blob: e63660119125f77585004fdfc7447122155b8a81 [file] [log] [blame]
// Copyright (c) 2017 Baidu, Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Baidu, Inc., nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//! A "once initialization" primitive
//!
//! This primitive is meant to be used to run one-time initialization. An
//! example use case would be for initializing an FFI library.
// A "once" is a relatively simple primitive, and it's also typically provided
// by the OS as well (see `pthread_once` or `InitOnceExecuteOnce`). The OS
// primitives, however, tend to have surprising restrictions, such as the Unix
// one doesn't allow an argument to be passed to the function.
//
// As a result, we end up implementing it ourselves in the standard library.
// This also gives us the opportunity to optimize the implementation a bit which
// should help the fast path on call sites. Consequently, let's explain how this
// primitive works now!
//
// So to recap, the guarantees of a Once are that it will call the
// initialization closure at most once, and it will never return until the one
// that's running has finished running. This means that we need some form of
// blocking here while the custom callback is running at the very least.
// Additionally, we add on the restriction of **poisoning**. Whenever an
// initialization closure panics, the Once enters a "poisoned" state which means
// that all future calls will immediately panic as well.
//
// So to implement this, one might first reach for a `StaticMutex`, but those
// unfortunately need to be deallocated (e.g. call `destroy()`) to free memory
// on all OSes (some of the BSDs allocate memory for mutexes). It also gets a
// lot harder with poisoning to figure out when the mutex needs to be
// deallocated because it's not after the closure finishes, but after the first
// successful closure finishes.
//
// All in all, this is instead implemented with atomics and lock-free
// operations! Whee! Each `Once` has one word of atomic state, and this state is
// CAS'd on to determine what to do. There are four possible state of a `Once`:
//
// * Incomplete - no initialization has run yet, and no thread is currently
// using the Once.
// * Poisoned - some thread has previously attempted to initialize the Once, but
// it panicked, so the Once is now poisoned. There are no other
// threads currently accessing this Once.
// * Running - some thread is currently attempting to run initialization. It may
// succeed, so all future threads need to wait for it to finish.
// Note that this state is accompanied with a payload, described
// below.
// * Complete - initialization has completed and all future calls should finish
// immediately.
//
// With 4 states we need 2 bits to encode this, and we use the remaining bits
// in the word we have allocated as a queue of threads waiting for the thread
// responsible for entering the RUNNING state. This queue is just a linked list
// of Waiter nodes which is monotonically increasing in size. Each node is
// allocated on the stack, and whenever the running closure finishes it will
// consume the entire queue and notify all waiters they should try again.
//
// You'll find a few more details in the implementation, but that's the gist of
// it!
use core::marker::PhantomData;
use core::ptr;
use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
use super::thread::{self, SgxThread};
/// A synchronization primitive which can be used to run a one-time global
/// initialization. Useful for one-time initialization for FFI or related
/// functionality. This type can only be constructed with the [`ONCE_INIT`]
/// value.
pub struct Once {
// This `state` word is actually an encoded version of just a pointer to a
// `Waiter`, so we add the `PhantomData` appropriately.
state: AtomicUsize,
marker: PhantomData<* mut Waiter>,
}
// The `PhantomData` of a raw pointer removes these two auto traits, but we
// enforce both below in the implementation so this should be safe to add.
unsafe impl Sync for Once {}
unsafe impl Send for Once {}
/// State yielded to the [`call_once_force`] method which can be used to query
/// whether the [`Once`] was previously poisoned or not.
#[derive(Debug)]
pub struct OnceState {
poisoned: bool,
}
/// Initialization value for static [`Once`] values.
pub const ONCE_INIT: Once = Once::new();
// Four states that a Once can be in, encoded into the lower bits of `state` in
// the Once structure.
const INCOMPLETE: usize = 0x0;
const POISONED: usize = 0x1;
const RUNNING: usize = 0x2;
const COMPLETE: usize = 0x3;
// Mask to learn about the state. All other bits are the queue of waiters if
// this is in the RUNNING state.
const STATE_MASK: usize = 0x3;
// Representation of a node in the linked list of waiters in the RUNNING state.
struct Waiter {
thread: Option<SgxThread>,
signaled: AtomicBool,
next: * mut Waiter,
}
// Helper struct used to clean up after a closure call with a `Drop`
// implementation to also run on panic.
struct Finish {
panicked: bool,
me: &'static Once,
}
impl Once {
/// Creates a new `Once` value.
pub const fn new() -> Once {
Once {
state: AtomicUsize::new(INCOMPLETE),
marker: PhantomData,
}
}
/// Performs an initialization routine once and only once. The given closure
/// will be executed if this is the first time `call_once` has been called,
/// and otherwise the routine will *not* be invoked.
///
/// This method will block the calling thread if another initialization
/// routine is currently running.
///
/// When this function returns, it is guaranteed that some initialization
/// has run and completed (it may not be the closure specified). It is also
/// guaranteed that any memory writes performed by the executed closure can
/// be reliably observed by other threads at this point (there is a
/// happens-before relation between the closure and code executing after the
/// return).
///
/// # Panics
///
/// The closure `f` will only be executed once if this is called
/// concurrently amongst many threads. If that closure panics, however, then
/// it will *poison* this `Once` instance, causing all future invocations of
/// `call_once` to also panic.
pub fn call_once<F>(&'static self, f: F) where F: FnOnce() {
if self.state.load(Ordering::SeqCst) == COMPLETE {
return
}
let mut f = Some(f);
self.call_inner(false, &mut |_| f.take().unwrap()());
}
/// Performs the same function as [`call_once`] except ignores poisoning.
///
/// If this `Once` has been poisoned (some initialization panicked) then
/// this function will continue to attempt to call initialization functions
/// until one of them doesn't panic.
///
/// The closure `f` is yielded a [`OnceState`] structure which can be used to query the
/// state of this `Once` (whether initialization has previously panicked or
/// not).
///
pub fn call_once_force<F>(&'static self, f: F) where F: FnOnce(&OnceState) {
if self.state.load(Ordering::SeqCst) == COMPLETE {
return
}
let mut f = Some(f);
self.call_inner(true, &mut |p| {
f.take().unwrap()(&OnceState { poisoned: p })
});
}
// This is a non-generic function to reduce the monomorphization cost of
// using `call_once` (this isn't exactly a trivial or small implementation).
//
// Additionally, this is tagged with `#[cold]` as it should indeed be cold
// and it helps let LLVM know that calls to this function should be off the
// fast path. Essentially, this should help generate more straight line code
// in LLVM.
//
// Finally, this takes an `FnMut` instead of a `FnOnce` because there's
// currently no way to take an `FnOnce` and call it via virtual dispatch
// without some allocation overhead.
#[cold]
fn call_inner(&'static self,
ignore_poisoning: bool,
mut init: &mut FnMut(bool)) {
let mut state = self.state.load(Ordering::SeqCst);
'outer: loop {
match state {
// If we're complete, then there's nothing to do, we just
// jettison out as we shouldn't run the closure.
COMPLETE => return,
// If we're poisoned and we're not in a mode to ignore
// poisoning, then we panic here to propagate the poison.
POISONED if !ignore_poisoning => {
panic!("Once instance has previously been poisoned");
}
// Otherwise if we see a poisoned or otherwise incomplete state
// we will attempt to move ourselves into the RUNNING state. If
// we succeed, then the queue of waiters starts at null (all 0
// bits).
POISONED |
INCOMPLETE => {
let old = self.state.compare_and_swap(state, RUNNING,
Ordering::SeqCst);
if old != state {
state = old;
continue
}
// Run the initialization routine, letting it know if we're
// poisoned or not. The `Finish` struct is then dropped, and
// the `Drop` implementation here is responsible for waking
// up other waiters both in the normal return and panicking
// case.
let mut complete = Finish {
panicked: true,
me: self,
};
init(state == POISONED);
complete.panicked = false;
return
}
// All other values we find should correspond to the RUNNING
// state with an encoded waiter list in the more significant
// bits. We attempt to enqueue ourselves by moving us to the
// head of the list and bail out if we ever see a state that's
// not RUNNING.
_ => {
assert!(state & STATE_MASK == RUNNING);
let mut node = Waiter {
thread: Some(thread::current()),
signaled: AtomicBool::new(false),
next: ptr::null_mut(),
};
let me = &mut node as *mut Waiter as usize;
assert!(me & STATE_MASK == 0);
while state & STATE_MASK == RUNNING {
node.next = (state & !STATE_MASK) as *mut Waiter;
let old = self.state.compare_and_swap(state,
me | RUNNING,
Ordering::SeqCst);
if old != state {
state = old;
continue
}
// Once we've enqueued ourselves, wait in a loop.
// Afterwards reload the state and continue with what we
// were doing from before.
while !node.signaled.load(Ordering::SeqCst) {
thread::park();
}
state = self.state.load(Ordering::SeqCst);
continue 'outer
}
}
}
}
}
}
impl Drop for Finish {
fn drop(&mut self) {
// Swap out our state with however we finished. We should only ever see
// an old state which was RUNNING.
let queue = if self.panicked {
self.me.state.swap(POISONED, Ordering::SeqCst)
} else {
self.me.state.swap(COMPLETE, Ordering::SeqCst)
};
assert_eq!(queue & STATE_MASK, RUNNING);
// Decode the RUNNING to a list of waiters, then walk that entire list
// and wake them up. Note that it is crucial that after we store `true`
// in the node it can be free'd! As a result we load the `thread` to
// signal ahead of time and then unpark it after the store.
unsafe {
let mut queue = (queue & !STATE_MASK) as *mut Waiter;
while !queue.is_null() {
let next = (*queue).next;
let thread = (*queue).thread.take().unwrap();
(*queue).signaled.store(true, Ordering::SeqCst);
thread.unpark();
queue = next;
}
}
}
}
impl OnceState {
/// Returns whether the associated [`Once`] has been poisoned.
///
/// Once an initalization routine for a [`Once`] has panicked it will forever
/// indicate to future forced initialization routines that it is poisoned.
///
pub fn poisoned(&self) -> bool {
self.poisoned
}
}