blob: de64356bf8743a6143c81d1dfd5cdea3d86690ed [file] [log] [blame]
// Copyright (c) 2017 Baidu, Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Baidu, Inc., nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
use self::Entry::*;
use self::VacantEntryState::*;
use rand::{self, Rng};
use core::cell::Cell;
use core::borrow::Borrow;
use core::cmp::max;
use core::fmt::{self, Debug};
#[allow(deprecated)]
use core::hash::{Hash, Hasher, BuildHasher, SipHasher13};
use core::iter::{FromIterator, FusedIterator};
use core::mem::{self, replace};
use core::ops::{Deref, Index, InPlace, Place, Placer};
use core::ptr;
use super::table::{self, Bucket, EmptyBucket, FullBucket, FullBucketMut, RawTable, SafeHash};
use super::table::BucketState::{Empty, Full};
const MIN_NONZERO_RAW_CAPACITY: usize = 32; // must be a power of two
/// The default behavior of HashMap implements a maximum load factor of 90.9%.
#[derive(Clone)]
struct DefaultResizePolicy;
impl DefaultResizePolicy {
fn new() -> DefaultResizePolicy {
DefaultResizePolicy
}
/// A hash map's "capacity" is the number of elements it can hold without
/// being resized. Its "raw capacity" is the number of slots required to
/// provide that capacity, accounting for maximum loading. The raw capacity
/// is always zero or a power of two.
#[inline]
fn raw_capacity(&self, len: usize) -> usize {
if len == 0 {
0
} else {
// 1. Account for loading: `raw_capacity >= len * 1.1`.
// 2. Ensure it is a power of two.
// 3. Ensure it is at least the minimum size.
let mut raw_cap = len * 11 / 10;
assert!(raw_cap >= len, "raw_cap overflow");
raw_cap = raw_cap.checked_next_power_of_two().expect("raw_capacity overflow");
raw_cap = max(MIN_NONZERO_RAW_CAPACITY, raw_cap);
raw_cap
}
}
/// The capacity of the given raw capacity.
#[inline]
fn capacity(&self, raw_cap: usize) -> usize {
// This doesn't have to be checked for overflow since allocation size
// in bytes will overflow earlier than multiplication by 10.
//
// As per https://github.com/rust-lang/rust/pull/30991 this is updated
// to be: (raw_cap * den + den - 1) / num
(raw_cap * 10 + 10 - 1) / 11
}
}
// The main performance trick in this hashmap is called Robin Hood Hashing.
// It gains its excellent performance from one essential operation:
//
// If an insertion collides with an existing element, and that element's
// "probe distance" (how far away the element is from its ideal location)
// is higher than how far we've already probed, swap the elements.
//
// This massively lowers variance in probe distance, and allows us to get very
// high load factors with good performance. The 90% load factor I use is rather
// conservative.
//
// > Why a load factor of approximately 90%?
//
// In general, all the distances to initial buckets will converge on the mean.
// At a load factor of α, the odds of finding the target bucket after k
// probes is approximately 1-α^k. If we set this equal to 50% (since we converge
// on the mean) and set k=8 (64-byte cache line / 8-byte hash), α=0.92. I round
// this down to make the math easier on the CPU and avoid its FPU.
// Since on average we start the probing in the middle of a cache line, this
// strategy pulls in two cache lines of hashes on every lookup. I think that's
// pretty good, but if you want to trade off some space, it could go down to one
// cache line on average with an α of 0.84.
//
// > Wait, what? Where did you get 1-α^k from?
//
// On the first probe, your odds of a collision with an existing element is α.
// The odds of doing this twice in a row is approximately α^2. For three times,
// α^3, etc. Therefore, the odds of colliding k times is α^k. The odds of NOT
// colliding after k tries is 1-α^k.
//
// The paper from 1986 cited below mentions an implementation which keeps track
// of the distance-to-initial-bucket histogram. This approach is not suitable
// for modern architectures because it requires maintaining an internal data
// structure. This allows very good first guesses, but we are most concerned
// with guessing entire cache lines, not individual indexes. Furthermore, array
// accesses are no longer linear and in one direction, as we have now. There
// is also memory and cache pressure that this would entail that would be very
// difficult to properly see in a microbenchmark.
//
// ## Future Improvements (FIXME!)
//
// Allow the load factor to be changed dynamically and/or at initialization.
//
// Also, would it be possible for us to reuse storage when growing the
// underlying table? This is exactly the use case for 'realloc', and may
// be worth exploring.
//
// ## Future Optimizations (FIXME!)
//
// Another possible design choice that I made without any real reason is
// parameterizing the raw table over keys and values. Technically, all we need
// is the size and alignment of keys and values, and the code should be just as
// efficient (well, we might need one for power-of-two size and one for not...).
// This has the potential to reduce code bloat in rust executables, without
// really losing anything except 4 words (key size, key alignment, val size,
// val alignment) which can be passed in to every call of a `RawTable` function.
// This would definitely be an avenue worth exploring if people start complaining
// about the size of rust executables.
//
// Annotate exceedingly likely branches in `table::make_hash`
// and `search_hashed` to reduce instruction cache pressure
// and mispredictions once it becomes possible (blocked on issue #11092).
//
// Shrinking the table could simply reallocate in place after moving buckets
// to the first half.
//
// The growth algorithm (fragment of the Proof of Correctness)
// --------------------
//
// The growth algorithm is basically a fast path of the naive reinsertion-
// during-resize algorithm. Other paths should never be taken.
//
// Consider growing a robin hood hashtable of capacity n. Normally, we do this
// by allocating a new table of capacity `2n`, and then individually reinsert
// each element in the old table into the new one. This guarantees that the
// new table is a valid robin hood hashtable with all the desired statistical
// properties. Remark that the order we reinsert the elements in should not
// matter. For simplicity and efficiency, we will consider only linear
// reinsertions, which consist of reinserting all elements in the old table
// into the new one by increasing order of index. However we will not be
// starting our reinsertions from index 0 in general. If we start from index
// i, for the purpose of reinsertion we will consider all elements with real
// index j < i to have virtual index n + j.
//
// Our hash generation scheme consists of generating a 64-bit hash and
// truncating the most significant bits. When moving to the new table, we
// simply introduce a new bit to the front of the hash. Therefore, if an
// elements has ideal index i in the old table, it can have one of two ideal
// locations in the new table. If the new bit is 0, then the new ideal index
// is i. If the new bit is 1, then the new ideal index is n + i. Intuitively,
// we are producing two independent tables of size n, and for each element we
// independently choose which table to insert it into with equal probability.
// However the rather than wrapping around themselves on overflowing their
// indexes, the first table overflows into the first, and the first into the
// second. Visually, our new table will look something like:
//
// [yy_xxx_xxxx_xxx|xx_yyy_yyyy_yyy]
//
// Where x's are elements inserted into the first table, y's are elements
// inserted into the second, and _'s are empty sections. We now define a few
// key concepts that we will use later. Note that this is a very abstract
// perspective of the table. A real resized table would be at least half
// empty.
//
// Theorem: A linear robin hood reinsertion from the first ideal element
// produces identical results to a linear naive reinsertion from the same
// element.
//
// FIXME(Gankro, pczarn): review the proof and put it all in a separate README.md
//
// Adaptive early resizing
// ----------------------
// To protect against degenerate performance scenarios (including DOS attacks),
// the implementation includes an adaptive behavior that can resize the map
// early (before its capacity is exceeded) when suspiciously long probe sequences
// are encountered.
//
// With this algorithm in place it would be possible to turn a CPU attack into
// a memory attack due to the aggressive resizing. To prevent that the
// adaptive behavior only triggers when the map is at least half full.
// This reduces the effectiveness of the algorithm but also makes it completely safe.
//
// The previous safety measure also prevents degenerate interactions with
// really bad quality hash algorithms that can make normal inputs look like a
// DOS attack.
//
const DISPLACEMENT_THRESHOLD: usize = 128;
//
// The threshold of 128 is chosen to minimize the chance of exceeding it.
// In particular, we want that chance to be less than 10^-8 with a load of 90%.
// For displacement, the smallest constant that fits our needs is 90,
// so we round that up to 128.
//
// At a load factor of α, the odds of finding the target bucket after exactly n
// unsuccesful probes[1] are
//
// Pr_α{displacement = n} =
// (1 - α) / α * ∑_{k≥1} e^(-kα) * (kα)^(k+n) / (k + n)! * (1 - kα / (k + n + 1))
//
// We use this formula to find the probability of triggering the adaptive behavior
//
// Pr_0.909{displacement > 128} = 1.601 * 10^-11
//
// 1. Alfredo Viola (2005). Distributional analysis of Robin Hood linear probing
// hashing with buckets.
/// A hash map implemented with linear probing and Robin Hood bucket stealing.
///
/// By default, `HashMap` uses a hashing algorithm selected to provide
/// resistance against HashDoS attacks. The algorithm is randomly seeded, and a
/// reasonable best-effort is made to generate this seed from a high quality,
/// secure source of randomness provided by the host without blocking the
/// program. Because of this, the randomness of the seed depends on the output
/// quality of the system's random number generator when the seed is created.
/// In particular, seeds generated when the system's entropy pool is abnormally
/// low such as during system boot may be of a lower quality.
///
/// The default hashing algorithm is currently SipHash 1-3, though this is
/// subject to change at any point in the future. While its performance is very
/// competitive for medium sized keys, other hashing algorithms will outperform
/// it for small keys such as integers as well as large keys such as long
/// strings, though those algorithms will typically *not* protect against
/// attacks such as HashDoS.
///
/// The hashing algorithm can be replaced on a per-`HashMap` basis using the
/// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. Many
/// alternative algorithms are available on crates.io, such as the [`fnv`] crate.
///
/// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although
/// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`.
/// If you implement these yourself, it is important that the following
/// property holds:
///
/// ```text
/// k1 == k2 -> hash(k1) == hash(k2)
/// ```
///
/// In other words, if two keys are equal, their hashes must be equal.
///
/// It is a logic error for a key to be modified in such a way that the key's
/// hash, as determined by the [`Hash`] trait, or its equality, as determined by
/// the [`Eq`] trait, changes while it is in the map. This is normally only
/// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
///
#[derive(Clone)]
pub struct HashMap<K, V, S = RandomState> {
// All hashes are keyed on these values, to prevent hash collision attacks.
hash_builder: S,
table: RawTable<K, V>,
resize_policy: DefaultResizePolicy,
}
/// Search for a pre-hashed key.
#[inline]
fn search_hashed<K, V, M, F>(table: M, hash: SafeHash, mut is_match: F) -> InternalEntry<K, V, M>
where M: Deref<Target = RawTable<K, V>>,
F: FnMut(&K) -> bool
{
// This is the only function where capacity can be zero. To avoid
// undefined behavior when Bucket::new gets the raw bucket in this
// case, immediately return the appropriate search result.
if table.capacity() == 0 {
return InternalEntry::TableIsEmpty;
}
let size = table.size();
let mut probe = Bucket::new(table, hash);
let mut displacement = 0;
loop {
let full = match probe.peek() {
Empty(bucket) => {
// Found a hole!
return InternalEntry::Vacant {
hash: hash,
elem: NoElem(bucket, displacement),
};
}
Full(bucket) => bucket,
};
let probe_displacement = full.displacement();
if probe_displacement < displacement {
// Found a luckier bucket than me.
// We can finish the search early if we hit any bucket
// with a lower distance to initial bucket than we've probed.
return InternalEntry::Vacant {
hash: hash,
elem: NeqElem(full, probe_displacement),
};
}
// If the hash doesn't match, it can't be this one..
if hash == full.hash() {
// If the key doesn't match, it can't be this one..
if is_match(full.read().0) {
return InternalEntry::Occupied { elem: full };
}
}
displacement += 1;
probe = full.next();
debug_assert!(displacement <= size);
}
}
fn pop_internal<K, V>(starting_bucket: FullBucketMut<K, V>)
-> (K, V, &mut RawTable<K, V>)
{
let (empty, retkey, retval) = starting_bucket.take();
let mut gap = match empty.gap_peek() {
Ok(b) => b,
Err(b) => return (retkey, retval, b.into_table()),
};
while gap.full().displacement() != 0 {
gap = match gap.shift() {
Ok(b) => b,
Err(b) => {
return (retkey, retval, b.into_table());
},
};
}
// Now we've done all our shifting. Return the value we grabbed earlier.
(retkey, retval, gap.into_table())
}
/// Perform robin hood bucket stealing at the given `bucket`. You must
/// also pass that bucket's displacement so we don't have to recalculate it.
///
/// `hash`, `key`, and `val` are the elements to "robin hood" into the hashtable.
fn robin_hood<'a, K: 'a, V: 'a>(bucket: FullBucketMut<'a, K, V>,
mut displacement: usize,
mut hash: SafeHash,
mut key: K,
mut val: V)
-> FullBucketMut<'a, K, V> {
let size = bucket.table().size();
let raw_capacity = bucket.table().capacity();
// There can be at most `size - dib` buckets to displace, because
// in the worst case, there are `size` elements and we already are
// `displacement` buckets away from the initial one.
let idx_end = (bucket.index() + size - bucket.displacement()) % raw_capacity;
// Save the *starting point*.
let mut bucket = bucket.stash();
loop {
let (old_hash, old_key, old_val) = bucket.replace(hash, key, val);
hash = old_hash;
key = old_key;
val = old_val;
loop {
displacement += 1;
let probe = bucket.next();
debug_assert!(probe.index() != idx_end);
let full_bucket = match probe.peek() {
Empty(bucket) => {
// Found a hole!
let bucket = bucket.put(hash, key, val);
// Now that it's stolen, just read the value's pointer
// right out of the table! Go back to the *starting point*.
//
// This use of `into_table` is misleading. It turns the
// bucket, which is a FullBucket on top of a
// FullBucketMut, into just one FullBucketMut. The "table"
// refers to the inner FullBucketMut in this context.
return bucket.into_table();
}
Full(bucket) => bucket,
};
let probe_displacement = full_bucket.displacement();
bucket = full_bucket;
// Robin hood! Steal the spot.
if probe_displacement < displacement {
displacement = probe_displacement;
break;
}
}
}
}
impl<K, V, S> HashMap<K, V, S>
where K: Eq + Hash,
S: BuildHasher
{
fn make_hash<X: ?Sized>(&self, x: &X) -> SafeHash
where X: Hash
{
table::make_hash(&self.hash_builder, x)
}
/// Search for a key, yielding the index if it's found in the hashtable.
/// If you already have the hash for the key lying around, use
/// search_hashed.
#[inline]
fn search<'a, Q: ?Sized>(&'a self, q: &Q) -> InternalEntry<K, V, &'a RawTable<K, V>>
where K: Borrow<Q>,
Q: Eq + Hash
{
let hash = self.make_hash(q);
search_hashed(&self.table, hash, |k| q.eq(k.borrow()))
}
#[inline]
fn search_mut<'a, Q: ?Sized>(&'a mut self, q: &Q) -> InternalEntry<K, V, &'a mut RawTable<K, V>>
where K: Borrow<Q>,
Q: Eq + Hash
{
let hash = self.make_hash(q);
search_hashed(&mut self.table, hash, |k| q.eq(k.borrow()))
}
// The caller should ensure that invariants by Robin Hood Hashing hold
// and that there's space in the underlying table.
fn insert_hashed_ordered(&mut self, hash: SafeHash, k: K, v: V) {
let mut buckets = Bucket::new(&mut self.table, hash);
let start_index = buckets.index();
loop {
// We don't need to compare hashes for value swap.
// Not even DIBs for Robin Hood.
buckets = match buckets.peek() {
Empty(empty) => {
empty.put(hash, k, v);
return;
}
Full(b) => b.into_bucket(),
};
buckets.next();
debug_assert!(buckets.index() != start_index);
}
}
}
impl<K: Hash + Eq, V> HashMap<K, V, RandomState> {
/// Creates an empty `HashMap`.
#[inline]
pub fn new() -> HashMap<K, V, RandomState> {
Default::default()
}
/// Creates an empty `HashMap` with the specified capacity.
///
/// The hash map will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the hash map will not allocate.
#[inline]
pub fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState> {
HashMap::with_capacity_and_hasher(capacity, Default::default())
}
}
impl<K, V, S> HashMap<K, V, S>
where K: Eq + Hash,
S: BuildHasher
{
/// Creates an empty `HashMap` which will use the given hash builder to hash
/// keys.
///
/// The created map has the default initial capacity.
///
/// Warning: `hash_builder` is normally randomly generated, and
/// is designed to allow HashMaps to be resistant to attacks that
/// cause many collisions and very poor performance. Setting it
/// manually using this function can expose a DoS attack vector.
///
#[inline]
pub fn with_hasher(hash_builder: S) -> HashMap<K, V, S> {
HashMap {
hash_builder: hash_builder,
resize_policy: DefaultResizePolicy::new(),
table: RawTable::new(0),
}
}
/// Creates an empty `HashMap` with the specified capacity, using `hash_builder`
/// to hash the keys.
///
/// The hash map will be able to hold at least `capacity` elements without
/// reallocating. If `capacity` is 0, the hash map will not allocate.
///
/// Warning: `hash_builder` is normally randomly generated, and
/// is designed to allow HashMaps to be resistant to attacks that
/// cause many collisions and very poor performance. Setting it
/// manually using this function can expose a DoS attack vector.
///
#[inline]
pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> HashMap<K, V, S> {
let resize_policy = DefaultResizePolicy::new();
let raw_cap = resize_policy.raw_capacity(capacity);
HashMap {
hash_builder: hash_builder,
resize_policy: resize_policy,
table: RawTable::new(raw_cap),
}
}
/// Returns a reference to the map's [`BuildHasher`].
///
pub fn hasher(&self) -> &S {
&self.hash_builder
}
/// Returns the number of elements the map can hold without reallocating.
///
/// This number is a lower bound; the `HashMap<K, V>` might be able to hold
/// more, but is guaranteed to be able to hold at least this many.
///
#[inline]
pub fn capacity(&self) -> usize {
self.resize_policy.capacity(self.raw_capacity())
}
/// Returns the hash map's raw capacity.
#[inline]
fn raw_capacity(&self) -> usize {
self.table.capacity()
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the `HashMap`. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Panics
///
/// Panics if the new allocation size overflows [`usize`].
///
pub fn reserve(&mut self, additional: usize) {
let remaining = self.capacity() - self.len(); // this can't overflow
if remaining < additional {
let min_cap = self.len().checked_add(additional).expect("reserve overflow");
let raw_cap = self.resize_policy.raw_capacity(min_cap);
self.resize(raw_cap);
} else if self.table.tag() && remaining <= self.len() {
// Probe sequence is too long and table is half full,
// resize early to reduce probing length.
let new_capacity = self.table.capacity() * 2;
self.resize(new_capacity);
}
}
/// Resizes the internal vectors to a new capacity. It's your
/// responsibility to:
/// 1) Ensure `new_raw_cap` is enough for all the elements, accounting
/// for the load factor.
/// 2) Ensure `new_raw_cap` is a power of two or zero.
#[inline(never)]
#[cold]
fn resize(&mut self, new_raw_cap: usize) {
assert!(self.table.size() <= new_raw_cap);
assert!(new_raw_cap.is_power_of_two() || new_raw_cap == 0);
let mut old_table = replace(&mut self.table, RawTable::new(new_raw_cap));
let old_size = old_table.size();
if old_table.size() == 0 {
return;
}
let mut bucket = Bucket::head_bucket(&mut old_table);
// This is how the buckets might be laid out in memory:
// ($ marks an initialized bucket)
// ________________
// |$$$_$$$$$$_$$$$$|
//
// But we've skipped the entire initial cluster of buckets
// and will continue iteration in this order:
// ________________
// |$$$$$$_$$$$$
// ^ wrap around once end is reached
// ________________
// $$$_____________|
// ^ exit once table.size == 0
loop {
bucket = match bucket.peek() {
Full(bucket) => {
let h = bucket.hash();
let (b, k, v) = bucket.take();
self.insert_hashed_ordered(h, k, v);
if b.table().size() == 0 {
break;
}
b.into_bucket()
}
Empty(b) => b.into_bucket(),
};
bucket.next();
}
assert_eq!(self.table.size(), old_size);
}
/// Shrinks the capacity of the map as much as possible. It will drop
/// down as much as possible while maintaining the internal rules
/// and possibly leaving some space in accordance with the resize policy.
///
pub fn shrink_to_fit(&mut self) {
let new_raw_cap = self.resize_policy.raw_capacity(self.len());
if self.raw_capacity() != new_raw_cap {
let old_table = replace(&mut self.table, RawTable::new(new_raw_cap));
let old_size = old_table.size();
// Shrink the table. Naive algorithm for resizing:
for (h, k, v) in old_table.into_iter() {
self.insert_hashed_nocheck(h, k, v);
}
debug_assert_eq!(self.table.size(), old_size);
}
}
/// Insert a pre-hashed key-value pair, without first checking
/// that there's enough room in the buckets. Returns a reference to the
/// newly insert value.
///
/// If the key already exists, the hashtable will be returned untouched
/// and a reference to the existing element will be returned.
fn insert_hashed_nocheck(&mut self, hash: SafeHash, k: K, v: V) -> Option<V> {
let entry = search_hashed(&mut self.table, hash, |key| *key == k).into_entry(k);
match entry {
Some(Occupied(mut elem)) => Some(elem.insert(v)),
Some(Vacant(elem)) => {
elem.insert(v);
None
}
None => unreachable!(),
}
}
/// An iterator visiting all keys in arbitrary order.
/// The iterator element type is `&'a K`.
///
pub fn keys(&self) -> Keys<K, V> {
Keys { inner: self.iter() }
}
/// An iterator visiting all values in arbitrary order.
/// The iterator element type is `&'a V`.
///
pub fn values(&self) -> Values<K, V> {
Values { inner: self.iter() }
}
/// An iterator visiting all values mutably in arbitrary order.
/// The iterator element type is `&'a mut V`.
///
pub fn values_mut(&mut self) -> ValuesMut<K, V> {
ValuesMut { inner: self.iter_mut() }
}
/// An iterator visiting all key-value pairs in arbitrary order.
/// The iterator element type is `(&'a K, &'a V)`.
///
pub fn iter(&self) -> Iter<K, V> {
Iter { inner: self.table.iter() }
}
/// An iterator visiting all key-value pairs in arbitrary order,
/// with mutable references to the values.
/// The iterator element type is `(&'a K, &'a mut V)`.
///
pub fn iter_mut(&mut self) -> IterMut<K, V> {
IterMut { inner: self.table.iter_mut() }
}
/// Gets the given key's corresponding entry in the map for in-place manipulation.
///
pub fn entry(&mut self, key: K) -> Entry<K, V> {
// Gotta resize now.
self.reserve(1);
let hash = self.make_hash(&key);
search_hashed(&mut self.table, hash, |q| q.eq(&key))
.into_entry(key).expect("unreachable")
}
/// Returns the number of elements in the map.
///
pub fn len(&self) -> usize {
self.table.size()
}
/// Returns true if the map contains no elements.
///
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Clears the map, returning all key-value pairs as an iterator. Keeps the
/// allocated memory for reuse.
///
#[inline]
pub fn drain(&mut self) -> Drain<K, V> {
Drain { inner: self.table.drain() }
}
/// Clears the map, removing all key-value pairs. Keeps the allocated memory
/// for reuse.
///
#[inline]
pub fn clear(&mut self) {
self.drain();
}
/// Returns a reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: ../../std/cmp/trait.Eq.html
/// [`Hash`]: ../../std/hash/trait.Hash.html
///
pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V>
where K: Borrow<Q>,
Q: Hash + Eq
{
self.search(k).into_occupied_bucket().map(|bucket| bucket.into_refs().1)
}
/// Returns true if the map contains a value for the specified key.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: ../../std/cmp/trait.Eq.html
/// [`Hash`]: ../../std/hash/trait.Hash.html
///
pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool
where K: Borrow<Q>,
Q: Hash + Eq
{
self.search(k).into_occupied_bucket().is_some()
}
/// Returns a mutable reference to the value corresponding to the key.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: ../../std/cmp/trait.Eq.html
/// [`Hash`]: ../../std/hash/trait.Hash.html
///
pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V>
where K: Borrow<Q>,
Q: Hash + Eq
{
self.search_mut(k).into_occupied_bucket().map(|bucket| bucket.into_mut_refs().1)
}
/// Inserts a key-value pair into the map.
///
/// If the map did not have this key present, [`None`] is returned.
///
/// If the map did have this key present, the value is updated, and the old
/// value is returned. The key is not updated, though; this matters for
/// types that can be `==` without being identical. See the [module-level
/// documentation] for more.
///
/// [`None`]: ../../std/option/enum.Option.html#variant.None
/// [module-level documentation]: index.html#insert-and-complex-keys
///
pub fn insert(&mut self, k: K, v: V) -> Option<V> {
let hash = self.make_hash(&k);
self.reserve(1);
self.insert_hashed_nocheck(hash, k, v)
}
/// Removes a key from the map, returning the value at the key if the key
/// was previously in the map.
///
/// The key may be any borrowed form of the map's key type, but
/// [`Hash`] and [`Eq`] on the borrowed form *must* match those for
/// the key type.
///
/// [`Eq`]: ../../std/cmp/trait.Eq.html
/// [`Hash`]: ../../std/hash/trait.Hash.html
///
pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V>
where K: Borrow<Q>,
Q: Hash + Eq
{
if self.table.size() == 0 {
return None;
}
self.search_mut(k).into_occupied_bucket().map(|bucket| pop_internal(bucket).1)
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all pairs `(k, v)` such that `f(&k,&mut v)` returns `false`.
///
pub fn retain<F>(&mut self, mut f: F)
where F: FnMut(&K, &mut V) -> bool
{
if self.table.size() == 0 {
return;
}
let mut elems_left = self.table.size();
let mut bucket = Bucket::head_bucket(&mut self.table);
bucket.prev();
let start_index = bucket.index();
while elems_left != 0 {
bucket = match bucket.peek() {
Full(mut full) => {
elems_left -= 1;
let should_remove = {
let (k, v) = full.read_mut();
!f(k, v)
};
if should_remove {
let prev_raw = full.raw();
let (_, _, t) = pop_internal(full);
Bucket::new_from(prev_raw, t)
} else {
full.into_bucket()
}
},
Empty(b) => {
b.into_bucket()
}
};
bucket.prev(); // reverse iteration
debug_assert!(elems_left == 0 || bucket.index() != start_index);
}
}
}
impl<K, V, S> PartialEq for HashMap<K, V, S>
where K: Eq + Hash,
V: PartialEq,
S: BuildHasher
{
fn eq(&self, other: &HashMap<K, V, S>) -> bool {
if self.len() != other.len() {
return false;
}
self.iter().all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
}
}
impl<K, V, S> Eq for HashMap<K, V, S>
where K: Eq + Hash,
V: Eq,
S: BuildHasher
{
}
impl<K, V, S> Debug for HashMap<K, V, S>
where K: Eq + Hash + Debug,
V: Debug,
S: BuildHasher
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_map().entries(self.iter()).finish()
}
}
impl<K, V, S> Default for HashMap<K, V, S>
where K: Eq + Hash,
S: BuildHasher + Default
{
/// Creates an empty `HashMap<K, V, S>`, with the `Default` value for the hasher.
fn default() -> HashMap<K, V, S> {
HashMap::with_hasher(Default::default())
}
}
impl<'a, K, Q: ?Sized, V, S> Index<&'a Q> for HashMap<K, V, S>
where K: Eq + Hash + Borrow<Q>,
Q: Eq + Hash,
S: BuildHasher
{
type Output = V;
#[inline]
fn index(&self, index: &Q) -> &V {
self.get(index).expect("no entry found for key")
}
}
/// An iterator over the entries of a `HashMap`.
///
/// This `struct` is created by the [`iter`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`iter`]: struct.HashMap.html#method.iter
/// [`HashMap`]: struct.HashMap.html
pub struct Iter<'a, K: 'a, V: 'a> {
inner: table::Iter<'a, K, V>,
}
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
impl<'a, K, V> Clone for Iter<'a, K, V> {
fn clone(&self) -> Iter<'a, K, V> {
Iter { inner: self.inner.clone() }
}
}
impl<'a, K: Debug, V: Debug> fmt::Debug for Iter<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list()
.entries(self.clone())
.finish()
}
}
/// A mutable iterator over the entries of a `HashMap`.
///
/// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`iter_mut`]: struct.HashMap.html#method.iter_mut
/// [`HashMap`]: struct.HashMap.html
pub struct IterMut<'a, K: 'a, V: 'a> {
inner: table::IterMut<'a, K, V>,
}
/// An owning iterator over the entries of a `HashMap`.
///
/// This `struct` is created by the [`into_iter`] method on [`HashMap`][`HashMap`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`into_iter`]: struct.HashMap.html#method.into_iter
/// [`HashMap`]: struct.HashMap.html
pub struct IntoIter<K, V> {
pub(super) inner: table::IntoIter<K, V>,
}
/// An iterator over the keys of a `HashMap`.
///
/// This `struct` is created by the [`keys`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`keys`]: struct.HashMap.html#method.keys
/// [`HashMap`]: struct.HashMap.html
pub struct Keys<'a, K: 'a, V: 'a> {
inner: Iter<'a, K, V>,
}
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
impl<'a, K, V> Clone for Keys<'a, K, V> {
fn clone(&self) -> Keys<'a, K, V> {
Keys { inner: self.inner.clone() }
}
}
impl<'a, K: Debug, V> fmt::Debug for Keys<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list()
.entries(self.clone())
.finish()
}
}
/// An iterator over the values of a `HashMap`.
///
/// This `struct` is created by the [`values`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`values`]: struct.HashMap.html#method.values
/// [`HashMap`]: struct.HashMap.html
pub struct Values<'a, K: 'a, V: 'a> {
inner: Iter<'a, K, V>,
}
// FIXME(#19839) Remove in favor of `#[derive(Clone)]`
impl<'a, K, V> Clone for Values<'a, K, V> {
fn clone(&self) -> Values<'a, K, V> {
Values { inner: self.inner.clone() }
}
}
impl<'a, K, V: Debug> fmt::Debug for Values<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list()
.entries(self.clone())
.finish()
}
}
/// A draining iterator over the entries of a `HashMap`.
///
/// This `struct` is created by the [`drain`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`drain`]: struct.HashMap.html#method.drain
/// [`HashMap`]: struct.HashMap.html
pub struct Drain<'a, K: 'a, V: 'a> {
pub(super) inner: table::Drain<'a, K, V>,
}
/// A mutable iterator over the values of a `HashMap`.
///
/// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its
/// documentation for more.
///
/// [`values_mut`]: struct.HashMap.html#method.values_mut
/// [`HashMap`]: struct.HashMap.html
pub struct ValuesMut<'a, K: 'a, V: 'a> {
inner: IterMut<'a, K, V>,
}
enum InternalEntry<K, V, M> {
Occupied { elem: FullBucket<K, V, M> },
Vacant {
hash: SafeHash,
elem: VacantEntryState<K, V, M>,
},
TableIsEmpty,
}
impl<K, V, M> InternalEntry<K, V, M> {
#[inline]
fn into_occupied_bucket(self) -> Option<FullBucket<K, V, M>> {
match self {
InternalEntry::Occupied { elem } => Some(elem),
_ => None,
}
}
}
impl<'a, K, V> InternalEntry<K, V, &'a mut RawTable<K, V>> {
#[inline]
fn into_entry(self, key: K) -> Option<Entry<'a, K, V>> {
match self {
InternalEntry::Occupied { elem } => {
Some(Occupied(OccupiedEntry {
key: Some(key),
elem: elem,
}))
}
InternalEntry::Vacant { hash, elem } => {
Some(Vacant(VacantEntry {
hash: hash,
key: key,
elem: elem,
}))
}
InternalEntry::TableIsEmpty => None,
}
}
}
/// A view into a single entry in a map, which may either be vacant or occupied.
///
/// This `enum` is constructed from the [`entry`] method on [`HashMap`].
///
/// [`HashMap`]: struct.HashMap.html
/// [`entry`]: struct.HashMap.html#method.entry
pub enum Entry<'a, K: 'a, V: 'a> {
/// An occupied entry.
Occupied(OccupiedEntry<'a, K, V>),
/// A vacant entry.
Vacant(VacantEntry<'a, K, V>),
}
impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for Entry<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Vacant(ref v) => {
f.debug_tuple("Entry")
.field(v)
.finish()
}
Occupied(ref o) => {
f.debug_tuple("Entry")
.field(o)
.finish()
}
}
}
}
/// A view into an occupied entry in a `HashMap`.
/// It is part of the [`Entry`] enum.
///
/// [`Entry`]: enum.Entry.html
pub struct OccupiedEntry<'a, K: 'a, V: 'a> {
key: Option<K>,
elem: FullBucket<K, V, &'a mut RawTable<K, V>>,
}
impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for OccupiedEntry<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("OccupiedEntry")
.field("key", self.key())
.field("value", self.get())
.finish()
}
}
/// A view into a vacant entry in a `HashMap`.
/// It is part of the [`Entry`] enum.
///
/// [`Entry`]: enum.Entry.html
pub struct VacantEntry<'a, K: 'a, V: 'a> {
hash: SafeHash,
key: K,
elem: VacantEntryState<K, V, &'a mut RawTable<K, V>>,
}
impl<'a, K: 'a + Debug, V: 'a> Debug for VacantEntry<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("VacantEntry")
.field(self.key())
.finish()
}
}
/// Possible states of a VacantEntry.
enum VacantEntryState<K, V, M> {
/// The index is occupied, but the key to insert has precedence,
/// and will kick the current one out on insertion.
NeqElem(FullBucket<K, V, M>, usize),
/// The index is genuinely vacant.
NoElem(EmptyBucket<K, V, M>, usize),
}
impl<'a, K, V, S> IntoIterator for &'a HashMap<K, V, S>
where K: Eq + Hash,
S: BuildHasher
{
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
fn into_iter(self) -> Iter<'a, K, V> {
self.iter()
}
}
impl<'a, K, V, S> IntoIterator for &'a mut HashMap<K, V, S>
where K: Eq + Hash,
S: BuildHasher
{
type Item = (&'a K, &'a mut V);
type IntoIter = IterMut<'a, K, V>;
fn into_iter(self) -> IterMut<'a, K, V> {
self.iter_mut()
}
}
impl<K, V, S> IntoIterator for HashMap<K, V, S>
where K: Eq + Hash,
S: BuildHasher
{
type Item = (K, V);
type IntoIter = IntoIter<K, V>;
/// Creates a consuming iterator, that is, one that moves each key-value
/// pair out of the map in arbitrary order. The map cannot be used after
/// calling this.
///
fn into_iter(self) -> IntoIter<K, V> {
IntoIter { inner: self.table.into_iter() }
}
}
impl<'a, K, V> Iterator for Iter<'a, K, V> {
type Item = (&'a K, &'a V);
#[inline]
fn next(&mut self) -> Option<(&'a K, &'a V)> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> ExactSizeIterator for Iter<'a, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a, K, V> FusedIterator for Iter<'a, K, V> {}
impl<'a, K, V> Iterator for IterMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
#[inline]
fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
self.inner.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> ExactSizeIterator for IterMut<'a, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a, K, V> FusedIterator for IterMut<'a, K, V> {}
impl<'a, K, V> fmt::Debug for IterMut<'a, K, V>
where K: fmt::Debug,
V: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list()
.entries(self.inner.iter())
.finish()
}
}
impl<K, V> Iterator for IntoIter<K, V> {
type Item = (K, V);
#[inline]
fn next(&mut self) -> Option<(K, V)> {
self.inner.next().map(|(_, k, v)| (k, v))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<K, V> ExactSizeIterator for IntoIter<K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<K, V> FusedIterator for IntoIter<K, V> {}
impl<K: Debug, V: Debug> fmt::Debug for IntoIter<K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list()
.entries(self.inner.iter())
.finish()
}
}
impl<'a, K, V> Iterator for Keys<'a, K, V> {
type Item = &'a K;
#[inline]
fn next(&mut self) -> Option<(&'a K)> {
self.inner.next().map(|(k, _)| k)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> ExactSizeIterator for Keys<'a, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a, K, V> FusedIterator for Keys<'a, K, V> {}
impl<'a, K, V> Iterator for Values<'a, K, V> {
type Item = &'a V;
#[inline]
fn next(&mut self) -> Option<(&'a V)> {
self.inner.next().map(|(_, v)| v)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> ExactSizeIterator for Values<'a, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a, K, V> FusedIterator for Values<'a, K, V> {}
impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
type Item = &'a mut V;
#[inline]
fn next(&mut self) -> Option<(&'a mut V)> {
self.inner.next().map(|(_, v)| v)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> ExactSizeIterator for ValuesMut<'a, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a, K, V> FusedIterator for ValuesMut<'a, K, V> {}
impl<'a, K, V> fmt::Debug for ValuesMut<'a, K, V>
where K: fmt::Debug,
V: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list()
.entries(self.inner.inner.iter())
.finish()
}
}
impl<'a, K, V> Iterator for Drain<'a, K, V> {
type Item = (K, V);
#[inline]
fn next(&mut self) -> Option<(K, V)> {
self.inner.next().map(|(_, k, v)| (k, v))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.inner.size_hint()
}
}
impl<'a, K, V> ExactSizeIterator for Drain<'a, K, V> {
#[inline]
fn len(&self) -> usize {
self.inner.len()
}
}
impl<'a, K, V> FusedIterator for Drain<'a, K, V> {}
impl<'a, K, V> fmt::Debug for Drain<'a, K, V>
where K: fmt::Debug,
V: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list()
.entries(self.inner.iter())
.finish()
}
}
/// A place for insertion to a `Entry`.
///
/// See [`HashMap::entry`](struct.HashMap.html#method.entry) for details.
pub struct EntryPlace<'a, K: 'a, V: 'a> {
bucket: FullBucketMut<'a, K, V>,
}
impl<'a, K: 'a + Debug, V: 'a + Debug> Debug for EntryPlace<'a, K, V> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("EntryPlace")
.field("key", self.bucket.read().0)
.field("value", self.bucket.read().1)
.finish()
}
}
impl<'a, K, V> Drop for EntryPlace<'a, K, V> {
fn drop(&mut self) {
// Inplacement insertion failed. Only key need to drop.
// The value is failed to insert into map.
unsafe { self.bucket.remove_key() };
}
}
impl<'a, K, V> Placer<V> for Entry<'a, K, V> {
type Place = EntryPlace<'a, K, V>;
fn make_place(self) -> EntryPlace<'a, K, V> {
let b = match self {
Occupied(mut o) => {
unsafe { ptr::drop_in_place(o.elem.read_mut().1); }
o.elem
}
Vacant(v) => {
unsafe { v.insert_key() }
}
};
EntryPlace { bucket: b }
}
}
impl<'a, K, V> Place<V> for EntryPlace<'a, K, V> {
fn pointer(&mut self) -> *mut V {
self.bucket.read_mut().1
}
}
impl<'a, K, V> InPlace<V> for EntryPlace<'a, K, V> {
type Owner = ();
unsafe fn finalize(self) {
mem::forget(self);
}
}
impl<'a, K, V> Entry<'a, K, V> {
/// Ensures a value is in the entry by inserting the default if empty, and returns
/// a mutable reference to the value in the entry.
///
pub fn or_insert(self, default: V) -> &'a mut V {
match self {
Occupied(entry) => entry.into_mut(),
Vacant(entry) => entry.insert(default),
}
}
/// Ensures a value is in the entry by inserting the result of the default function if empty,
/// and returns a mutable reference to the value in the entry.
///
pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
match self {
Occupied(entry) => entry.into_mut(),
Vacant(entry) => entry.insert(default()),
}
}
/// Returns a reference to this entry's key.
///
pub fn key(&self) -> &K {
match *self {
Occupied(ref entry) => entry.key(),
Vacant(ref entry) => entry.key(),
}
}
}
impl<'a, K, V: Default> Entry<'a, K, V> {
/// Ensures a value is in the entry by inserting the default value if empty,
/// and returns a mutable reference to the value in the entry.
///
pub fn or_default(self) -> &'a mut V {
match self {
Occupied(entry) => entry.into_mut(),
Vacant(entry) => entry.insert(Default::default()),
}
}
}
impl<'a, K, V> OccupiedEntry<'a, K, V> {
/// Gets a reference to the key in the entry.
///
pub fn key(&self) -> &K {
self.elem.read().0
}
/// Take the ownership of the key and value from the map.
///
pub fn remove_entry(self) -> (K, V) {
let (k, v, _) = pop_internal(self.elem);
(k, v)
}
/// Gets a reference to the value in the entry.
///
pub fn get(&self) -> &V {
self.elem.read().1
}
/// Gets a mutable reference to the value in the entry.
///
pub fn get_mut(&mut self) -> &mut V {
self.elem.read_mut().1
}
/// Converts the OccupiedEntry into a mutable reference to the value in the entry
/// with a lifetime bound to the map itself.
///
pub fn into_mut(self) -> &'a mut V {
self.elem.into_mut_refs().1
}
/// Sets the value of the entry, and returns the entry's old value.
///
pub fn insert(&mut self, mut value: V) -> V {
let old_value = self.get_mut();
mem::swap(&mut value, old_value);
value
}
/// Takes the value out of the entry, and returns it.
///
pub fn remove(self) -> V {
pop_internal(self.elem).1
}
/// Returns a key that was used for search.
///
/// The key was retained for further use.
fn take_key(&mut self) -> Option<K> {
self.key.take()
}
/// Replaces the entry, returning the old key and value.
pub fn replace(mut self, value: V) -> (K, V) {
let (old_key, old_value) = self.elem.read_mut();
let old_key = mem::replace(old_key, self.key.unwrap());
let old_value = mem::replace(old_value, value);
(old_key, old_value)
}
}
impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> {
/// Gets a reference to the key that would be used when inserting a value
/// through the `VacantEntry`.
///
pub fn key(&self) -> &K {
&self.key
}
/// Take ownership of the key.
///
pub fn into_key(self) -> K {
self.key
}
/// Sets the value of the entry with the VacantEntry's key,
/// and returns a mutable reference to it.
///
pub fn insert(self, value: V) -> &'a mut V {
let b = match self.elem {
NeqElem(mut bucket, disp) => {
if disp >= DISPLACEMENT_THRESHOLD {
bucket.table_mut().set_tag(true);
}
robin_hood(bucket, disp, self.hash, self.key, value)
},
NoElem(mut bucket, disp) => {
if disp >= DISPLACEMENT_THRESHOLD {
bucket.table_mut().set_tag(true);
}
bucket.put(self.hash, self.key, value)
},
};
b.into_mut_refs().1
}
// Only used for InPlacement insert. Avoid unnecessary value copy.
// The value remains uninitialized.
unsafe fn insert_key(self) -> FullBucketMut<'a, K, V> {
match self.elem {
NeqElem(mut bucket, disp) => {
if disp >= DISPLACEMENT_THRESHOLD {
bucket.table_mut().set_tag(true);
}
let uninit = mem::uninitialized();
robin_hood(bucket, disp, self.hash, self.key, uninit)
},
NoElem(mut bucket, disp) => {
if disp >= DISPLACEMENT_THRESHOLD {
bucket.table_mut().set_tag(true);
}
bucket.put_key(self.hash, self.key)
},
}
}
}
impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S>
where K: Eq + Hash,
S: BuildHasher + Default
{
fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> HashMap<K, V, S> {
let mut map = HashMap::with_hasher(Default::default());
map.extend(iter);
map
}
}
impl<K, V, S> Extend<(K, V)> for HashMap<K, V, S>
where K: Eq + Hash,
S: BuildHasher
{
fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
// Keys may be already present or show multiple times in the iterator.
// Reserve the entire hint lower bound if the map is empty.
// Otherwise reserve half the hint (rounded up), so the map
// will only resize twice in the worst case.
let iter = iter.into_iter();
let reserve = if self.is_empty() {
iter.size_hint().0
} else {
(iter.size_hint().0 + 1) / 2
};
self.reserve(reserve);
for (k, v) in iter {
self.insert(k, v);
}
}
}
impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap<K, V, S>
where K: Eq + Hash + Copy,
V: Copy,
S: BuildHasher
{
fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T) {
self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
}
}
/// `RandomState` is the default state for [`HashMap`] types.
///
/// A particular instance `RandomState` will create the same instances of
/// [`Hasher`], but the hashers created by two different `RandomState`
/// instances are unlikely to produce the same result for the same values.
///
/// [`HashMap`]: struct.HashMap.html
/// [`Hasher`]: ../../hash/trait.Hasher.html
///
#[derive(Clone)]
pub struct RandomState {
k0: u64,
k1: u64,
}
impl RandomState {
/// Constructs a new `RandomState` that is initialized with random keys.
///
#[inline]
#[allow(deprecated)]
// rand
pub fn new() -> RandomState {
// Historically this function did not cache keys from the OS and instead
// simply always called `rand::thread_rng().gen()` twice. In #31356 it
// was discovered, however, that because we re-seed the thread-local RNG
// from the OS periodically that this can cause excessive slowdown when
// many hash maps are created on a thread. To solve this performance
// trap we cache the first set of randomly generated keys per-thread.
//
// Later in #36481 it was discovered that exposing a deterministic
// iteration order allows a form of DOS attack. To counter that we
// increment one of the seeds on every RandomState creation, giving
// every corresponding HashMap a different iteration order.
thread_local!(static KEYS: Cell<(u64, u64)> = {
let r = rand::SgxRng::new();
let mut r = r.expect("failed to create an OS RNG");
Cell::new((r.gen(), r.gen()))
});
KEYS.with(|keys| {
let (k0, k1) = keys.get();
keys.set((k0.wrapping_add(1), k1));
RandomState { k0: k0, k1: k1 }
})
}
}
impl BuildHasher for RandomState {
type Hasher = DefaultHasher;
#[inline]
#[allow(deprecated)]
fn build_hasher(&self) -> DefaultHasher {
DefaultHasher(SipHasher13::new_with_keys(self.k0, self.k1))
}
}
/// The default [`Hasher`] used by [`RandomState`].
///
/// The internal algorithm is not specified, and so it and its hashes should
/// not be relied upon over releases.
///
/// [`RandomState`]: struct.RandomState.html
/// [`Hasher`]: ../../hash/trait.Hasher.html
#[allow(deprecated)]
#[derive(Clone, Debug)]
pub struct DefaultHasher(SipHasher13);
impl DefaultHasher {
/// Creates a new `DefaultHasher`.
///
/// This hasher is not guaranteed to be the same as all other
/// `DefaultHasher` instances, but is the same as all other `DefaultHasher`
/// instances created through `new` or `default`.
#[allow(deprecated)]
pub fn new() -> DefaultHasher {
DefaultHasher(SipHasher13::new_with_keys(0, 0))
}
}
impl Default for DefaultHasher {
/// Creates a new `DefaultHasher` using [`new`]. See its documentation for more.
///
/// [`new`]: #method.new
fn default() -> DefaultHasher {
DefaultHasher::new()
}
}
impl Hasher for DefaultHasher {
#[inline]
fn write(&mut self, msg: &[u8]) {
self.0.write(msg)
}
#[inline]
fn finish(&self) -> u64 {
self.0.finish()
}
}
impl Default for RandomState {
/// Constructs a new `RandomState`.
#[inline]
fn default() -> RandomState {
RandomState::new()
}
}
impl fmt::Debug for RandomState {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad("RandomState { .. }")
}
}
impl<K, S, Q: ?Sized> super::Recover<Q> for HashMap<K, (), S>
where K: Eq + Hash + Borrow<Q>,
S: BuildHasher,
Q: Eq + Hash
{
type Key = K;
fn get(&self, key: &Q) -> Option<&K> {
self.search(key).into_occupied_bucket().map(|bucket| bucket.into_refs().0)
}
fn take(&mut self, key: &Q) -> Option<K> {
if self.table.size() == 0 {
return None;
}
self.search_mut(key).into_occupied_bucket().map(|bucket| pop_internal(bucket).0)
}
fn replace(&mut self, key: K) -> Option<K> {
self.reserve(1);
match self.entry(key) {
Occupied(mut occupied) => {
let key = occupied.take_key().unwrap();
Some(mem::replace(occupied.elem.read_mut().0, key))
}
Vacant(vacant) => {
vacant.insert(());
None
}
}
}
}
#[allow(dead_code)]
fn assert_covariance() {
fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> {
v
}
fn map_val<'new>(v: HashMap<u8, &'static str>) -> HashMap<u8, &'new str> {
v
}
fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> {
v
}
fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> {
v
}
fn into_iter_key<'new>(v: IntoIter<&'static str, u8>) -> IntoIter<&'new str, u8> {
v
}
fn into_iter_val<'new>(v: IntoIter<u8, &'static str>) -> IntoIter<u8, &'new str> {
v
}
fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> {
v
}
fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> {
v
}
fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> {
v
}
fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> {
v
}
fn drain<'new>(d: Drain<'static, &'static str, &'static str>)
-> Drain<'new, &'new str, &'new str> {
d
}
}