blob: f3f0a93a90daadbb762343c9042b8b1c717ae187 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License..
use super::{BufWriter, ErrorKind, Read, Result, Write, DEFAULT_BUF_SIZE};
use crate::mem::MaybeUninit;
/// Copies the entire contents of a reader into a writer.
///
/// This function will continuously read data from `reader` and then
/// write it into `writer` in a streaming fashion until `reader`
/// returns EOF.
///
/// On success, the total number of bytes that were copied from
/// `reader` to `writer` is returned.
///
/// If you’re wanting to copy the contents of one file to another and you’re
/// working with filesystem paths, see the [`fs::copy`] function.
///
/// [`fs::copy`]: crate::fs::copy
///
/// # Errors
///
/// This function will return an error immediately if any call to [`read`] or
/// [`write`] returns an error. All instances of [`ErrorKind::Interrupted`] are
/// handled by this function and the underlying operation is retried.
///
/// [`read`]: Read::read
/// [`write`]: Write::write
///
/// # Examples
///
/// ```
/// use std::io;
///
/// fn main() -> io::Result<()> {
/// let mut reader: &[u8] = b"hello";
/// let mut writer: Vec<u8> = vec![];
///
/// io::copy(&mut reader, &mut writer)?;
///
/// assert_eq!(&b"hello"[..], &writer[..]);
/// Ok(())
/// }
/// ```
pub fn copy<R: ?Sized, W: ?Sized>(reader: &mut R, writer: &mut W) -> Result<u64>
where
R: Read,
W: Write,
{
BufferedCopySpec::copy_to(reader, writer)
}
/// Specialization of the read-write loop that either uses a stack buffer
/// or reuses the internal buffer of a BufWriter
trait BufferedCopySpec: Write {
fn copy_to<R: Read + ?Sized>(reader: &mut R, writer: &mut Self) -> Result<u64>;
}
impl<W: Write + ?Sized> BufferedCopySpec for W {
default fn copy_to<R: Read + ?Sized>(reader: &mut R, writer: &mut Self) -> Result<u64> {
stack_buffer_copy(reader, writer)
}
}
impl<I: Write> BufferedCopySpec for BufWriter<I> {
fn copy_to<R: Read + ?Sized>(reader: &mut R, writer: &mut Self) -> Result<u64> {
if writer.capacity() < DEFAULT_BUF_SIZE {
return stack_buffer_copy(reader, writer);
}
// FIXME: #42788
//
// - This creates a (mut) reference to a slice of
// _uninitialized_ integers, which is **undefined behavior**
//
// - Only the standard library gets to soundly "ignore" this,
// based on its privileged knowledge of unstable rustc
// internals;
unsafe {
let spare_cap = writer.buffer_mut().spare_capacity_mut();
reader.initializer().initialize(MaybeUninit::slice_assume_init_mut(spare_cap));
}
let mut len = 0;
loop {
let buf = writer.buffer_mut();
let spare_cap = buf.spare_capacity_mut();
if spare_cap.len() >= DEFAULT_BUF_SIZE {
match reader.read(unsafe { MaybeUninit::slice_assume_init_mut(spare_cap) }) {
Ok(0) => return Ok(len), // EOF reached
Ok(bytes_read) => {
assert!(bytes_read <= spare_cap.len());
// SAFETY: The initializer contract guarantees that either it or `read`
// will have initialized these bytes. And we just checked that the number
// of bytes is within the buffer capacity.
unsafe { buf.set_len(buf.len() + bytes_read) };
len += bytes_read as u64;
// Read again if the buffer still has enough capacity, as BufWriter itself would do
// This will occur if the reader returns short reads
continue;
}
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
}
}
writer.flush_buf()?;
}
}
}
fn stack_buffer_copy<R: Read + ?Sized, W: Write + ?Sized>(
reader: &mut R,
writer: &mut W,
) -> Result<u64> {
let mut buf = MaybeUninit::<[u8; DEFAULT_BUF_SIZE]>::uninit();
// FIXME: #42788
//
// - This creates a (mut) reference to a slice of
// _uninitialized_ integers, which is **undefined behavior**
//
// - Only the standard library gets to soundly "ignore" this,
// based on its privileged knowledge of unstable rustc
// internals;
unsafe {
reader.initializer().initialize(buf.assume_init_mut());
}
let mut written = 0;
loop {
let len = match reader.read(unsafe { buf.assume_init_mut() }) {
Ok(0) => return Ok(written),
Ok(len) => len,
Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e),
};
writer.write_all(unsafe { &buf.assume_init_ref()[..len] })?;
written += len as u64;
}
}