blob: d07705650f18d6a31e27e0302e1db5f6c30fdc98 [file] [log] [blame]
/// The `matrix!` macro enables easy construction of small matrices.
///
/// This is particularly useful when writing tests involving matrices.
/// Note that the macro is just a convenient wrapper around the Matrix
/// constructors, and as a result the matrix is still allocated on the
/// heap.
///
/// Rows are separated by semi-colons, while commas separate the columns.
/// Users of MATLAB will find this style familiar. If the dimensions
/// don't match, the macro will fail to compile.
///
/// # Examples
///
/// ```
/// #[macro_use]
/// extern crate rulinalg;
///
/// # fn main() {
/// // Construct a 3x3 matrix of f64
/// let mat = matrix![1.0, 2.0, 3.0;
/// 4.0, 5.0, 6.0;
/// 7.0, 8.0, 9.0];
/// # }
/// ```
///
/// To construct matrices of other types, specify the type by
/// the usual Rust syntax:
///
/// ```
/// # #[macro_use]
/// # extern crate rulinalg;
/// # fn main() {
/// use rulinalg::matrix::Matrix;
///
/// // Construct a 2x3 matrix of f32
/// let mat: Matrix<f32> = matrix![1.0, 2.0, 3.0;
/// 4.0, 5.0, 6.0];
/// // Or
/// let mat = matrix![1.0, 2.0, 3.0;
/// 4.0, 5.0, 6.0f32];
/// # }
/// ```
///
#[macro_export]
macro_rules! matrix {
() => {
{
// Handle the case when called with no arguments, i.e. matrix![]
use $crate::matrix::Matrix;
Matrix::new(0, 0, vec![])
}
};
($( $( $x: expr ),*);*) => {
{
use $crate::matrix::Matrix;
let data_as_nested_array = [ $( [ $($x),* ] ),* ];
let rows = data_as_nested_array.len();
let cols = data_as_nested_array[0].len();
let data_as_flat_array: Vec<_> = data_as_nested_array.into_iter()
.flat_map(|row| row.into_iter())
.cloned()
.collect();
Matrix::new(rows, cols, data_as_flat_array)
}
}
}
#[cfg(test)]
mod tests {
use matrix::{Matrix, BaseMatrix};
#[test]
fn matrix_macro() {
{
// An arbitrary rectangular matrix
let mat = matrix![1, 2, 3;
4, 5, 6];
assert_eq!(2, mat.rows());
assert_eq!(3, mat.cols());
assert_eq!(&vec![1, 2, 3, 4, 5, 6], mat.data());
}
{
// A single row
let mat = matrix![1, 2, 3];
assert_eq!(1, mat.rows());
assert_eq!(3, mat.cols());
assert_eq!(&vec![1, 2, 3], mat.data());
}
{
// A single element
let mat = matrix![1];
assert_eq!(1, mat.rows());
assert_eq!(1, mat.cols());
assert_eq!(&vec![1], mat.data());
}
{
// A floating point matrix
let mat = matrix![1.0, 2.0, 3.0;
4.0, 5.0, 6.0;
7.0, 8.0, 9.0];
let ref expected_data = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0];
assert_eq!(3, mat.rows());
assert_eq!(3, mat.cols());
assert_eq!(expected_data, mat.data());
}
}
#[test]
fn matrix_macro_empty_mat() {
let mat: Matrix<f64> = matrix![];
assert_eq!(0, mat.rows());
assert_eq!(0, mat.cols());
}
}