blob: aa0ee4199659f5746ee0ecebe67aa45f051c5817 [file] [log] [blame]
// Copyright (C) 2017-2018 Baidu, Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Baidu, Inc., nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//! Filesystem manipulation operations.
use core::fmt;
use io::{self, SeekFrom, Seek, Read, Initializer, Write};
use path::{Path, PathBuf};
use sys::fs as fs_imp;
use sys_common::{AsInnerMut, FromInner, AsInner, IntoInner};
use time::SystemTime;
/// A reference to an open file on the filesystem.
///
/// An instance of a `File` can be read and/or written depending on what options
/// it was opened with. Files also implement [`Seek`] to alter the logical cursor
/// that the file contains internally.
///
/// Files are automatically closed when they go out of scope.
///
pub struct File {
inner: fs_imp::File,
}
/// Metadata information about a file.
///
/// This structure is returned from the [`metadata`] or
/// [`symlink_metadata`] function or method and represents known
/// metadata about a file such as its permissions, size, modification
/// times, etc.
///
#[derive(Clone)]
pub struct Metadata(fs_imp::FileAttr);
/// Options and flags which can be used to configure how a file is opened.
///
/// This builder exposes the ability to configure how a [`File`] is opened and
/// what operations are permitted on the open file. The [`File::open`] and
/// [`File::create`] methods are aliases for commonly used options using this
/// builder.
///
/// [`File`]: struct.File.html
/// [`File::open`]: struct.File.html#method.open
/// [`File::create`]: struct.File.html#method.create
///
/// Generally speaking, when using `OpenOptions`, you'll first call [`new`],
/// then chain calls to methods to set each option, then call [`open`],
/// passing the path of the file you're trying to open. This will give you a
/// [`io::Result`][result] with a [`File`][file] inside that you can further
/// operate on.
///
/// [`new`]: struct.OpenOptions.html#method.new
/// [`open`]: struct.OpenOptions.html#method.open
/// [result]: ../io/type.Result.html
/// [file]: struct.File.html
///
#[derive(Clone, Debug)]
pub struct OpenOptions(fs_imp::OpenOptions);
/// Representation of the various permissions on a file.
///
/// This module only currently provides one bit of information, [`readonly`],
/// which is exposed on all currently supported platforms. Unix-specific
/// functionality, such as mode bits, is available through the
/// `os::unix::PermissionsExt` trait.
///
/// [`readonly`]: struct.Permissions.html#method.readonly
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct Permissions(fs_imp::FilePermissions);
/// A structure representing a type of file with accessors for each file type.
/// It is returned by [`Metadata::file_type`] method.
///
/// [`Metadata::file_type`]: struct.Metadata.html#method.file_type
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct FileType(fs_imp::FileType);
/// How large a buffer to pre-allocate before reading the entire file.
fn initial_buffer_size(file: &File) -> usize {
// Allocate one extra byte so the buffer doesn't need to grow before the
// final `read` call at the end of the file. Don't worry about `usize`
// overflow because reading will fail regardless in that case.
file.metadata().map(|m| m.len() as usize + 1).unwrap_or(0)
}
/// Read the entire contents of a file into a bytes vector.
///
/// This is a convenience function for using [`File::open`] and [`read_to_end`]
/// with fewer imports and without an intermediate variable. It pre-allocates a
/// buffer based on the file size when available, so it is generally faster than
/// reading into a vector created with `Vec::new()`.
///
/// [`File::open`]: struct.File.html#method.open
/// [`read_to_end`]: ../io/trait.Read.html#method.read_to_end
///
/// # Errors
///
/// This function will return an error if `path` does not already exist.
/// Other errors may also be returned according to [`OpenOptions::open`].
///
/// [`OpenOptions::open`]: struct.OpenOptions.html#method.open
///
/// It will also return an error if it encounters while reading an error
/// of a kind other than [`ErrorKind::Interrupted`].
///
/// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
///
pub fn read<P: AsRef<Path>>(path: P) -> io::Result<Vec<u8>> {
let mut file = File::open(path)?;
let mut bytes = Vec::with_capacity(initial_buffer_size(&file));
file.read_to_end(&mut bytes)?;
Ok(bytes)
}
/// Read the entire contents of a file into a string.
///
/// This is a convenience function for using [`File::open`] and [`read_to_string`]
/// with fewer imports and without an intermediate variable. It pre-allocates a
/// buffer based on the file size when available, so it is generally faster than
/// reading into a string created with `String::new()`.
///
/// [`File::open`]: struct.File.html#method.open
/// [`read_to_string`]: ../io/trait.Read.html#method.read_to_string
///
/// # Errors
///
/// This function will return an error if `path` does not already exist.
/// Other errors may also be returned according to [`OpenOptions::open`].
///
/// [`OpenOptions::open`]: struct.OpenOptions.html#method.open
///
/// It will also return an error if it encounters while reading an error
/// of a kind other than [`ErrorKind::Interrupted`],
/// or if the contents of the file are not valid UTF-8.
///
/// [`ErrorKind::Interrupted`]: ../../std/io/enum.ErrorKind.html#variant.Interrupted
///
pub fn read_to_string<P: AsRef<Path>>(path: P) -> io::Result<String> {
let mut file = File::open(path)?;
let mut string = String::with_capacity(initial_buffer_size(&file));
file.read_to_string(&mut string)?;
Ok(string)
}
/// Write a slice as the entire contents of a file.
///
/// This function will create a file if it does not exist,
/// and will entirely replace its contents if it does.
///
/// This is a convenience function for using [`File::create`] and [`write_all`]
/// with fewer imports.
///
/// [`File::create`]: struct.File.html#method.create
/// [`write_all`]: ../io/trait.Write.html#method.write_all
///
pub fn write<P: AsRef<Path>, C: AsRef<[u8]>>(path: P, contents: C) -> io::Result<()> {
File::create(path)?.write_all(contents.as_ref())
}
impl File {
/// Attempts to open a file in read-only mode.
///
pub fn open<P: AsRef<Path>>(path: P) -> io::Result<File> {
OpenOptions::new().read(true).open(path.as_ref())
}
/// Opens a file in write-only mode.
///
/// This function will create a file if it does not exist,
/// and will truncate it if it does.
///
pub fn create<P: AsRef<Path>>(path: P) -> io::Result<File> {
OpenOptions::new().write(true).create(true).truncate(true).open(path.as_ref())
}
/// Attempts to sync all OS-internal metadata to disk.
///
/// This function will attempt to ensure that all in-core data reaches the
/// filesystem before returning.
///
pub fn sync_all(&self) -> io::Result<()> {
self.inner.fsync()
}
/// This function is similar to [`sync_all`], except that it may not
/// synchronize file metadata to the filesystem.
///
/// This is intended for use cases that must synchronize content, but don't
/// need the metadata on disk. The goal of this method is to reduce disk
/// operations.
///
/// Note that some platforms may simply implement this in terms of
/// [`sync_all`].
///
/// [`sync_all`]: struct.File.html#method.sync_all
///
pub fn sync_data(&self) -> io::Result<()> {
self.inner.datasync()
}
/// Truncates or extends the underlying file, updating the size of
/// this file to become `size`.
///
/// If the `size` is less than the current file's size, then the file will
/// be shrunk. If it is greater than the current file's size, then the file
/// will be extended to `size` and have all of the intermediate data filled
/// in with 0s.
///
/// The file's cursor isn't changed. In particular, if the cursor was at the
/// end and the file is shrunk using this operation, the cursor will now be
/// past the end.
///
/// # Errors
///
/// This function will return an error if the file is not opened for writing.
///
pub fn set_len(&self, size: u64) -> io::Result<()> {
self.inner.truncate(size)
}
/// Queries metadata about the underlying file.
///
pub fn metadata(&self) -> io::Result<Metadata> {
self.inner.file_attr().map(Metadata)
}
/// Create a new `File` instance that shares the same underlying file handle
/// as the existing `File` instance. Reads, writes, and seeks will affect
/// both `File` instances simultaneously.
///
pub fn try_clone(&self) -> io::Result<File> {
Ok(File {
inner: self.inner.duplicate()?
})
}
/// Changes the permissions on the underlying file.
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `fchmod` function on Unix and
/// the `SetFileInformationByHandle` function on Windows. Note that, this
/// [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error if the user lacks permission change
/// attributes on the underlying file. It may also return an error in other
/// os-specific unspecified cases.
///
pub fn set_permissions(&self, perm: Permissions) -> io::Result<()> {
self.inner.set_permissions(perm.0)
}
}
impl AsInner<fs_imp::File> for File {
fn as_inner(&self) -> &fs_imp::File { &self.inner }
}
impl FromInner<fs_imp::File> for File {
fn from_inner(f: fs_imp::File) -> File {
File { inner: f }
}
}
impl IntoInner<fs_imp::File> for File {
fn into_inner(self) -> fs_imp::File {
self.inner
}
}
impl fmt::Debug for File {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.inner.fmt(f)
}
}
impl Read for File {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
impl Write for File {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.write(buf)
}
fn flush(&mut self) -> io::Result<()> { self.inner.flush() }
}
impl Seek for File {
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
self.inner.seek(pos)
}
}
impl<'a> Read for &'a File {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
impl<'a> Write for &'a File {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.write(buf)
}
fn flush(&mut self) -> io::Result<()> { self.inner.flush() }
}
impl<'a> Seek for &'a File {
fn seek(&mut self, pos: SeekFrom) -> io::Result<u64> {
self.inner.seek(pos)
}
}
impl OpenOptions {
/// Creates a blank new set of options ready for configuration.
///
/// All options are initially set to `false`.
///
pub fn new() -> OpenOptions {
OpenOptions(fs_imp::OpenOptions::new())
}
/// Sets the option for read access.
///
/// This option, when true, will indicate that the file should be
/// `read`-able if opened.
///
pub fn read(&mut self, read: bool) -> &mut OpenOptions {
self.0.read(read); self
}
/// Sets the option for write access.
///
/// This option, when true, will indicate that the file should be
/// `write`-able if opened.
///
/// If the file already exists, any write calls on it will overwrite its
/// contents, without truncating it.
///
pub fn write(&mut self, write: bool) -> &mut OpenOptions {
self.0.write(write); self
}
/// Sets the option for the append mode.
///
/// This option, when true, means that writes will append to a file instead
/// of overwriting previous contents.
/// Note that setting `.write(true).append(true)` has the same effect as
/// setting only `.append(true)`.
///
/// For most filesystems, the operating system guarantees that all writes are
/// atomic: no writes get mangled because another process writes at the same
/// time.
///
/// One maybe obvious note when using append-mode: make sure that all data
/// that belongs together is written to the file in one operation. This
/// can be done by concatenating strings before passing them to [`write()`],
/// or using a buffered writer (with a buffer of adequate size),
/// and calling [`flush()`] when the message is complete.
///
/// If a file is opened with both read and append access, beware that after
/// opening, and after every write, the position for reading may be set at the
/// end of the file. So, before writing, save the current position (using
/// [`seek`]`(`[`SeekFrom`]`::`[`Current`]`(0))`, and restore it before the next read.
///
/// ## Note
///
/// This function doesn't create the file if it doesn't exist. Use the [`create`]
/// method to do so.
///
/// [`write()`]: ../../std/fs/struct.File.html#method.write
/// [`flush()`]: ../../std/fs/struct.File.html#method.flush
/// [`seek`]: ../../std/fs/struct.File.html#method.seek
/// [`SeekFrom`]: ../../std/io/enum.SeekFrom.html
/// [`Current`]: ../../std/io/enum.SeekFrom.html#variant.Current
/// [`create`]: #method.create
///
pub fn append(&mut self, append: bool) -> &mut OpenOptions {
self.0.append(append); self
}
/// Sets the option for truncating a previous file.
///
/// If a file is successfully opened with this option set it will truncate
/// the file to 0 length if it already exists.
///
/// The file must be opened with write access for truncate to work.
///
pub fn truncate(&mut self, truncate: bool) -> &mut OpenOptions {
self.0.truncate(truncate); self
}
/// Sets the option for creating a new file.
///
/// This option indicates whether a new file will be created if the file
/// does not yet already exist.
///
/// In order for the file to be created, [`write`] or [`append`] access must
/// be used.
///
/// [`write`]: #method.write
/// [`append`]: #method.append
///
pub fn create(&mut self, create: bool) -> &mut OpenOptions {
self.0.create(create); self
}
/// Sets the option to always create a new file.
///
/// This option indicates whether a new file will be created.
/// No file is allowed to exist at the target location, also no (dangling)
/// symlink.
///
/// This option is useful because it is atomic. Otherwise between checking
/// whether a file exists and creating a new one, the file may have been
/// created by another process (a TOCTOU race condition / attack).
///
/// If `.create_new(true)` is set, [`.create()`] and [`.truncate()`] are
/// ignored.
///
/// The file must be opened with write or append access in order to create
/// a new file.
///
/// [`.create()`]: #method.create
/// [`.truncate()`]: #method.truncate
///
pub fn create_new(&mut self, create_new: bool) -> &mut OpenOptions {
self.0.create_new(create_new); self
}
/// Opens a file at `path` with the options specified by `self`.
///
/// # Errors
///
/// This function will return an error under a number of different
/// circumstances. Some of these error conditions are listed here, together
/// with their [`ErrorKind`]. The mapping to [`ErrorKind`]s is not part of
/// the compatibility contract of the function, especially the `Other` kind
/// might change to more specific kinds in the future.
///
/// * [`NotFound`]: The specified file does not exist and neither `create`
/// or `create_new` is set.
/// * [`NotFound`]: One of the directory components of the file path does
/// not exist.
/// * [`PermissionDenied`]: The user lacks permission to get the specified
/// access rights for the file.
/// * [`PermissionDenied`]: The user lacks permission to open one of the
/// directory components of the specified path.
/// * [`AlreadyExists`]: `create_new` was specified and the file already
/// exists.
/// * [`InvalidInput`]: Invalid combinations of open options (truncate
/// without write access, no access mode set, etc.).
/// * [`Other`]: One of the directory components of the specified file path
/// was not, in fact, a directory.
/// * [`Other`]: Filesystem-level errors: full disk, write permission
/// requested on a read-only file system, exceeded disk quota, too many
/// open files, too long filename, too many symbolic links in the
/// specified path (Unix-like systems only), etc.
///
pub fn open<P: AsRef<Path>>(&self, path: P) -> io::Result<File> {
self._open(path.as_ref())
}
fn _open(&self, path: &Path) -> io::Result<File> {
let inner = fs_imp::File::open(path, &self.0)?;
Ok(File { inner: inner })
}
}
impl AsInnerMut<fs_imp::OpenOptions> for OpenOptions {
fn as_inner_mut(&mut self) -> &mut fs_imp::OpenOptions { &mut self.0 }
}
impl Metadata {
/// Returns the file type for this metadata.
///
pub fn file_type(&self) -> FileType {
FileType(self.0.file_type())
}
/// Returns whether this metadata is for a directory. The
/// result is mutually exclusive to the result of
/// [`is_file`], and will be false for symlink metadata
/// obtained from [`symlink_metadata`].
///
pub fn is_dir(&self) -> bool { self.file_type().is_dir() }
/// Returns whether this metadata is for a regular file. The
/// result is mutually exclusive to the result of
/// [`is_dir`], and will be false for symlink metadata
/// obtained from [`symlink_metadata`].
///
pub fn is_file(&self) -> bool { self.file_type().is_file() }
/// Returns the size of the file, in bytes, this metadata is for.
///
pub fn len(&self) -> u64 { self.0.size() }
/// Returns the permissions of the file this metadata is for.
///
pub fn permissions(&self) -> Permissions {
Permissions(self.0.perm())
}
/// Returns the last modification time listed in this metadata.
///
/// The returned value corresponds to the `mtime` field of `stat` on Unix
/// platforms and the `ftLastWriteTime` field on Windows platforms.
///
/// # Errors
///
/// This field may not be available on all platforms, and will return an
/// `Err` on platforms where it is not available.
///
pub fn modified(&self) -> io::Result<SystemTime> {
self.0.modified().map(FromInner::from_inner)
}
/// Returns the last access time of this metadata.
///
/// The returned value corresponds to the `atime` field of `stat` on Unix
/// platforms and the `ftLastAccessTime` field on Windows platforms.
///
/// Note that not all platforms will keep this field update in a file's
/// metadata, for example Windows has an option to disable updating this
/// time when files are accessed and Linux similarly has `noatime`.
///
/// # Errors
///
/// This field may not be available on all platforms, and will return an
/// `Err` on platforms where it is not available.
///
pub fn accessed(&self) -> io::Result<SystemTime> {
self.0.accessed().map(FromInner::from_inner)
}
/// Returns the creation time listed in the this metadata.
///
/// The returned value corresponds to the `birthtime` field of `stat` on
/// Unix platforms and the `ftCreationTime` field on Windows platforms.
///
/// # Errors
///
/// This field may not be available on all platforms, and will return an
/// `Err` on platforms where it is not available.
///
pub fn created(&self) -> io::Result<SystemTime> {
self.0.created().map(FromInner::from_inner)
}
}
impl fmt::Debug for Metadata {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Metadata")
.field("file_type", &self.file_type())
.field("is_dir", &self.is_dir())
.field("is_file", &self.is_file())
.field("permissions", &self.permissions())
.field("modified", &self.modified())
.field("accessed", &self.accessed())
.field("created", &self.created())
.finish()
}
}
impl AsInner<fs_imp::FileAttr> for Metadata {
fn as_inner(&self) -> &fs_imp::FileAttr { &self.0 }
}
impl Permissions {
/// Returns whether these permissions describe a readonly (unwritable) file.
///
pub fn readonly(&self) -> bool { self.0.readonly() }
/// Modifies the readonly flag for this set of permissions. If the
/// `readonly` argument is `true`, using the resulting `Permission` will
/// update file permissions to forbid writing. Conversely, if it's `false`,
/// using the resulting `Permission` will update file permissions to allow
/// writing.
///
/// This operation does **not** modify the filesystem. To modify the
/// filesystem use the `fs::set_permissions` function.
///
pub fn set_readonly(&mut self, readonly: bool) {
self.0.set_readonly(readonly)
}
}
impl FileType {
/// Test whether this file type represents a directory. The
/// result is mutually exclusive to the results of
/// [`is_file`] and [`is_symlink`]; only zero or one of these
/// tests may pass.
///
pub fn is_dir(&self) -> bool { self.0.is_dir() }
/// Test whether this file type represents a regular file.
/// The result is mutually exclusive to the results of
/// [`is_dir`] and [`is_symlink`]; only zero or one of these
/// tests may pass.
///
pub fn is_file(&self) -> bool { self.0.is_file() }
/// Test whether this file type represents a symbolic link.
/// The result is mutually exclusive to the results of
/// [`is_dir`] and [`is_file`]; only zero or one of these
/// tests may pass.
///
pub fn is_symlink(&self) -> bool { self.0.is_symlink() }
}
impl AsInner<fs_imp::FileType> for FileType {
fn as_inner(&self) -> &fs_imp::FileType { &self.0 }
}
impl FromInner<fs_imp::FilePermissions> for Permissions {
fn from_inner(f: fs_imp::FilePermissions) -> Permissions {
Permissions(f)
}
}
impl AsInner<fs_imp::FilePermissions> for Permissions {
fn as_inner(&self) -> &fs_imp::FilePermissions { &self.0 }
}
/// Removes a file from the filesystem.
///
/// Note that there is no
/// guarantee that the file is immediately deleted (e.g. depending on
/// platform, other open file descriptors may prevent immediate removal).
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `unlink` function on Unix
/// and the `DeleteFile` function on Windows.
/// Note that, this [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error in the following situations, but is not
/// limited to just these cases:
///
/// * `path` points to a directory.
/// * The user lacks permissions to remove the file.
///
pub fn remove_file<P: AsRef<Path>>(path: P) -> io::Result<()> {
fs_imp::unlink(path.as_ref())
}
/// Given a path, query the file system to get information about a file,
/// directory, etc.
///
/// This function will traverse symbolic links to query information about the
/// destination file.
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `stat` function on Unix
/// and the `GetFileAttributesEx` function on Windows.
/// Note that, this [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error in the following situations, but is not
/// limited to just these cases:
///
/// * The user lacks permissions to perform `metadata` call on `path`.
/// * `path` does not exist.
///
pub fn metadata<P: AsRef<Path>>(path: P) -> io::Result<Metadata> {
fs_imp::stat(path.as_ref()).map(Metadata)
}
/// Query the metadata about a file without following symlinks.
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `lstat` function on Unix
/// and the `GetFileAttributesEx` function on Windows.
/// Note that, this [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error in the following situations, but is not
/// limited to just these cases:
///
/// * The user lacks permissions to perform `metadata` call on `path`.
/// * `path` does not exist.
///
pub fn symlink_metadata<P: AsRef<Path>>(path: P) -> io::Result<Metadata> {
fs_imp::lstat(path.as_ref()).map(Metadata)
}
/// Rename a file or directory to a new name, replacing the original file if
/// `to` already exists.
///
/// This will not work if the new name is on a different mount point.
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `rename` function on Unix
/// and the `MoveFileEx` function with the `MOVEFILE_REPLACE_EXISTING` flag on Windows.
///
/// Because of this, the behavior when both `from` and `to` exist differs. On
/// Unix, if `from` is a directory, `to` must also be an (empty) directory. If
/// `from` is not a directory, `to` must also be not a directory. In contrast,
/// on Windows, `from` can be anything, but `to` must *not* be a directory.
///
/// Note that, this [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error in the following situations, but is not
/// limited to just these cases:
///
/// * `from` does not exist.
/// * The user lacks permissions to view contents.
/// * `from` and `to` are on separate filesystems.
///
pub fn rename<P: AsRef<Path>, Q: AsRef<Path>>(from: P, to: Q) -> io::Result<()> {
fs_imp::rename(from.as_ref(), to.as_ref())
}
/// Copies the contents of one file to another. This function will also
/// copy the permission bits of the original file to the destination file.
///
/// This function will **overwrite** the contents of `to`.
///
/// Note that if `from` and `to` both point to the same file, then the file
/// will likely get truncated by this operation.
///
/// On success, the total number of bytes copied is returned and it is equal to
/// the length of the `to` file as reported by `metadata`.
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `open` function in Unix
/// with `O_RDONLY` for `from` and `O_WRONLY`, `O_CREAT`, and `O_TRUNC` for `to`.
/// `O_CLOEXEC` is set for returned file descriptors.
/// On Windows, this function currently corresponds to `CopyFileEx`. Alternate
/// NTFS streams are copied but only the size of the main stream is returned by
/// this function.
/// Note that, this [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error in the following situations, but is not
/// limited to just these cases:
///
/// * The `from` path is not a file.
/// * The `from` file does not exist.
/// * The current process does not have the permission rights to access
/// `from` or write `to`.
///
pub fn copy<P: AsRef<Path>, Q: AsRef<Path>>(from: P, to: Q) -> io::Result<u64> {
fs_imp::copy(from.as_ref(), to.as_ref())
}
/// Creates a new hard link on the filesystem.
///
/// The `dst` path will be a link pointing to the `src` path. Note that systems
/// often require these two paths to both be located on the same filesystem.
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `link` function on Unix
/// and the `CreateHardLink` function on Windows.
/// Note that, this [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error in the following situations, but is not
/// limited to just these cases:
///
/// * The `src` path is not a file or doesn't exist.
///
pub fn hard_link<P: AsRef<Path>, Q: AsRef<Path>>(src: P, dst: Q) -> io::Result<()> {
fs_imp::link(src.as_ref(), dst.as_ref())
}
/// Creates a new symbolic link on the filesystem.
///
/// The `dst` path will be a symbolic link pointing to the `src` path.
/// On Windows, this will be a file symlink, not a directory symlink;
/// for this reason, the platform-specific `std::os::unix::fs::symlink`
/// and `std::os::windows::fs::{symlink_file, symlink_dir}` should be
/// used instead to make the intent explicit.
///
pub fn soft_link<P: AsRef<Path>, Q: AsRef<Path>>(src: P, dst: Q) -> io::Result<()> {
fs_imp::symlink(src.as_ref(), dst.as_ref())
}
/// Reads a symbolic link, returning the file that the link points to.
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `readlink` function on Unix
/// and the `CreateFile` function with `FILE_FLAG_OPEN_REPARSE_POINT` and
/// `FILE_FLAG_BACKUP_SEMANTICS` flags on Windows.
/// Note that, this [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error in the following situations, but is not
/// limited to just these cases:
///
/// * `path` is not a symbolic link.
/// * `path` does not exist.
///
pub fn read_link<P: AsRef<Path>>(path: P) -> io::Result<PathBuf> {
fs_imp::readlink(path.as_ref())
}
/// Returns the canonical form of a path with all intermediate components
/// normalized and symbolic links resolved.
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `realpath` function on Unix
/// and the `CreateFile` and `GetFinalPathNameByHandle` functions on Windows.
/// Note that, this [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error in the following situations, but is not
/// limited to just these cases:
///
/// * `path` does not exist.
/// * A component in path is not a directory.
///
pub fn canonicalize<P: AsRef<Path>>(path: P) -> io::Result<PathBuf> {
fs_imp::canonicalize(path.as_ref())
}
/// Changes the permissions found on a file or a directory.
///
/// # Platform-specific behavior
///
/// This function currently corresponds to the `chmod` function on Unix
/// and the `SetFileAttributes` function on Windows.
/// Note that, this [may change in the future][changes].
///
/// [changes]: ../io/index.html#platform-specific-behavior
///
/// # Errors
///
/// This function will return an error in the following situations, but is not
/// limited to just these cases:
///
/// * `path` does not exist.
/// * The user lacks the permission to change attributes of the file.
///
pub fn set_permissions<P: AsRef<Path>>(path: P, perm: Permissions)
-> io::Result<()> {
fs_imp::set_perm(path.as_ref(), perm.0)
}