blob: 6d8d9f5c8b3e7f58c6feb3ba860636240997435f [file] [log] [blame]
// Copyright (C) 2017-2018 Baidu, Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Baidu, Inc., nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
use core::borrow::Borrow;
use core::fmt;
use core::hash::{Hash, BuildHasher};
use core::iter::{Chain, FromIterator, FusedIterator};
use core::ops::{BitOr, BitAnd, BitXor, Sub};
use super::Recover;
use super::map::{self, HashMap, Keys, RandomState};
// Future Optimization (FIXME!)
// =============================
//
// Iteration over zero sized values is a noop. There is no need
// for `bucket.val` in the case of HashSet. I suppose we would need HKT
// to get rid of it properly.
/// A hash set implemented as a `HashMap` where the value is `()`.
///
/// As with the [`HashMap`] type, a `HashSet` requires that the elements
/// implement the [`Eq`] and [`Hash`] traits. This can frequently be achieved by
/// using `#[derive(PartialEq, Eq, Hash)]`. If you implement these yourself,
/// it is important that the following property holds:
///
/// ```text
/// k1 == k2 -> hash(k1) == hash(k2)
/// ```
///
/// In other words, if two keys are equal, their hashes must be equal.
///
///
/// It is a logic error for an item to be modified in such a way that the
/// item's hash, as determined by the [`Hash`] trait, or its equality, as
/// determined by the [`Eq`] trait, changes while it is in the set. This is
/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or
/// unsafe code.
///
#[derive(Clone)]
pub struct HashSet<T, S = RandomState> {
map: HashMap<T, (), S>,
}
impl<T: Hash + Eq> HashSet<T, RandomState> {
/// Creates an empty `HashSet`.
///
/// The hash set is initially created with a capacity of 0, so it will not allocate until it
/// is first inserted into.
///
#[inline]
pub fn new() -> HashSet<T, RandomState> {
HashSet { map: HashMap::new() }
}
/// Creates an empty `HashSet` with the specified capacity.
///
/// The hash set will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the hash set will not allocate.
///
#[inline]
pub fn with_capacity(capacity: usize) -> HashSet<T, RandomState> {
HashSet { map: HashMap::with_capacity(capacity) }
}
}
impl<T, S> HashSet<T, S>
where T: Eq + Hash,
S: BuildHasher
{
/// Creates a new empty hash set which will use the given hasher to hash
/// keys.
///
/// The hash set is also created with the default initial capacity.
///
/// Warning: `hasher` is normally randomly generated, and
/// is designed to allow `HashSet`s to be resistant to attacks that
/// cause many collisions and very poor performance. Setting it
/// manually using this function can expose a DoS attack vector.
///
#[inline]
pub fn with_hasher(hasher: S) -> HashSet<T, S> {
HashSet { map: HashMap::with_hasher(hasher) }
}
/// Creates an empty `HashSet` with with the specified capacity, using
/// `hasher` to hash the keys.
///
/// The hash set will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the hash set will not allocate.
///
/// Warning: `hasher` is normally randomly generated, and
/// is designed to allow `HashSet`s to be resistant to attacks that
/// cause many collisions and very poor performance. Setting it
/// manually using this function can expose a DoS attack vector.
///
#[inline]
pub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> HashSet<T, S> {
HashSet { map: HashMap::with_capacity_and_hasher(capacity, hasher) }
}
/// Returns a reference to the set's [`BuildHasher`].
///
/// [`BuildHasher`]: ../../std/hash/trait.BuildHasher.html
pub fn hasher(&self) -> &S {
self.map.hasher()
}
/// Returns the number of elements the set can hold without reallocating.
///
#[inline]
pub fn capacity(&self) -> usize {
self.map.capacity()
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the `HashSet`. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Panics
///
/// Panics if the new allocation size overflows `usize`.
///
pub fn reserve(&mut self, additional: usize) {
self.map.reserve(additional)
}
/// Shrinks the capacity of the set as much as possible. It will drop
/// down as much as possible while maintaining the internal rules
/// and possibly leaving some space in accordance with the resize policy.
///
pub fn shrink_to_fit(&mut self) {
self.map.shrink_to_fit()
}
/// Shrinks the capacity of the set with a lower limit. It will drop
/// down no lower than the supplied limit while maintaining the internal rules
/// and possibly leaving some space in accordance with the resize policy.
///
/// Panics if the current capacity is smaller than the supplied
/// minimum capacity.
///
#[inline]
pub fn shrink_to(&mut self, min_capacity: usize) {
self.map.shrink_to(min_capacity)
}
/// An iterator visiting all elements in arbitrary order.
/// The iterator element type is `&'a T`.
///
pub fn iter(&self) -> Iter<T> {
Iter { iter: self.map.keys() }
}
/// Visits the values representing the difference,
/// i.e. the values that are in `self` but not in `other`.
///
pub fn difference<'a>(&'a self, other: &'a HashSet<T, S>) -> Difference<'a, T, S> {
Difference {
iter: self.iter(),
other: other,
}
}
/// Visits the values representing the symmetric difference,
/// i.e. the values that are in `self` or in `other` but not in both.
///
pub fn symmetric_difference<'a>(&'a self,
other: &'a HashSet<T, S>)
-> SymmetricDifference<'a, T, S> {
SymmetricDifference { iter: self.difference(other).chain(other.difference(self)) }
}
/// Visits the values representing the intersection,
/// i.e. the values that are both in `self` and `other`.
///
pub fn intersection<'a>(&'a self, other: &'a HashSet<T, S>) -> Intersection<'a, T, S> {
Intersection {
iter: self.iter(),
other: other,
}
}
/// Visits the values representing the union,
/// i.e. all the values in `self` or `other`, without duplicates.
///
pub fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S> {
Union { iter: self.iter().chain(other.difference(self)) }
}
/// Returns the number of elements in the set.
///
pub fn len(&self) -> usize {
self.map.len()
}
/// Returns true if the set contains no elements.
///
pub fn is_empty(&self) -> bool {
self.map.is_empty()
}
/// Clears the set, returning all elements in an iterator.
#[inline]
pub fn drain(&mut self) -> Drain<T> {
Drain { iter: self.map.drain() }
}
/// Clears the set, removing all values.
///
pub fn clear(&mut self) {
self.map.clear()
}
/// Returns `true` if the set contains a value.
///
/// The value may be any borrowed form of the set's value type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the value type.
///
pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool
where T: Borrow<Q>,
Q: Hash + Eq
{
self.map.contains_key(value)
}
/// Returns a reference to the value in the set, if any, that is equal to the given value.
///
/// The value may be any borrowed form of the set's value type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the value type.
///
/// [`Eq`]: ../../std/cmp/trait.Eq.html
/// [`Hash`]: ../../std/hash/trait.Hash.html
pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T>
where T: Borrow<Q>,
Q: Hash + Eq
{
Recover::get(&self.map, value)
}
/// Returns `true` if `self` has no elements in common with `other`.
/// This is equivalent to checking for an empty intersection.
///
pub fn is_disjoint(&self, other: &HashSet<T, S>) -> bool {
self.iter().all(|v| !other.contains(v))
}
/// Returns `true` if the set is a subset of another,
/// i.e. `other` contains at least all the values in `self`.
///
pub fn is_subset(&self, other: &HashSet<T, S>) -> bool {
self.iter().all(|v| other.contains(v))
}
/// Returns `true` if the set is a superset of another,
/// i.e. `self` contains at least all the values in `other`.
///
#[inline]
pub fn is_superset(&self, other: &HashSet<T, S>) -> bool {
other.is_subset(self)
}
/// Adds a value to the set.
///
/// If the set did not have this value present, `true` is returned.
///
/// If the set did have this value present, `false` is returned.
///
pub fn insert(&mut self, value: T) -> bool {
self.map.insert(value, ()).is_none()
}
/// Adds a value to the set, replacing the existing value, if any, that is equal to the given
/// one. Returns the replaced value.
pub fn replace(&mut self, value: T) -> Option<T> {
Recover::replace(&mut self.map, value)
}
/// Removes a value from the set. Returns `true` if the value was
/// present in the set.
///
/// The value may be any borrowed form of the set's value type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the value type.
///
pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool
where T: Borrow<Q>,
Q: Hash + Eq
{
self.map.remove(value).is_some()
}
/// Removes and returns the value in the set, if any, that is equal to the given one.
///
/// The value may be any borrowed form of the set's value type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the value type.
///
/// [`Eq`]: ../../std/cmp/trait.Eq.html
/// [`Hash`]: ../../std/hash/trait.Hash.html
pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T>
where T: Borrow<Q>,
Q: Hash + Eq
{
Recover::take(&mut self.map, value)
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(&e)` returns `false`.
///
pub fn retain<F>(&mut self, mut f: F)
where F: FnMut(&T) -> bool
{
self.map.retain(|k, _| f(k));
}
}
impl<T, S> PartialEq for HashSet<T, S>
where T: Eq + Hash,
S: BuildHasher
{
fn eq(&self, other: &HashSet<T, S>) -> bool {
if self.len() != other.len() {
return false;
}
self.iter().all(|key| other.contains(key))
}
}
impl<T, S> Eq for HashSet<T, S>
where T: Eq + Hash,
S: BuildHasher
{
}
impl<T, S> fmt::Debug for HashSet<T, S>
where T: Eq + Hash + fmt::Debug,
S: BuildHasher
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_set().entries(self.iter()).finish()
}
}
impl<T, S> FromIterator<T> for HashSet<T, S>
where T: Eq + Hash,
S: BuildHasher + Default
{
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> HashSet<T, S> {
let mut set = HashSet::with_hasher(Default::default());
set.extend(iter);
set
}
}
impl<T, S> Extend<T> for HashSet<T, S>
where T: Eq + Hash,
S: BuildHasher
{
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
self.map.extend(iter.into_iter().map(|k| (k, ())));
}
}
impl<'a, T, S> Extend<&'a T> for HashSet<T, S>
where T: 'a + Eq + Hash + Copy,
S: BuildHasher
{
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
self.extend(iter.into_iter().cloned());
}
}
impl<T, S> Default for HashSet<T, S>
where T: Eq + Hash,
S: BuildHasher + Default
{
/// Creates an empty `HashSet<T, S>` with the `Default` value for the hasher.
fn default() -> HashSet<T, S> {
HashSet { map: HashMap::default() }
}
}
impl<'a, 'b, T, S> BitOr<&'b HashSet<T, S>> for &'a HashSet<T, S>
where T: Eq + Hash + Clone,
S: BuildHasher + Default
{
type Output = HashSet<T, S>;
/// Returns the union of `self` and `rhs` as a new `HashSet<T, S>`.
///
fn bitor(self, rhs: &HashSet<T, S>) -> HashSet<T, S> {
self.union(rhs).cloned().collect()
}
}
impl<'a, 'b, T, S> BitAnd<&'b HashSet<T, S>> for &'a HashSet<T, S>
where T: Eq + Hash + Clone,
S: BuildHasher + Default
{
type Output = HashSet<T, S>;
/// Returns the intersection of `self` and `rhs` as a new `HashSet<T, S>`.
///
fn bitand(self, rhs: &HashSet<T, S>) -> HashSet<T, S> {
self.intersection(rhs).cloned().collect()
}
}
impl<'a, 'b, T, S> BitXor<&'b HashSet<T, S>> for &'a HashSet<T, S>
where T: Eq + Hash + Clone,
S: BuildHasher + Default
{
type Output = HashSet<T, S>;
/// Returns the symmetric difference of `self` and `rhs` as a new `HashSet<T, S>`.
///
fn bitxor(self, rhs: &HashSet<T, S>) -> HashSet<T, S> {
self.symmetric_difference(rhs).cloned().collect()
}
}
impl<'a, 'b, T, S> Sub<&'b HashSet<T, S>> for &'a HashSet<T, S>
where T: Eq + Hash + Clone,
S: BuildHasher + Default
{
type Output = HashSet<T, S>;
/// Returns the difference of `self` and `rhs` as a new `HashSet<T, S>`.
///
fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S> {
self.difference(rhs).cloned().collect()
}
}
/// An iterator over the items of a `HashSet`.
///
/// This `struct` is created by the [`iter`] method on [`HashSet`].
/// See its documentation for more.
///
/// [`HashSet`]: struct.HashSet.html
/// [`iter`]: struct.HashSet.html#method.iter
pub struct Iter<'a, K: 'a> {
iter: Keys<'a, K, ()>,
}
/// An owning iterator over the items of a `HashSet`.
///
/// This `struct` is created by the [`into_iter`] method on [`HashSet`][`HashSet`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`HashSet`]: struct.HashSet.html
/// [`into_iter`]: struct.HashSet.html#method.into_iter
pub struct IntoIter<K> {
iter: map::IntoIter<K, ()>,
}
/// A draining iterator over the items of a `HashSet`.
///
/// This `struct` is created by the [`drain`] method on [`HashSet`].
/// See its documentation for more.
///
/// [`HashSet`]: struct.HashSet.html
/// [`drain`]: struct.HashSet.html#method.drain
pub struct Drain<'a, K: 'a> {
iter: map::Drain<'a, K, ()>,
}
/// A lazy iterator producing elements in the intersection of `HashSet`s.
///
/// This `struct` is created by the [`intersection`] method on [`HashSet`].
/// See its documentation for more.
///
/// [`HashSet`]: struct.HashSet.html
/// [`intersection`]: struct.HashSet.html#method.intersection
pub struct Intersection<'a, T: 'a, S: 'a> {
// iterator of the first set
iter: Iter<'a, T>,
// the second set
other: &'a HashSet<T, S>,
}
/// A lazy iterator producing elements in the difference of `HashSet`s.
///
/// This `struct` is created by the [`difference`] method on [`HashSet`].
/// See its documentation for more.
///
/// [`HashSet`]: struct.HashSet.html
/// [`difference`]: struct.HashSet.html#method.difference
pub struct Difference<'a, T: 'a, S: 'a> {
// iterator of the first set
iter: Iter<'a, T>,
// the second set
other: &'a HashSet<T, S>,
}
/// A lazy iterator producing elements in the symmetric difference of `HashSet`s.
///
/// This `struct` is created by the [`symmetric_difference`] method on
/// [`HashSet`]. See its documentation for more.
///
/// [`HashSet`]: struct.HashSet.html
/// [`symmetric_difference`]: struct.HashSet.html#method.symmetric_difference
pub struct SymmetricDifference<'a, T: 'a, S: 'a> {
iter: Chain<Difference<'a, T, S>, Difference<'a, T, S>>,
}
/// A lazy iterator producing elements in the union of `HashSet`s.
///
/// This `struct` is created by the [`union`] method on [`HashSet`].
/// See its documentation for more.
///
/// [`HashSet`]: struct.HashSet.html
/// [`union`]: struct.HashSet.html#method.union
pub struct Union<'a, T: 'a, S: 'a> {
iter: Chain<Iter<'a, T>, Difference<'a, T, S>>,
}
impl<'a, T, S> IntoIterator for &'a HashSet<T, S>
where T: Eq + Hash,
S: BuildHasher
{
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
impl<T, S> IntoIterator for HashSet<T, S>
where T: Eq + Hash,
S: BuildHasher
{
type Item = T;
type IntoIter = IntoIter<T>;
/// Creates a consuming iterator, that is, one that moves each value out
/// of the set in arbitrary order. The set cannot be used after calling
/// this.
///
fn into_iter(self) -> IntoIter<T> {
IntoIter { iter: self.map.into_iter() }
}
}
impl<'a, K> Clone for Iter<'a, K> {
fn clone(&self) -> Iter<'a, K> {
Iter { iter: self.iter.clone() }
}
}
impl<'a, K> Iterator for Iter<'a, K> {
type Item = &'a K;
fn next(&mut self) -> Option<&'a K> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, K> ExactSizeIterator for Iter<'a, K> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<'a, K> FusedIterator for Iter<'a, K> {}
impl<'a, K: fmt::Debug> fmt::Debug for Iter<'a, K> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<K> Iterator for IntoIter<K> {
type Item = K;
fn next(&mut self) -> Option<K> {
self.iter.next().map(|(k, _)| k)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<K> ExactSizeIterator for IntoIter<K> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K> FusedIterator for IntoIter<K> {}
impl<K: fmt::Debug> fmt::Debug for IntoIter<K> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let entries_iter = self.iter
.inner
.iter()
.map(|(k, _)| k);
f.debug_list().entries(entries_iter).finish()
}
}
impl<'a, K> Iterator for Drain<'a, K> {
type Item = K;
fn next(&mut self) -> Option<K> {
self.iter.next().map(|(k, _)| k)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, K> ExactSizeIterator for Drain<'a, K> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<'a, K> FusedIterator for Drain<'a, K> {}
impl<'a, K: fmt::Debug> fmt::Debug for Drain<'a, K> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let entries_iter = self.iter
.inner
.iter()
.map(|(k, _)| k);
f.debug_list().entries(entries_iter).finish()
}
}
impl<'a, T, S> Clone for Intersection<'a, T, S> {
fn clone(&self) -> Intersection<'a, T, S> {
Intersection { iter: self.iter.clone(), ..*self }
}
}
impl<'a, T, S> Iterator for Intersection<'a, T, S>
where T: Eq + Hash,
S: BuildHasher
{
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
loop {
let elt = self.iter.next()?;
if self.other.contains(elt) {
return Some(elt);
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.iter.size_hint();
(0, upper)
}
}
impl<'a, T, S> fmt::Debug for Intersection<'a, T, S>
where T: fmt::Debug + Eq + Hash,
S: BuildHasher
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<'a, T, S> FusedIterator for Intersection<'a, T, S>
where T: Eq + Hash,
S: BuildHasher
{
}
impl<'a, T, S> Clone for Difference<'a, T, S> {
fn clone(&self) -> Difference<'a, T, S> {
Difference { iter: self.iter.clone(), ..*self }
}
}
impl<'a, T, S> Iterator for Difference<'a, T, S>
where T: Eq + Hash,
S: BuildHasher
{
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
loop {
let elt = self.iter.next()?;
if !self.other.contains(elt) {
return Some(elt);
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, upper) = self.iter.size_hint();
(0, upper)
}
}
impl<'a, T, S> FusedIterator for Difference<'a, T, S>
where T: Eq + Hash,
S: BuildHasher
{
}
impl<'a, T, S> fmt::Debug for Difference<'a, T, S>
where T: fmt::Debug + Eq + Hash,
S: BuildHasher
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<'a, T, S> Clone for SymmetricDifference<'a, T, S> {
fn clone(&self) -> SymmetricDifference<'a, T, S> {
SymmetricDifference { iter: self.iter.clone() }
}
}
impl<'a, T, S> Iterator for SymmetricDifference<'a, T, S>
where T: Eq + Hash,
S: BuildHasher
{
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, T, S> FusedIterator for SymmetricDifference<'a, T, S>
where T: Eq + Hash,
S: BuildHasher
{
}
impl<'a, T, S> fmt::Debug for SymmetricDifference<'a, T, S>
where T: fmt::Debug + Eq + Hash,
S: BuildHasher
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<'a, T, S> Clone for Union<'a, T, S> {
fn clone(&self) -> Union<'a, T, S> {
Union { iter: self.iter.clone() }
}
}
impl<'a, T, S> FusedIterator for Union<'a, T, S>
where T: Eq + Hash,
S: BuildHasher
{
}
impl<'a, T, S> fmt::Debug for Union<'a, T, S>
where T: fmt::Debug + Eq + Hash,
S: BuildHasher
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<'a, T, S> Iterator for Union<'a, T, S>
where T: Eq + Hash,
S: BuildHasher
{
type Item = &'a T;
fn next(&mut self) -> Option<&'a T> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
#[allow(dead_code)]
fn assert_covariance() {
fn set<'new>(v: HashSet<&'static str>) -> HashSet<&'new str> {
v
}
fn iter<'a, 'new>(v: Iter<'a, &'static str>) -> Iter<'a, &'new str> {
v
}
fn into_iter<'new>(v: IntoIter<&'static str>) -> IntoIter<&'new str> {
v
}
fn difference<'a, 'new>(v: Difference<'a, &'static str, RandomState>)
-> Difference<'a, &'new str, RandomState> {
v
}
fn symmetric_difference<'a, 'new>(v: SymmetricDifference<'a, &'static str, RandomState>)
-> SymmetricDifference<'a, &'new str, RandomState> {
v
}
fn intersection<'a, 'new>(v: Intersection<'a, &'static str, RandomState>)
-> Intersection<'a, &'new str, RandomState> {
v
}
fn union<'a, 'new>(v: Union<'a, &'static str, RandomState>)
-> Union<'a, &'new str, RandomState> {
v
}
fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> {
d
}
}