blob: fa9b9172d9826f4845362c41436e7b9a9226a6a6 [file] [log] [blame]
use std::prelude::v1::*;
use std::cmp::min;
use std::io::{Read, Write};
use std::iter::{FromIterator, IntoIterator};
use std::slice;
use std::vec;
use super::{Deserialize, Error, Serialize, VarUint32};
/// A map from non-contiguous `u32` keys to values of type `T`, which is
/// serialized and deserialized ascending order of the keys. Normally used for
/// relative dense maps with occasional "holes", and stored as an array.
///
/// **SECURITY WARNING:** This code is currently subject to a denial of service
/// attack if you create a map containing the key `u32::MAX`, which should never
/// happen in normal data. It would be pretty easy to provide a safe
/// deserializing mechanism which addressed this problem.
#[derive(Debug, Default)]
pub struct IndexMap<T> {
/// The number of non-`None` entries in this map.
len: usize,
/// A vector of entries. Missing entries are represented as `None`.
entries: Vec<Option<T>>,
}
impl<T> IndexMap<T> {
/// Create an empty `IndexMap`, preallocating enough space to store
/// `capacity` entries without needing to reallocate the underlying memory.
pub fn with_capacity(capacity: usize) -> IndexMap<T> {
IndexMap {
len: 0,
entries: Vec::with_capacity(capacity),
}
}
/// Clear the map.
pub fn clear(&mut self) {
self.entries.clear();
self.len = 0;
}
/// Return the name for the specified index, if it exists.
pub fn get(&self, idx: u32) -> Option<&T> {
match self.entries.get(idx as usize) {
Some(&Some(ref value)) => Some(value),
Some(&None) | None => None,
}
}
/// Does the map contain an entry for the specified index?
pub fn contains_key(&self, idx: u32) -> bool {
match self.entries.get(idx as usize) {
Some(&Some(_)) => true,
Some(&None) | None => false,
}
}
/// Insert a name into our map, returning the existing value if present.
///
/// Note: This API is designed for reasonably dense indices based on valid
/// data. Inserting a huge `idx` will use up a lot of RAM, and this function
/// will not try to protect you against that.
pub fn insert(&mut self, idx: u32, value: T) -> Option<T> {
let idx = idx as usize;
let result = if idx >= self.entries.len() {
// We need to grow the array, and add the new element at the end.
for _ in 0..(idx - self.entries.len()) {
// We can't use `extend(repeat(None)).take(n)`, because that
// would require `T` to implement `Clone`.
self.entries.push(None);
}
self.entries.push(Some(value));
debug_assert_eq!(idx + 1, self.entries.len());
self.len += 1;
None
} else {
// We're either replacing an existing element, or filling in a
// missing one.
let existing = self.entries[idx].take();
if existing.is_none() {
self.len += 1;
}
self.entries[idx] = Some(value);
existing
};
debug_assert!(self.entries.len() <= (::std::u32::MAX as usize) + 1);
#[cfg(debug_assertions)]
debug_assert_eq!(self.len, self.slow_len());
result
}
/// Remove an item if present and return it.
pub fn remove(&mut self, idx: u32) -> Option<T> {
let result = match self.entries.get_mut(idx as usize) {
Some(value @ &mut Some(_)) => {
self.len -= 1;
value.take()
}
Some(&mut None) | None => None,
};
#[cfg(debug_assertions)]
debug_assert_eq!(self.len, self.slow_len());
result
}
/// The number of items in this map.
pub fn len(&self) -> usize {
#[cfg(debug_assertions)]
debug_assert_eq!(self.len, self.slow_len());
self.len
}
/// Is this map empty?
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// This function is only compiled when `-C debug-assertions` is enabled.
/// It computes the `len` value using a slow algorithm.
///
/// WARNING: This turns a bunch of O(n) operations into O(n^2) operations.
/// We may want to remove it once the code is tested, or to put it behind
/// a feature flag named `slow_debug_checks`, or something like that.
#[cfg(debug_assertions)]
fn slow_len(&self) -> usize {
self.entries.iter().filter(|entry| entry.is_some()).count()
}
/// Create a non-consuming iterator over this `IndexMap`'s keys and values.
pub fn iter(&self) -> Iter<T> {
// Note that this does the right thing because we use `&self`.
self.into_iter()
}
/// Custom deserialization routine.
///
/// We will allocate an underlying array no larger than `max_entry_space` to
/// hold the data, so the maximum index must be less than `max_entry_space`.
/// This prevents mallicious *.wasm files from having a single entry with
/// the index `u32::MAX`, which would consume far too much memory.
///
/// The `deserialize_value` function will be passed the index of the value
/// being deserialized, and must deserialize the value.
pub fn deserialize_with<R, F>(
max_entry_space: usize,
deserialize_value: &F,
rdr: &mut R,
) -> Result<IndexMap<T>, Error>
where
R: Read,
F: Fn(u32, &mut R) -> Result<T, Error>,
{
let len: u32 = VarUint32::deserialize(rdr)?.into();
let mut map = IndexMap::with_capacity(len as usize);
let mut prev_idx = None;
for _ in 0..len {
let idx: u32 = VarUint32::deserialize(rdr)?.into();
if idx as usize >= max_entry_space {
return Err(Error::Other("index is larger than expected"));
}
match prev_idx {
Some(prev) if prev >= idx => {
// Supposedly these names must be "sorted by index", so
// let's try enforcing that and seeing what happens.
return Err(Error::Other("indices are out of order"));
}
_ => {
prev_idx = Some(idx);
}
}
let val = deserialize_value(idx, rdr)?;
map.insert(idx, val);
}
Ok(map)
}
}
impl<T: Clone> Clone for IndexMap<T> {
fn clone(&self) -> IndexMap<T> {
IndexMap {
len: self.len,
entries: self.entries.clone(),
}
}
}
impl<T: PartialEq> PartialEq<IndexMap<T>> for IndexMap<T> {
fn eq(&self, other: &IndexMap<T>) -> bool {
if self.len() != other.len() {
// If the number of non-`None` entries is different, we can't match.
false
} else {
// This is tricky, because one `Vec` might have a bunch of empty
// entries at the end which we want to ignore.
let smallest_len = min(self.entries.len(), other.entries.len());
self.entries[0..smallest_len].eq(&other.entries[0..smallest_len])
}
}
}
impl<T: Eq> Eq for IndexMap<T> {}
impl<T> FromIterator<(u32, T)> for IndexMap<T> {
/// Create an `IndexMap` from an iterator.
///
/// Note: This API is designed for reasonably dense indices based on valid
/// data. Inserting a huge `idx` will use up a lot of RAM, and this function
/// will not try to protect you against that.
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = (u32, T)>,
{
let iter = iter.into_iter();
let (lower, upper_opt) = iter.size_hint();
let mut map = IndexMap::with_capacity(upper_opt.unwrap_or(lower));
for (idx, value) in iter {
map.insert(idx, value);
}
map
}
}
/// An iterator over an `IndexMap` which takes ownership of it.
pub struct IntoIter<T> {
next_idx: u32,
remaining_len: usize,
iter: vec::IntoIter<Option<T>>,
}
impl<T> Iterator for IntoIter<T> {
type Item = (u32, T);
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining_len, Some(self.remaining_len))
}
fn next(&mut self) -> Option<Self::Item> {
// Bail early if we know there are no more items. This also keeps us
// from repeatedly calling `self.iter.next()` once it has been
// exhausted, which is not guaranteed to keep returning `None`.
if self.remaining_len == 0 {
return None;
}
while let Some(value_opt) = self.iter.next() {
let idx = self.next_idx;
self.next_idx += 1;
if let Some(value) = value_opt {
self.remaining_len -= 1;
return Some((idx, value));
}
}
debug_assert_eq!(self.remaining_len, 0);
None
}
}
impl<T> IntoIterator for IndexMap<T> {
type Item = (u32, T);
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
IntoIter {
next_idx: 0,
remaining_len: self.len,
iter: self.entries.into_iter(),
}
}
}
/// An iterator over a borrowed `IndexMap`.
pub struct Iter<'a, T: 'static> {
next_idx: u32,
remaining_len: usize,
iter: slice::Iter<'a, Option<T>>,
}
impl<'a, T: 'static> Iterator for Iter<'a, T> {
type Item = (u32, &'a T);
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining_len, Some(self.remaining_len))
}
fn next(&mut self) -> Option<Self::Item> {
// Bail early if we know there are no more items. This also keeps us
// from repeatedly calling `self.iter.next()` once it has been
// exhausted, which is not guaranteed to keep returning `None`.
if self.remaining_len == 0 {
return None;
}
while let Some(value_opt) = self.iter.next() {
let idx = self.next_idx;
self.next_idx += 1;
if let &Some(ref value) = value_opt {
self.remaining_len -= 1;
return Some((idx, value));
}
}
debug_assert_eq!(self.remaining_len, 0);
None
}
}
impl<'a, T: 'static> IntoIterator for &'a IndexMap<T> {
type Item = (u32, &'a T);
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
Iter {
next_idx: 0,
remaining_len: self.len,
iter: self.entries.iter(),
}
}
}
impl<T> Serialize for IndexMap<T>
where
T: Serialize,
Error: From<<T as Serialize>::Error>,
{
type Error = Error;
fn serialize<W: Write>(self, wtr: &mut W) -> Result<(), Self::Error> {
VarUint32::from(self.len()).serialize(wtr)?;
for (idx, value) in self {
VarUint32::from(idx).serialize(wtr)?;
value.serialize(wtr)?;
}
Ok(())
}
}
impl<T: Deserialize> IndexMap<T>
where
T: Deserialize,
Error: From<<T as Deserialize>::Error>,
{
/// Deserialize a map containing simple values that support `Deserialize`.
/// We will allocate an underlying array no larger than `max_entry_space` to
/// hold the data, so the maximum index must be less than `max_entry_space`.
pub fn deserialize<R: Read>(
max_entry_space: usize,
rdr: &mut R,
) -> Result<Self, Error> {
let deserialize_value: fn(u32, &mut R) -> Result<T, Error> = |_idx, rdr| {
T::deserialize(rdr).map_err(Error::from)
};
Self::deserialize_with(max_entry_space, &deserialize_value, rdr)
}
}
#[cfg(test)]
mod tests {
use std::io;
use super::*;
#[test]
fn default_is_empty_no_matter_how_we_look_at_it() {
let map = IndexMap::<String>::default();
assert_eq!(map.len(), 0);
assert!(map.is_empty());
assert_eq!(map.iter().collect::<Vec<_>>().len(), 0);
assert_eq!(map.into_iter().collect::<Vec<_>>().len(), 0);
}
#[test]
fn with_capacity_creates_empty_map() {
let map = IndexMap::<String>::with_capacity(10);
assert!(map.is_empty());
}
#[test]
fn clear_removes_all_values() {
let mut map = IndexMap::<String>::default();
map.insert(0, "sample value".to_string());
assert_eq!(map.len(), 1);
map.clear();
assert_eq!(map.len(), 0);
}
#[test]
fn get_returns_elements_that_are_there_but_nothing_else() {
let mut map = IndexMap::<String>::default();
map.insert(1, "sample value".to_string());
assert_eq!(map.len(), 1);
assert_eq!(map.get(0), None);
assert_eq!(map.get(1), Some(&"sample value".to_string()));
assert_eq!(map.get(2), None);
}
#[test]
fn contains_key_returns_true_when_a_key_is_present() {
let mut map = IndexMap::<String>::default();
map.insert(1, "sample value".to_string());
assert!(!map.contains_key(0));
assert!(map.contains_key(1));
assert!(!map.contains_key(2));
}
#[test]
fn insert_behaves_like_other_maps() {
let mut map = IndexMap::<String>::default();
// Insert a key which requires extending our storage.
assert_eq!(map.insert(1, "val 1".to_string()), None);
assert_eq!(map.len(), 1);
assert!(map.contains_key(1));
// Insert a key which requires filling in a hole.
assert_eq!(map.insert(0, "val 0".to_string()), None);
assert_eq!(map.len(), 2);
assert!(map.contains_key(0));
// Insert a key which replaces an existing key.
assert_eq!(
map.insert(1, "val 1.1".to_string()),
Some("val 1".to_string())
);
assert_eq!(map.len(), 2);
assert!(map.contains_key(1));
assert_eq!(map.get(1), Some(&"val 1.1".to_string()));
}
#[test]
fn remove_behaves_like_other_maps() {
let mut map = IndexMap::<String>::default();
assert_eq!(map.insert(1, "val 1".to_string()), None);
// Remove an out-of-bounds element.
assert_eq!(map.remove(2), None);
assert_eq!(map.len(), 1);
// Remove an in-bounds but missing element.
assert_eq!(map.remove(0), None);
assert_eq!(map.len(), 1);
// Remove an existing element.
assert_eq!(map.remove(1), Some("val 1".to_string()));
assert_eq!(map.len(), 0);
}
#[test]
fn partial_eq_works_as_expected_in_simple_cases() {
let mut map1 = IndexMap::<String>::default();
let mut map2 = IndexMap::<String>::default();
assert_eq!(map1, map2);
map1.insert(1, "a".to_string());
map2.insert(1, "a".to_string());
assert_eq!(map1, map2);
map1.insert(0, "b".to_string());
assert_ne!(map1, map2);
map1.remove(0);
assert_eq!(map1, map2);
map1.insert(1, "not a".to_string());
assert_ne!(map1, map2);
}
#[test]
fn partial_eq_is_smart_about_none_values_at_the_end() {
let mut map1 = IndexMap::<String>::default();
let mut map2 = IndexMap::<String>::default();
map1.insert(1, "a".to_string());
map2.insert(1, "a".to_string());
// Both maps have the same (idx, value) pairs, but map2 has extra space.
map2.insert(10, "b".to_string());
map2.remove(10);
assert_eq!(map1, map2);
// Both maps have the same (idx, value) pairs, but map1 has extra space.
map1.insert(100, "b".to_string());
map1.remove(100);
assert_eq!(map1, map2);
// Let's be paranoid.
map2.insert(1, "b".to_string());
assert_ne!(map1, map2);
}
#[test]
fn from_iterator_builds_a_map() {
let data = &[
// We support out-of-order values here!
(3, "val 3"),
(2, "val 2"),
(5, "val 5"),
];
let iter = data.iter().map(|&(idx, val)| (idx, val.to_string()));
let map = IndexMap::from_iter(iter);
assert_eq!(map.len(), 3);
assert_eq!(map.get(2), Some(&"val 2".to_string()));
assert_eq!(map.get(3), Some(&"val 3".to_string()));
assert_eq!(map.get(5), Some(&"val 5".to_string()));
}
#[test]
fn iterators_are_well_behaved() {
// Create a map with reasonably complex internal structure, making
// sure that we have both internal missing elements, and a bunch of
// missing elements at the end.
let data = &[(3, "val 3"), (2, "val 2"), (5, "val 5")];
let src_iter = data.iter().map(|&(idx, val)| (idx, val.to_string()));
let mut map = IndexMap::from_iter(src_iter);
map.remove(5);
// Make sure `size_hint` and `next` behave as we expect at each step.
{
let mut iter1 = map.iter();
assert_eq!(iter1.size_hint(), (2, Some(2)));
assert_eq!(iter1.next(), Some((2, &"val 2".to_string())));
assert_eq!(iter1.size_hint(), (1, Some(1)));
assert_eq!(iter1.next(), Some((3, &"val 3".to_string())));
assert_eq!(iter1.size_hint(), (0, Some(0)));
assert_eq!(iter1.next(), None);
assert_eq!(iter1.size_hint(), (0, Some(0)));
assert_eq!(iter1.next(), None);
assert_eq!(iter1.size_hint(), (0, Some(0)));
}
// Now do the same for a consuming iterator.
let mut iter2 = map.into_iter();
assert_eq!(iter2.size_hint(), (2, Some(2)));
assert_eq!(iter2.next(), Some((2, "val 2".to_string())));
assert_eq!(iter2.size_hint(), (1, Some(1)));
assert_eq!(iter2.next(), Some((3, "val 3".to_string())));
assert_eq!(iter2.size_hint(), (0, Some(0)));
assert_eq!(iter2.next(), None);
assert_eq!(iter2.size_hint(), (0, Some(0)));
assert_eq!(iter2.next(), None);
assert_eq!(iter2.size_hint(), (0, Some(0)));
}
#[test]
fn serialize_and_deserialize() {
let mut map = IndexMap::<String>::default();
map.insert(1, "val 1".to_string());
let mut output = vec![];
map.clone()
.serialize(&mut output)
.expect("serialize failed");
let mut input = io::Cursor::new(&output);
let deserialized = IndexMap::deserialize(2, &mut input).expect("deserialize failed");
assert_eq!(deserialized, map);
}
#[test]
fn deserialize_requires_elements_to_be_in_order() {
// Build a in-order example by hand.
let mut valid = vec![];
VarUint32::from(2u32).serialize(&mut valid).unwrap();
VarUint32::from(0u32).serialize(&mut valid).unwrap();
"val 0".to_string().serialize(&mut valid).unwrap();
VarUint32::from(1u32).serialize(&mut valid).unwrap();
"val 1".to_string().serialize(&mut valid).unwrap();
let map = IndexMap::<String>::deserialize(2, &mut io::Cursor::new(valid))
.expect("unexpected error deserializing");
assert_eq!(map.len(), 2);
// Build an out-of-order example by hand.
let mut invalid = vec![];
VarUint32::from(2u32).serialize(&mut invalid).unwrap();
VarUint32::from(1u32).serialize(&mut invalid).unwrap();
"val 1".to_string().serialize(&mut invalid).unwrap();
VarUint32::from(0u32).serialize(&mut invalid).unwrap();
"val 0".to_string().serialize(&mut invalid).unwrap();
let res = IndexMap::<String>::deserialize(2, &mut io::Cursor::new(invalid));
assert!(res.is_err());
}
#[test]
fn deserialize_enforces_max_idx() {
// Build an example with an out-of-bounds index by hand.
let mut invalid = vec![];
VarUint32::from(1u32).serialize(&mut invalid).unwrap();
VarUint32::from(5u32).serialize(&mut invalid).unwrap();
"val 5".to_string().serialize(&mut invalid).unwrap();
let res = IndexMap::<String>::deserialize(1, &mut io::Cursor::new(invalid));
assert!(res.is_err());
}
}