self, len: usize) {
self.inner.set_len(len)
}
/// Reserves capacity for at least `additional` more bytes to be inserted
/// into the given `BytesMut`.
///
/// More than `additional` bytes may be reserved in order to avoid frequent
/// reallocations. A call to `reserve` may result in an allocation.
///
/// Before allocating new buffer space, the function will attempt to reclaim
/// space in the existing buffer. If the current handle references a small
/// view in the original buffer and all other handles have been dropped,
/// and the requested capacity is less than or equal to the existing
/// buffer's capacity, then the current view will be copied to the front of
/// the buffer and the handle will take ownership of the full buffer.
///
/// # Examples
///
/// In the following example, a new buffer is allocated.
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::from(&b"hello"[..]);
/// buf.reserve(64);
/// assert!(buf.capacity() >= 69);
/// ```
///
/// In the following example, the existing buffer is reclaimed.
///
/// ```
/// use bytes::{BytesMut, BufMut};
///
/// let mut buf = BytesMut::with_capacity(128);
/// buf.put(&[0; 64][..]);
///
/// let ptr = buf.as_ptr();
/// let other = buf.take();
///
/// assert!(buf.is_empty());
/// assert_eq!(buf.capacity(), 64);
///
/// drop(other);
/// buf.reserve(128);
///
/// assert_eq!(buf.capacity(), 128);
/// assert_eq!(buf.as_ptr(), ptr);
/// ```
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
pub fn reserve(&mut self, additional: usize) {
self.inner.reserve(additional)
}
/// Appends given bytes to this object.
///
/// If this `BytesMut` object has not enough capacity, it is resized first.
/// So unlike `put_slice` operation, `extend_from_slice` does not panic.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::with_capacity(0);
/// buf.extend_from_slice(b"aaabbb");
/// buf.extend_from_slice(b"cccddd");
///
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
/// ```
pub fn extend_from_slice(&mut self, extend: &[u8]) {
self.reserve(extend.len());
self.put_slice(extend);
}
/// Combine splitted BytesMut objects back as contiguous.
///
/// If `BytesMut` objects were not contiguous originally, they will be extended.
///
/// # Examples
///
/// ```
/// use bytes::BytesMut;
///
/// let mut buf = BytesMut::with_capacity(64);
/// buf.extend_from_slice(b"aaabbbcccddd");
///
/// let splitted = buf.split_off(6);
/// assert_eq!(b"aaabbb", &buf[..]);
/// assert_eq!(b"cccddd", &splitted[..]);
///
/// buf.unsplit(splitted);
/// assert_eq!(b"aaabbbcccddd", &buf[..]);
/// ```
pub fn unsplit(&mut self, other: BytesMut) {
let ptr;
if other.is_empty() {
return;
}
if self.is_empty() {
*self = other;
return;
}
unsafe {
ptr = self.inner.ptr.offset(self.inner.len as isize);
}
if ptr == other.inner.ptr &&
self.inner.kind() == KIND_ARC &&
other.inner.kind() == KIND_ARC
{
debug_assert_eq!(self.inner.arc.load(Acquire),
other.inner.arc.load(Acquire));
// Contiguous blocks, just combine directly
self.inner.len += other.inner.len;
self.inner.cap += other.inner.cap;
}
else {
self.extend_from_slice(&other);
}
}
}
impl BufMut for BytesMut {
#[inline]
fn remaining_mut(&self) -> usize {
self.capacity() - self.len()
}
#[inline]
unsafe fn advance_mut(&mut self, cnt: usize) {
let new_len = self.len() + cnt;
// This call will panic if `cnt` is too big
self.inner.set_len(new_len);
}
#[inline]
unsafe fn bytes_mut(&mut self) -> &mut [u8] {
let len = self.len();
// This will never panic as `len` can never become invalid
&mut self.inner.as_raw()[len..]
}
#[inline]
fn put_slice(&mut self, src: &[u8]) {
assert!(self.remaining_mut() >= src.len());
let len = src.len();
unsafe {
self.bytes_mut()[..len].copy_from_slice(src);
self.advance_mut(len);
}
}
#[inline]
fn put_u8(&mut self, n: u8) {
self.inner.put_u8(n);
}
#[inline]
fn put_i8(&mut self, n: i8) {
self.put_u8(n as u8);
}
}
impl IntoBuf for BytesMut {
type Buf = Cursor<Self>;
fn into_buf(self) -> Self::Buf {
Cursor::new(self)
}
}
impl<'a> IntoBuf for &'a BytesMut {
type Buf = Cursor<&'a BytesMut>;
fn into_buf(self) -> Self::Buf {
Cursor::new(self)
}
}
impl AsRef<[u8]> for BytesMut {
#[inline]
fn as_ref(&self) -> &[u8] {
self.inner.as_ref()
}
}
impl ops::Deref for BytesMut {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
self.as_ref()
}
}
impl AsMut<[u8]> for BytesMut {
fn as_mut(&mut self) -> &mut [u8] {
self.inner.as_mut()
}
}
impl ops::DerefMut for BytesMut {
#[inline]
fn deref_mut(&mut self) -> &mut [u8] {
self.inner.as_mut()
}
}
impl From<Vec<u8>> for BytesMut {
fn from(src: Vec<u8>) -> BytesMut {
BytesMut {
inner: Inner::from_vec(src),
}
}
}
impl From<String> for BytesMut {
fn from(src: String) -> BytesMut {
BytesMut::from(src.into_bytes())
}
}
impl<'a> From<&'a [u8]> for BytesMut {
fn from(src: &'a [u8]) -> BytesMut {
let len = src.len();
if len == 0 {
BytesMut::new()
} else if len <= INLINE_CAP {
unsafe {
let mut inner: Inner = mem::uninitialized();
// Set inline mask
inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared);
inner.set_inline_len(len);
inner.as_raw()[0..len].copy_from_slice(src);
BytesMut {
inner: inner,
}
}
} else {
BytesMut::from(src.to_vec())
}
}
}
impl<'a> From<&'a str> for BytesMut {
fn from(src: &'a str) -> BytesMut {
BytesMut::from(src.as_bytes())
}
}
impl From<Bytes> for BytesMut {
fn from(src: Bytes) -> BytesMut {
src.try_mut()
.unwrap_or_else(|src| BytesMut::from(&src[..]))
}
}
impl PartialEq for BytesMut {
fn eq(&self, other: &BytesMut) -> bool {
self.inner.as_ref() == other.inner.as_ref()
}
}
impl PartialOrd for BytesMut {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other.inner.as_ref())
}
}
impl Ord for BytesMut {
fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
self.inner.as_ref().cmp(other.inner.as_ref())
}
}
impl Eq for BytesMut {
}
impl Default for BytesMut {
#[inline]
fn default() -> BytesMut {
BytesMut::new()
}
}
impl fmt::Debug for BytesMut {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&debug::BsDebug(&self.inner.as_ref()), fmt)
}
}
impl hash::Hash for BytesMut {
fn hash<H>(&self, state: &mut H) where H: hash::Hasher {
let s: &[u8] = self.as_ref();
s.hash(state);
}
}
impl Borrow<[u8]> for BytesMut {
fn borrow(&self) -> &[u8] {
self.as_ref()
}
}
impl BorrowMut<[u8]> for BytesMut {
fn borrow_mut(&mut self) -> &mut [u8] {
self.as_mut()
}
}
impl fmt::Write for BytesMut {
#[inline]
fn write_str(&mut self, s: &str) -> fmt::Result {
if self.remaining_mut() >= s.len() {
self.put_slice(s.as_bytes());
Ok(())
} else {
Err(fmt::Error)
}
}
#[inline]
fn write_fmt(&mut self, args: fmt::Arguments) -> fmt::Result {
fmt::write(self, args)
}
}
impl Clone for BytesMut {
fn clone(&self) -> BytesMut {
BytesMut::from(&self[..])
}
}
impl IntoIterator for BytesMut {
type Item = u8;
type IntoIter = Iter<Cursor<BytesMut>>;
fn into_iter(self) -> Self::IntoIter {
self.into_buf().iter()
}
}
impl<'a> IntoIterator for &'a BytesMut {
type Item = u8;
type IntoIter = Iter<Cursor<&'a BytesMut>>;
fn into_iter(self) -> Self::IntoIter {
self.into_buf().iter()
}
}
impl Extend<u8> for BytesMut {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = u8> {
let iter = iter.into_iter();
let (lower, _) = iter.size_hint();
self.reserve(lower);
for b in iter {
unsafe {
self.bytes_mut()[0] = b;
self.advance_mut(1);
}
}
}
}
impl<'a> Extend<&'a u8> for BytesMut {
fn extend<T>(&mut self, iter: T) where T: IntoIterator<Item = &'a u8> {
self.extend(iter.into_iter().map(|b| *b))
}
}
/*
*
* ===== Inner =====
*
*/
impl Inner {
#[inline]
fn from_static(bytes: &'static [u8]) -> Inner {
let ptr = bytes.as_ptr() as *mut u8;
Inner {
// `arc` won't ever store a pointer. Instead, use it to
// track the fact that the `Bytes` handle is backed by a
// static buffer.
arc: AtomicPtr::new(KIND_STATIC as *mut Shared),
ptr: ptr,
len: bytes.len(),
cap: bytes.len(),
}
}
#[inline]
fn from_vec(mut src: Vec<u8>) -> Inner {
let len = src.len();
let cap = src.capacity();
let ptr = src.as_mut_ptr();
mem::forget(src);
let original_capacity_repr = original_capacity_to_repr(cap);
let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
Inner {
arc: AtomicPtr::new(arc as *mut Shared),
ptr: ptr,
len: len,
cap: cap,
}
}
#[inline]
fn with_capacity(capacity: usize) -> Inner {
if capacity <= INLINE_CAP {
unsafe {
// Using uninitialized memory is ~30% faster
let mut inner: Inner = mem::uninitialized();
inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared);
inner
}
} else {
Inner::from_vec(Vec::with_capacity(capacity))
}
}
/// Return a slice for the handle's view into the shared buffer
#[inline]
fn as_ref(&self) -> &[u8] {
unsafe {
if self.is_inline() {
slice::from_raw_parts(self.inline_ptr(), self.inline_len())
} else {
slice::from_raw_parts(self.ptr, self.len)
}
}
}
/// Return a mutable slice for the handle's view into the shared buffer
#[inline]
fn as_mut(&mut self) -> &mut [u8] {
debug_assert!(!self.is_static());
unsafe {
if self.is_inline() {
slice::from_raw_parts_mut(self.inline_ptr(), self.inline_len())
} else {
slice::from_raw_parts_mut(self.ptr, self.len)
}
}
}
/// Return a mutable slice for the handle's view into the shared buffer
/// including potentially uninitialized bytes.
#[inline]
unsafe fn as_raw(&mut self) -> &mut [u8] {
debug_assert!(!self.is_static());
if self.is_inline() {
slice::from_raw_parts_mut(self.inline_ptr(), INLINE_CAP)
} else {
slice::from_raw_parts_mut(self.ptr, self.cap)
}
}
/// Insert a byte into the next slot and advance the len by 1.
#[inline]
fn put_u8(&mut self, n: u8) {
if self.is_inline() {
let len = self.inline_len();
assert!(len < INLINE_CAP);
unsafe {
*self.inline_ptr().offset(len as isize) = n;
}
self.set_inline_len(len + 1);
} else {
assert!(self.len < self.cap);
unsafe {
*self.ptr.offset(self.len as isize) = n;
}
self.len += 1;
}
}
#[inline]
fn len(&self) -> usize {
if self.is_inline() {
self.inline_len()
} else {
self.len
}
}
/// Pointer to the start of the inline buffer
#[inline]
unsafe fn inline_ptr(&self) -> *mut u8 {
(self as *const Inner as *mut Inner as *mut u8)
.offset(INLINE_DATA_OFFSET)
}
#[inline]
fn inline_len(&self) -> usize {
let p: &usize = unsafe { mem::transmute(&self.arc) };
(p & INLINE_LEN_MASK) >> INLINE_LEN_OFFSET
}
/// Set the length of the inline buffer. This is done by writing to the
/// least significant byte of the `arc` field.
#[inline]
fn set_inline_len(&mut self, len: usize) {
debug_assert!(len <= INLINE_CAP);
let p = self.arc.get_mut();
*p = ((*p as usize & !INLINE_LEN_MASK) | (len << INLINE_LEN_OFFSET)) as _;
}
/// slice.
#[inline]
unsafe fn set_len(&mut self, len: usize) {
if self.is_inline() {
assert!(len <= INLINE_CAP);
self.set_inline_len(len);
} else {
assert!(len <= self.cap);
self.len = len;
}
}
#[inline]
fn is_empty(&self) -> bool {
self.len() == 0
}
#[inline]
fn capacity(&self) -> usize {
if self.is_inline() {
INLINE_CAP
} else {
self.cap
}
}
fn split_off(&mut self, at: usize) -> Inner {
let mut other = unsafe { self.shallow_clone(true) };
unsafe {
other.set_start(at);
self.set_end(at);
}
return other
}
fn split_to(&mut self, at: usize) -> Inner {
let mut other = unsafe { self.shallow_clone(true) };
unsafe {
other.set_end(at);
self.set_start(at);
}
return other
}
fn truncate(&mut self, len: usize) {
if len <= self.len() {
unsafe { self.set_len(len); }
}
}
fn resize(&mut self, new_len: usize, value: u8) {
let len = self.len();
if new_len > len {
let additional = new_len - len;
self.reserve(additional);
unsafe {
let dst = self.as_raw()[len..].as_mut_ptr();
ptr::write_bytes(dst, value, additional);
self.set_len(new_len);
}
} else {
self.truncate(new_len);
}
}
unsafe fn set_start(&mut self, start: usize) {
// Setting the start to 0 is a no-op, so return early if this is the
// case.
if start == 0 {
return;
}
let kind = self.kind();
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
if kind == KIND_INLINE {
assert!(start <= INLINE_CAP);
let len = self.inline_len();
if len <= start {
self.set_inline_len(0);
} else {
// `set_start` is essentially shifting data off the front of the
// view. Inlined buffers only track the length of the slice.
// So, to update the start, the data at the new starting point
// is copied to the beginning of the buffer.
let new_len = len - start;
let dst = self.inline_ptr();
let src = (dst as *const u8).offset(start as isize);
ptr::copy(src, dst, new_len);
self.set_inline_len(new_len);
}
} else {
assert!(start <= self.cap);
if kind == KIND_VEC {
// Setting the start when in vec representation is a little more
// complicated. First, we have to track how far ahead the
// "start" of the byte buffer from the beginning of the vec. We
// also have to ensure that we don't exceed the maximum shift.
let (mut pos, prev) = self.uncoordinated_get_vec_pos();
pos += start;
if pos <= MAX_VEC_POS {
self.uncoordinated_set_vec_pos(pos, prev);
} else {
// The repr must be upgraded to ARC. This will never happen
// on 64 bit systems and will only happen on 32 bit systems
// when shifting past 134,217,727 bytes. As such, we don't
// worry too much about performance here.
let _ = self.shallow_clone(true);
}
}
// Updating the start of the view is setting `ptr` to point to the
// new start and updating the `len` field to reflect the new length
// of the view.
self.ptr = self.ptr.offset(start as isize);
if self.len >= start {
self.len -= start;
} else {
self.len = 0;
}
self.cap -= start;
}
}
unsafe fn set_end(&mut self, end: usize) {
debug_assert!(self.is_shared());
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
if self.is_inline() {
assert!(end <= INLINE_CAP);
let new_len = cmp::min(self.inline_len(), end);
self.set_inline_len(new_len);
} else {
assert!(end <= self.cap);
self.cap = end;
self.len = cmp::min(self.len, end);
}
}
/// Checks if it is safe to mutate the memory
fn is_mut_safe(&mut self) -> bool {
let kind = self.kind();
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
if kind == KIND_INLINE {
// Inlined buffers can always be mutated as the data is never shared
// across handles.
true
} else if kind == KIND_VEC {
true
} else if kind == KIND_STATIC {
false
} else {
// Otherwise, the underlying buffer is potentially shared with other
// handles, so the ref_count needs to be checked.
unsafe { (**self.arc.get_mut()).is_unique() }
}
}
/// Increments the ref count. This should only be done if it is known that
/// it can be done safely. As such, this fn is not public, instead other
/// fns will use this one while maintaining the guarantees.
/// Parameter `mut_self` should only be set to `true` if caller holds
/// `&mut self` reference.
///
/// "Safely" is defined as not exposing two `BytesMut` values that point to
/// the same byte window.
///
/// This function is thread safe.
unsafe fn shallow_clone(&self, mut_self: bool) -> Inner {
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
if self.is_inline() {
// In this case, a shallow_clone still involves copying the data.
//
// TODO: Just copy the fields
let mut inner: Inner = mem::uninitialized();
let len = self.inline_len();
inner.arc = AtomicPtr::new(KIND_INLINE as *mut Shared);
inner.set_inline_len(len);
inner.as_raw()[0..len].copy_from_slice(self.as_ref());
inner
} else {
// The function requires `&self`, this means that `shallow_clone`
// could be called concurrently.
//
// The first step is to load the value of `arc`. This will determine
// how to proceed. The `Acquire` ordering synchronizes with the
// `compare_and_swap` that comes later in this function. The goal is
// to ensure that if `arc` is currently set to point to a `Shared`,
// that the current thread acquires the associated memory.
let mut arc = self.arc.load(Acquire);
// If the buffer is still tracked in a `Vec<u8>`. It is time to
// promote the vec to an `Arc`. This could potentially be called
// concurrently, so some care must be taken.
if arc as usize & KIND_MASK == KIND_VEC {
let original_capacity_repr =
(arc as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
// The vec offset cannot be concurrently mutated, so there
// should be no danger reading it.
let off = (arc as usize) >> VEC_POS_OFFSET;
// First, allocate a new `Shared` instance containing the
// `Vec` fields. It's important to note that `ptr`, `len`,
// and `cap` cannot be mutated without having `&mut self`.
// This means that these fields will not be concurrently
// updated and since the buffer hasn't been promoted to an
// `Arc`, those three fields still are the components of the
// vector.
let shared = Box::new(Shared {
vec: rebuild_vec(self.ptr, self.len, self.cap, off),
original_capacity_repr: original_capacity_repr,
// Initialize refcount to 2. One for this reference, and one
// for the new clone that will be returned from
// `shallow_clone`.
ref_count: AtomicUsize::new(2),
});
let shared = Box::into_raw(shared);
// The pointer should be aligned, so this assert should
// always succeed.
debug_assert!(0 == (shared as usize & 0b11));
// If there are no references to self in other threads,
// expensive atomic operations can be avoided.
if mut_self {
self.arc.store(shared, Relaxed);
return Inner {
arc: AtomicPtr::new(shared),
.. *self
};
}
// Try compare & swapping the pointer into the `arc` field.
// `Release` is used synchronize with other threads that
// will load the `arc` field.
//
// If the `compare_and_swap` fails, then the thread lost the
// race to promote the buffer to shared. The `Acquire`
// ordering will synchronize with the `compare_and_swap`
// that happened in the other thread and the `Shared`
// pointed to by `actual` will be visible.
let actual = self.arc.compare_and_swap(arc, shared, AcqRel);
if actual == arc {
// The upgrade was successful, the new handle can be
// returned.
return Inner {
arc: AtomicPtr::new(shared),
.. *self
};
}
// The upgrade failed, a concurrent clone happened. Release
// the allocation that was made in this thread, it will not
// be needed.
let shared = Box::from_raw(shared);
mem::forget(*shared);
// Update the `arc` local variable and fall through to a ref
// count update
arc = actual;
} else if arc as usize & KIND_MASK == KIND_STATIC {
// Static buffer
return Inner {
arc: AtomicPtr::new(arc),
.. *self
};
}
// Buffer already promoted to shared storage, so increment ref
// count.
//
// Relaxed ordering is acceptable as the memory has already been
// acquired via the `Acquire` load above.
let old_size = (*arc).ref_count.fetch_add(1, Relaxed);
if old_size == usize::MAX {
panic!(); // TODO: abort
}
Inner {
arc: AtomicPtr::new(arc),
.. *self
}
}
}
#[inline]
fn reserve(&mut self, additional: usize) {
let len = self.len();
let rem = self.capacity() - len;
if additional <= rem {
// The handle can already store at least `additional` more bytes, so
// there is no further work needed to be done.
return;
}
let kind = self.kind();
// Always check `inline` first, because if the handle is using inline
// data storage, all of the `Inner` struct fields will be gibberish.
if kind == KIND_INLINE {
let new_cap = len + additional;
// Promote to a vector
let mut v = Vec::with_capacity(new_cap);
v.extend_from_slice(self.as_ref());
self.ptr = v.as_mut_ptr();
self.len = v.len();
self.cap = v.capacity();
// Since the minimum capacity is `INLINE_CAP`, don't bother encoding
// the original capacity as INLINE_CAP
self.arc = AtomicPtr::new(KIND_VEC as *mut Shared);
mem::forget(v);
return;
}
if kind == KIND_VEC {
// If there's enough free space before the start of the buffer, then
// just copy the data backwards and reuse the already-allocated
// space.
//
// Otherwise, since backed by a vector, use `Vec::reserve`
unsafe {
let (off, prev) = self.uncoordinated_get_vec_pos();
// Only reuse space if we stand to gain at least capacity/2
// bytes of space back
if off >= additional && off >= (self.cap / 2) {
// There's space - reuse it
//
// Just move the pointer back to the start after copying
// data back.
let base_ptr = self.ptr.offset(-(off as isize));
ptr::copy(self.ptr, base_ptr, self.len);
self.ptr = base_ptr;
self.uncoordinated_set_vec_pos(0, prev);
// Length stays constant, but since we moved backwards we
// can gain capacity back.
self.cap += off;
} else {
// No space - allocate more
let mut v = rebuild_vec(self.ptr, self.len, self.cap, off);
v.reserve(additional);
// Update the info
self.ptr = v.as_mut_ptr().offset(off as isize);
self.len = v.len() - off;
self.cap = v.capacity() - off;
// Drop the vec reference
mem::forget(v);
}
return;
}
}
let arc = *self.arc.get_mut();
debug_assert!(kind == KIND_ARC);
// Reserving involves abandoning the currently shared buffer and
// allocating a new vector with the requested capacity.
//
// Compute the new capacity
let mut new_cap = len + additional;
let original_capacity;
let original_capacity_repr;
unsafe {
original_capacity_repr = (*arc).original_capacity_repr;
original_capacity = original_capacity_from_repr(original_capacity_repr);
// First, try to reclaim the buffer. This is possible if the current
// handle is the only outstanding handle pointing to the buffer.
if (*arc).is_unique() {
// This is the only handle to the buffer. It can be reclaimed.
// However, before doing the work of copying data, check to make
// sure that the vector has enough capacity.
let v = &mut (*arc).vec;
if v.capacity() >= new_cap {
// The capacity is sufficient, reclaim the buffer
let ptr = v.as_mut_ptr();
ptr::copy(self.ptr, ptr, len);
self.ptr = ptr;
self.cap = v.capacity();
return;
}
// The vector capacity is not sufficient. The reserve request is
// asking for more than the initial buffer capacity. Allocate more
// than requested if `new_cap` is not much bigger than the current
// capacity.
//
// There are some situations, using `reserve_exact` that the
// buffer capacity could be below `original_capacity`, so do a
// check.
new_cap = cmp::max(
cmp::max(v.capacity() << 1, new_cap),
original_capacity);
} else {
new_cap = cmp::max(new_cap, original_capacity);
}
}
// Create a new vector to store the data
let mut v = Vec::with_capacity(new_cap);
// Copy the bytes
v.extend_from_slice(self.as_ref());
// Release the shared handle. This must be done *after* the bytes are
// copied.
release_shared(arc);
// Update self
self.ptr = v.as_mut_ptr();
self.len = v.len();
self.cap = v.capacity();
let arc = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
self.arc = AtomicPtr::new(arc as *mut Shared);
// Forget the vector handle
mem::forget(v);
}
/// Returns true if the buffer is stored inline
#[inline]
fn is_inline(&self) -> bool {
self.kind() == KIND_INLINE
}
/// Used for `debug_assert` statements. &mut is used to guarantee that it is
/// safe to check VEC_KIND
#[inline]
fn is_shared(&mut self) -> bool {
match self.kind() {
KIND_VEC => false,
_ => true,
}
}
/// Used for `debug_assert` statements
#[inline]
fn is_static(&mut self) -> bool {
match self.kind() {
KIND_STATIC => true,
_ => false,
}
}
#[inline]
fn kind(&self) -> usize {
// This function is going to probably raise some eyebrows. The function
// returns true if the buffer is stored inline. This is done by checking
// the least significant bit in the `arc` field.
//
// Now, you may notice that `arc` is an `AtomicPtr` and this is
// accessing it as a normal field without performing an atomic load...
//
// Again, the function only cares about the least significant bit, and
// this bit is set when `Inner` is created and never changed after that.
// All platforms have atomic "word" operations and won't randomly flip
// bits, so even without any explicit atomic operations, reading the
// flag will be correct.
//
// This function is very critical performance wise as it is called for
// every operation. Performing an atomic load would mess with the
// compiler's ability to optimize. Simple benchmarks show up to a 10%
// slowdown using a `Relaxed` atomic load on x86.
#[cfg(target_endian = "little")]
#[inline]
fn imp(arc: &AtomicPtr<Shared>) -> usize {
unsafe {
let p: &u8 = mem::transmute(arc);
(*p as usize) & KIND_MASK
}
}
#[cfg(target_endian = "big")]
#[inline]
fn imp(arc: &AtomicPtr<Shared>) -> usize {
unsafe {
let p: &usize = mem::transmute(arc);
*p & KIND_MASK
}
}
imp(&self.arc)
}
#[inline]
fn uncoordinated_get_vec_pos(&mut self) -> (usize, usize) {
// Similar to above, this is a pretty crazed function. This should only
// be called when in the KIND_VEC mode. This + the &mut self argument
// guarantees that there is no possibility of concurrent calls to this
// function.
let prev = unsafe {
let p: &AtomicPtr<Shared> = &self.arc;
let p: &usize = mem::transmute(p);
*p
};
(prev >> VEC_POS_OFFSET, prev)
}
#[inline]
fn uncoordinated_set_vec_pos(&mut self, pos: usize, prev: usize) {
// Once more... crazy
debug_assert!(pos <= MAX_VEC_POS);
unsafe {
let p: &mut AtomicPtr<Shared> = &mut self.arc;
let p: &mut usize = mem::transmute(p);
*p = (pos << VEC_POS_OFFSET) | (prev & NOT_VEC_POS_MASK);
}
}
}
fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
unsafe {
let ptr = ptr.offset(-(off as isize));
len += off;
cap += off;
Vec::from_raw_parts(ptr, len, cap)
}
}
impl Drop for Inner {
fn drop(&mut self) {
let kind = self.kind();
if kind == KIND_VEC {
let (off, _) = self.uncoordinated_get_vec_pos();
// Vector storage, free the vector
let _ = rebuild_vec(self.ptr, self.len, self.cap, off);
} else if kind == KIND_ARC {
release_shared(*self.arc.get_mut());
}
}
}
fn release_shared(ptr: *mut Shared) {
// `Shared` storage... follow the drop steps from Arc.
unsafe {
if (*ptr).ref_count.fetch_sub(1, Release) != 1 {
return;
}
// This fence is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` fence. This
// means that use of the data happens before decreasing the reference
// count, which happens before this fence, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
atomic::fence(Acquire);
// Drop the data
Box::from_raw(ptr);
}
}
impl Shared {
fn is_unique(&self) -> bool {
// The goal is to check if the current handle is the only handle
// that currently has access to the buffer. This is done by
// checking if the `ref_count` is currently 1.
//
// The `Acquire` ordering synchronizes with the `Release` as
// part of the `fetch_sub` in `release_shared`. The `fetch_sub`
// operation guarantees that any mutations done in other threads
// are ordered before the `ref_count` is decremented. As such,
// this `Acquire` will guarantee that those mutations are
// visible to the current thread.
self.ref_count.load(Acquire) == 1
}
}
fn original_capacity_to_repr(cap: usize) -> usize {
let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
cmp::min(width, MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH)
}
fn original_capacity_from_repr(repr: usize) -> usize {
if repr == 0 {
return 0;
}
1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
}
#[test]
fn test_original_capacity_to_repr() {
for &cap in &[0, 1, 16, 1000] {
assert_eq!(0, original_capacity_to_repr(cap));
}
for &cap in &[1024, 1025, 1100, 2000, 2047] {
assert_eq!(1, original_capacity_to_repr(cap));
}
for &cap in &[2048, 2049] {
assert_eq!(2, original_capacity_to_repr(cap));
}
// TODO: more
for &cap in &[65536, 65537, 68000, 1 << 17, 1 << 18, 1 << 20, 1 << 30] {
assert_eq!(7, original_capacity_to_repr(cap), "cap={}", cap);
}
}
#[test]
fn test_original_capacity_from_repr() {
assert_eq!(0, original_capacity_from_repr(0));
assert_eq!(1024, original_capacity_from_repr(1));
assert_eq!(1024 * 2, original_capacity_from_repr(2));
assert_eq!(1024 * 4, original_capacity_from_repr(3));
assert_eq!(1024 * 8, original_capacity_from_repr(4));
assert_eq!(1024 * 16, original_capacity_from_repr(5));
assert_eq!(1024 * 32, original_capacity_from_repr(6));
assert_eq!(1024 * 64, original_capacity_from_repr(7));
}
unsafe impl Send for Inner {}
unsafe impl Sync for Inner {}
/*
*
* ===== PartialEq / PartialOrd =====
*
*/
impl PartialEq<[u8]> for BytesMut {
fn eq(&self, other: &[u8]) -> bool {
&**self == other
}
}
impl PartialOrd<[u8]> for BytesMut {
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
(**self).partial_cmp(other)
}
}
impl PartialEq<BytesMut> for [u8] {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for [u8] {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<str> for BytesMut {
fn eq(&self, other: &str) -> bool {
&**self == other.as_bytes()
}
}
impl PartialOrd<str> for BytesMut {
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
(**self).partial_cmp(other.as_bytes())
}
}
impl PartialEq<BytesMut> for str {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for str {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<Vec<u8>> for BytesMut {
fn eq(&self, other: &Vec<u8>) -> bool {
*self == &other[..]
}
}
impl PartialOrd<Vec<u8>> for BytesMut {
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
(**self).partial_cmp(&other[..])
}
}
impl PartialEq<BytesMut> for Vec<u8> {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for Vec<u8> {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<String> for BytesMut {
fn eq(&self, other: &String) -> bool {
*self == &other[..]
}
}
impl PartialOrd<String> for BytesMut {
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
(**self).partial_cmp(other.as_bytes())
}
}
impl PartialEq<BytesMut> for String {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl PartialOrd<BytesMut> for String {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
where BytesMut: PartialEq<T>
{
fn eq(&self, other: &&'a T) -> bool {
*self == **other
}
}
impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
where BytesMut: PartialOrd<T>
{
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
self.partial_cmp(*other)
}
}
impl<'a> PartialEq<BytesMut> for &'a [u8] {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl<'a> PartialOrd<BytesMut> for &'a [u8] {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a> PartialEq<BytesMut> for &'a str {
fn eq(&self, other: &BytesMut) -> bool {
*other == *self
}
}
impl<'a> PartialOrd<BytesMut> for &'a str {
fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<[u8]> for Bytes {
fn eq(&self, other: &[u8]) -> bool {
self.inner.as_ref() == other
}
}
impl PartialOrd<[u8]> for Bytes {
fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other)
}
}
impl PartialEq<Bytes> for [u8] {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for [u8] {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<str> for Bytes {
fn eq(&self, other: &str) -> bool {
self.inner.as_ref() == other.as_bytes()
}
}
impl PartialOrd<str> for Bytes {
fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other.as_bytes())
}
}
impl PartialEq<Bytes> for str {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for str {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<Vec<u8>> for Bytes {
fn eq(&self, other: &Vec<u8>) -> bool {
*self == &other[..]
}
}
impl PartialOrd<Vec<u8>> for Bytes {
fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(&other[..])
}
}
impl PartialEq<Bytes> for Vec<u8> {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for Vec<u8> {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl PartialEq<String> for Bytes {
fn eq(&self, other: &String) -> bool {
*self == &other[..]
}
}
impl PartialOrd<String> for Bytes {
fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
self.inner.as_ref().partial_cmp(other.as_bytes())
}
}
impl PartialEq<Bytes> for String {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl PartialOrd<Bytes> for String {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a> PartialEq<Bytes> for &'a [u8] {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl<'a> PartialOrd<Bytes> for &'a [u8] {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a> PartialEq<Bytes> for &'a str {
fn eq(&self, other: &Bytes) -> bool {
*other == *self
}
}
impl<'a> PartialOrd<Bytes> for &'a str {
fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
other.partial_cmp(self)
}
}
impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes
where Bytes: PartialEq<T>
{
fn eq(&self, other: &&'a T) -> bool {
*self == **other
}
}
impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes
where Bytes: PartialOrd<T>
{
fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
self.partial_cmp(&**other)
}
}
impl PartialEq<BytesMut> for Bytes
{
fn eq(&self, other: &BytesMut) -> bool {
&other[..] == &self[..]
}
}
impl PartialEq<Bytes> for BytesMut
{
fn eq(&self, other: &Bytes) -> bool {
&other[..] == &self[..]
}
}