blob: d4d723615d0a2b838d04530e28199482449c1147 [file] [log] [blame]
//! # wasmi
//!
//! This library allows to load WebAssembly modules in binary format and invoke functions on them.
//!
//! # Introduction
//!
//! WebAssembly (wasm) is a safe, portable, compact format that designed for efficient execution.
//!
//! Wasm code is distributed in a form of modules, that contains definitions of:
//!
//! - functions,
//! - global variables,
//! - linear memories,
//! - tables.
//!
//! and this definitions can be imported. Also, each definition can be exported.
//!
//! In addition to definitions, modules can define initialization data for their memories or tables that takes the
//! form of segments copied to given offsets. They can also define a `start` function that is automatically executed.
//!
//! ## Loading and Validation
//!
//! Before execution a module should be validated. This process checks that module is well-formed
//! and makes only allowed operations.
//!
//! Valid modules can't access memory out of it's sandbox, can't cause stack underflow
//! and can call functions only with correct signatures.
//!
//! ## Instantiatiation
//!
//! In order to execute code in wasm module it should be instatiated.
//! Instantiation includes the following steps:
//!
//! 1. Create an empty module instance,
//! 2. Resolve definition instances for each declared import in the module,
//! 3. Instantiate definitions declared in the module (e.g. allocate global variables, allocate linear memory, etc),
//! 4. Initialize memory and table contents by copiying segments into them,
//! 5. Execute `start` function, if any.
//!
//! After these steps, module instance are ready to execute functions.
//!
//! ## Execution
//!
//! It is allowed to only execute functions which are exported by a module.
//! Functions can either return a result or trap (e.g. there can't be linking-error at the middle of execution).
//! This property is ensured by the validation process.
//!
//! # Examples
//!
//! ```rust
//! extern crate wasmi;
//! extern crate wabt;
//!
//! use wasmi::{ModuleInstance, ImportsBuilder, NopExternals, RuntimeValue};
//!
//! fn main() {
//! // Parse WAT (WebAssembly Text format) into wasm bytecode.
//! let wasm_binary: Vec<u8> =
//! wabt::wat2wasm(
//! r#"
//! (module
//! (func (export "test") (result i32)
//! i32.const 1337
//! )
//! )
//! "#,
//! )
//! .expect("failed to parse wat");
//!
//! // Load wasm binary and prepare it for instantiation.
//! let module = wasmi::Module::from_buffer(&wasm_binary)
//! .expect("failed to load wasm");
//!
//! // Instantiate a module with empty imports and
//! // asserting that there is no `start` function.
//! let instance =
//! ModuleInstance::new(
//! &module,
//! &ImportsBuilder::default()
//! )
//! .expect("failed to instantiate wasm module")
//! .assert_no_start();
//!
//! // Finally, invoke exported function "test" with no parameters
//! // and empty external function executor.
//! assert_eq!(
//! instance.invoke_export(
//! "test",
//! &[],
//! &mut NopExternals,
//! ).expect("failed to execute export"),
//! Some(RuntimeValue::I32(1337)),
//! );
//! }
//! ```
#![warn(missing_docs)]
#![cfg_attr(not(target_env = "sgx"), no_std)]
#![cfg_attr(target_env = "sgx", feature(rustc_private))]
#[cfg(not(target_env = "sgx"))]
#[macro_use]
extern crate sgx_tstd as std;
extern crate parity_wasm;
extern crate byteorder;
extern crate memory_units as memory_units_crate;
#[macro_use]
extern crate serde_derive;
extern crate serde;
#[cfg(all(not(feature = "32bit_opt_in"), target_pointer_width = "32"))]
compile_error! {
"32-bit targets are not supported at the moment.
You can use '32bit_opt_in' feature.
See https://github.com/pepyakin/wasmi/issues/43"
}
use std::prelude::v1::*;
use std::fmt;
use std::error;
use std::collections::HashMap;
/// Error type which can thrown by wasm code or by host environment.
///
/// Under some conditions, wasm execution may produce a `Trap`, which immediately aborts execution.
/// Traps can't be handled by WebAssembly code, but are reported to the embedder.
#[derive(Debug, Serialize, Deserialize)]
pub struct Trap {
kind: TrapKind,
}
impl Trap {
/// Create new trap.
pub fn new(kind: TrapKind) -> Trap {
Trap { kind }
}
/// Returns kind of this trap.
pub fn kind(&self) -> &TrapKind {
&self.kind
}
}
impl fmt::Display for Trap {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Trap: {:?}", self.kind)
}
}
impl error::Error for Trap {
fn description(&self) -> &str {
"runtime trap"
}
}
/// Error type which can thrown by wasm code or by host environment.
///
/// See [`Trap`] for details.
///
/// [`Trap`]: struct.Trap.html
#[derive(Debug, Serialize, Deserialize)]
pub enum TrapKind {
/// Wasm code executed `unreachable` opcode.
///
/// `unreachable` is a special opcode which always traps upon execution.
/// This opcode have a similar purpose as `ud2` in x86.
Unreachable,
/// Attempt to load or store at the address which
/// lies outside of bounds of the memory.
///
/// Since addresses are interpreted as unsigned integers, out of bounds access
/// can't happen with negative addresses (i.e. they will always wrap).
MemoryAccessOutOfBounds,
/// Attempt to access table element at index which
/// lies outside of bounds.
///
/// This typically can happen when `call_indirect` is executed
/// with index that lies out of bounds.
///
/// Since indexes are interpreted as unsinged integers, out of bounds access
/// can't happen with negative indexes (i.e. they will always wrap).
TableAccessOutOfBounds,
/// Attempt to access table element which is uninitialized (i.e. `None`).
///
/// This typically can happen when `call_indirect` is executed.
ElemUninitialized,
/// Attempt to divide by zero.
///
/// This trap typically can happen if `div` or `rem` is executed with
/// zero as divider.
DivisionByZero,
/// Attempt to make a conversion to an int failed.
///
/// This can happen when:
///
/// - trying to do signed division (or get the remainder) -2<sup>N-1</sup> over -1. This is
/// because the result +2<sup>N-1</sup> isn't representable as a N-bit signed integer.
/// - trying to truncate NaNs, infinity, or value for which the result is out of range into an integer.
InvalidConversionToInt,
/// Stack overflow.
///
/// This is likely caused by some infinite or very deep recursion.
/// Extensive inlining might also be the cause of stack overflow.
StackOverflow,
/// Attempt to invoke a function with mismatching signature.
///
/// This can happen if [`FuncInstance`] was invoked
/// with mismatching [signature][`Signature`].
///
/// This can always happen with indirect calls. `call_indirect` instruction always
/// specifies the expected signature of function. If `call_indirect` is executed
/// with index that points on function with signature different that is
/// expected by this `call_indirect`, this trap is raised.
///
/// [`Signature`]: struct.Signature.html
UnexpectedSignature,
// Error specified by the host.
//
// Typically returned from an implementation of [`Externals`].
//
// [`Externals`]: trait.Externals.html
//Host(Box<host::HostError>),
}
/// Internal interpreter error.
#[derive(Debug, Serialize, Deserialize)]
pub enum Error {
/// Module validation error. Might occur only at load time.
Validation(String),
/// Error while instantiating a module. Might occur when provided
/// with incorrect exports (i.e. linkage failure).
Instantiation(String),
/// Function-level error.
Function(String),
/// Table-level error.
Table(String),
/// Memory-level error.
Memory(String),
/// Global-level error.
Global(String),
/// Value-level error.
Value(String),
/// Trap.
Trap(Trap),
// Custom embedder error.
//Host(Box<host::HostError>),
}
//impl Error {
// Returns [`HostError`] if this `Error` represents some host error.
//
// I.e. if this error have variant [`Host`] or [`Trap`][`Trap`] with [host][`TrapKind::Host`] error.
//
// [`HostError`]: trait.HostError.html
// [`Host`]: enum.Error.html#variant.Host
// [`Trap`]: enum.Error.html#variant.Trap
// [`TrapKind::Host`]: enum.TrapKind.html#variant.Host
//pub fn as_host_error(&self) -> Option<&host::HostError> {
// match *self {
// Error::Host(ref host_err) => Some(&**host_err),
// Error::Trap(ref trap) => match *trap.kind() {
// TrapKind::Host(ref host_err) => Some(&**host_err),
// _ => None,
// }
// _ => None,
// }
//}
//}
impl Into<String> for Error {
fn into(self) -> String {
match self {
Error::Validation(s) => s,
Error::Instantiation(s) => s,
Error::Function(s) => s,
Error::Table(s) => s,
Error::Memory(s) => s,
Error::Global(s) => s,
Error::Value(s) => s,
Error::Trap(s) => format!("trap: {:?}", s),
// Error::Host(e) => format!("user: {}", e),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Validation(ref s) => write!(f, "Validation: {}", s),
Error::Instantiation(ref s) => write!(f, "Instantiation: {}", s),
Error::Function(ref s) => write!(f, "Function: {}", s),
Error::Table(ref s) => write!(f, "Table: {}", s),
Error::Memory(ref s) => write!(f, "Memory: {}", s),
Error::Global(ref s) => write!(f, "Global: {}", s),
Error::Value(ref s) => write!(f, "Value: {}", s),
Error::Trap(ref s) => write!(f, "Trap: {:?}", s),
// Error::Host(ref e) => write!(f, "User: {}", e),
}
}
}
impl error::Error for Error {
fn description(&self) -> &str {
match *self {
Error::Validation(ref s) => s,
Error::Instantiation(ref s) => s,
Error::Function(ref s) => s,
Error::Table(ref s) => s,
Error::Memory(ref s) => s,
Error::Global(ref s) => s,
Error::Value(ref s) => s,
Error::Trap(_) => "Trap",
// Error::Host(_) => "Host error",
}
}
}
//impl<U> From<U> for Error where U: host::HostError + Sized {
// fn from(e: U) -> Self {
// Error::Host(Box::new(e))
// }
//}
//
//impl<U> From<U> for Trap where U: host::HostError + Sized {
// fn from(e: U) -> Self {
// Trap::new(TrapKind::Host(Box::new(e)))
// }
//}
impl From<Trap> for Error {
fn from(e: Trap) -> Error {
Error::Trap(e)
}
}
impl From<TrapKind> for Trap {
fn from(e: TrapKind) -> Trap {
Trap::new(e)
}
}
impl From<validation::Error> for Error {
fn from(e: validation::Error) -> Error {
Error::Validation(e.to_string())
}
}
mod validation;
mod common;
mod memory;
mod module;
mod runner;
mod table;
mod value;
mod host;
mod imports;
mod global;
mod func;
mod types;
//
////#[cfg(test)]
////mod tests;
//
pub use self::memory::{MemoryInstance, MemoryRef, LINEAR_MEMORY_PAGE_SIZE};
pub use self::table::{TableInstance, TableRef};
pub use self::value::{RuntimeValue, FromRuntimeValue};
pub use self::host::{Externals, NopExternals, HostError, RuntimeArgs};
pub use self::imports::{ModuleImportResolver, ImportResolver, ImportsBuilder};
pub use self::module::{ModuleInstance, ModuleRef, ExternVal, NotStartedModuleRef};
pub use self::global::{GlobalInstance, GlobalRef};
pub use self::func::{FuncInstance, FuncRef};
pub use self::types::{Signature, ValueType, GlobalDescriptor, TableDescriptor, MemoryDescriptor};
/// WebAssembly-specific sizes and units.
pub mod memory_units {
pub use memory_units_crate::wasm32::*;
pub use memory_units_crate::{Bytes, ByteSize, RoundUpTo, size_of};
}
/// Deserialized module prepared for instantiation.
pub struct Module {
labels: HashMap<usize, HashMap<usize, usize>>,
module: parity_wasm::elements::Module,
}
impl Module {
/// Create `Module` from `parity_wasm::elements::Module`.
///
/// This function will load, validate and prepare a `parity_wasm`'s `Module`.
///
/// # Errors
///
/// Returns `Err` if provided `Module` is not valid.
///
/// # Examples
///
/// ```rust
/// extern crate parity_wasm;
/// extern crate wasmi;
///
/// use parity_wasm::builder;
/// use parity_wasm::elements;
///
/// fn main() {
/// let parity_module =
/// builder::module()
/// .function()
/// .signature().with_param(elements::ValueType::I32).build()
/// .body().build()
/// .build()
/// .build();
///
/// let module = wasmi::Module::from_parity_wasm_module(parity_module)
/// .expect("parity-wasm builder generated invalid module!");
///
/// // Instantiate `module`, etc...
/// }
/// ```
pub fn from_parity_wasm_module(module: parity_wasm::elements::Module) -> Result<Module, Error> {
use validation::{validate_module, ValidatedModule};
let ValidatedModule {
labels,
module,
} = validate_module(module)?;
Ok(Module {
labels,
module,
})
}
/// Create `Module` from a given buffer.
///
/// This function will deserialize wasm module from a given module,
/// validate and prepare it for instantiation.
///
/// # Errors
///
/// Returns `Err` if wasm binary in provided `buffer` is not valid wasm binary.
///
/// # Examples
///
/// ```rust
/// extern crate wasmi;
///
/// fn main() {
/// let module =
/// wasmi::Module::from_buffer(
/// // Minimal module:
/// // \0asm - magic
/// // 0x01 - version (in little-endian)
/// &[0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00]
/// ).expect("Failed to load minimal module");
///
/// // Instantiate `module`, etc...
/// }
/// ```
pub fn from_buffer<B: AsRef<[u8]>>(buffer: B) -> Result<Module, Error> {
let module = parity_wasm::elements::deserialize_buffer(buffer.as_ref())
.map_err(|e: parity_wasm::elements::Error| Error::Validation(e.to_string()))?;
Module::from_parity_wasm_module(module)
}
pub(crate) fn module(&self) -> &parity_wasm::elements::Module {
&self.module
}
pub(crate) fn labels(&self) -> &HashMap<usize, HashMap<usize, usize>> {
&self.labels
}
}