blob: 440507e8626ddf2195d1f60ba4db94562466089e [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License..
#include "MessageHandler.h"
using namespace util;
MessageHandler::MessageHandler(int port) {
this->nm = NetworkManagerServer::getInstance(port);
}
MessageHandler::~MessageHandler() {
delete this->enclave;
}
int MessageHandler::init() {
this->nm->Init();
this->nm->connectCallbackHandler([this](string v, int type) {
return this->incomingHandler(v, type);
});
}
void MessageHandler::start() {
sgx_status_t ret = this->initEnclave();
if (SGX_SUCCESS != ret) {
Log("Error, call initEnclave fail", log::error);
return;
}
sgx_status_t status;
ret = initialize(this->enclave->getID(), &status);
if ((SGX_SUCCESS != ret) || (SGX_SUCCESS != status)) {
Log("Error, call generate_salt fail", log::error);
return;
}
Log("Call initEnclave success");
this->nm->startService();
}
sgx_status_t MessageHandler::initEnclave() {
this->enclave = Enclave::getInstance();
return this->enclave->createEnclave();
}
uint32_t MessageHandler::getExtendedEPID_GID() {
uint32_t extended_epid_group_id = 0;
int ret = sgx_get_extended_epid_group_id(&extended_epid_group_id);
if (SGX_SUCCESS != ret) {
ret = -1;
Log("Error, call sgx_get_extended_epid_group_id fail");
return ret;
}
Log("Call sgx_get_extended_epid_group_id success");
return extended_epid_group_id;
}
string MessageHandler::generateMSG0() {
Log("Call MSG0 generate");
uint32_t extended_epid_group_id = this->getExtendedEPID_GID();
Messages::MessageMsg0 msg;
msg.set_type(RA_MSG0);
msg.set_epid(extended_epid_group_id);
return nm->serialize(msg);
}
string MessageHandler::generateMSG1() {
int retGIDStatus = 0;
int count = 0;
sgx_status_t ret;
sgx_ra_context_t context = INT_MAX;
sgx_ra_msg1_t sgxMsg1Obj;
ret = this->enclave->raInit(&context);
if (SGX_SUCCESS != ret) {
Log("Error, call enclave_init_ra fail", log::error);
return "";
}
while (1) {
retGIDStatus = sgx_ra_get_msg1(context,
this->enclave->getID(),
sgx_ra_get_ga,
&sgxMsg1Obj);
if (retGIDStatus == SGX_SUCCESS) {
break;
} else if (retGIDStatus == SGX_ERROR_BUSY) {
if (count == 5) { //retried 5 times, so fail out
Log("Error, sgx_ra_get_msg1 is busy - 5 retries failed", log::error);
break;;
} else {
sleep(3);
count++;
}
} else { //error other than busy
Log("Error, failed to generate MSG1", log::error);
break;
}
}
if (SGX_SUCCESS == retGIDStatus) {
Log("MSG1 generated Successfully");
Messages::MessageMSG1 msg;
msg.set_type(RA_MSG1);
msg.set_context(context);
for (auto x : sgxMsg1Obj.g_a.gx)
msg.add_gax(x);
for (auto x : sgxMsg1Obj.g_a.gy)
msg.add_gay(x);
for (auto x : sgxMsg1Obj.gid) {
msg.add_gid(x);
}
return nm->serialize(msg);
}
return "";
}
void MessageHandler::assembleMSG2(Messages::MessageMSG2 msg, sgx_ra_msg2_t **pp_msg2) {
uint32_t size = msg.size();
sgx_ra_msg2_t *p_msg2 = NULL;
p_msg2 = (sgx_ra_msg2_t*) malloc(size + sizeof(sgx_ra_msg2_t));
uint8_t pub_key_gx[32];
uint8_t pub_key_gy[32];
sgx_ec256_signature_t sign_gb_ga;
sgx_spid_t spid;
for (int i; i<32; i++) {
pub_key_gx[i] = msg.public_key_gx(i);
pub_key_gy[i] = msg.public_key_gy(i);
}
for (int i=0; i<16; i++) {
spid.id[i] = msg.spid(i);
}
for (int i=0; i<8; i++) {
sign_gb_ga.x[i] = msg.signature_x(i);
sign_gb_ga.y[i] = msg.signature_y(i);
}
memcpy(&p_msg2->g_b.gx, &pub_key_gx, sizeof(pub_key_gx));
memcpy(&p_msg2->g_b.gy, &pub_key_gy, sizeof(pub_key_gy));
memcpy(&p_msg2->sign_gb_ga, &sign_gb_ga, sizeof(sign_gb_ga));
memcpy(&p_msg2->spid, &spid, sizeof(spid));
p_msg2->quote_type = (uint16_t)msg.quote_type();
p_msg2->kdf_id = msg.cmac_kdf_id();
uint8_t smac[16];
for (int i=0; i<16; i++)
smac[i] = msg.smac(i);
memcpy(&p_msg2->mac, &smac, sizeof(smac));
p_msg2->sig_rl_size = msg.size_sigrl();
for (int i=0; i<msg.size_sigrl(); i++)
p_msg2->sig_rl[i] = msg.sigrl(i);
*pp_msg2 = p_msg2;
}
string MessageHandler::handleMSG2(Messages::MessageMSG2 msg) {
Log("Received MSG2");
uint32_t size = msg.size();
sgx_ra_context_t context = msg.context();
sgx_ra_msg2_t *p_msg2;
this->assembleMSG2(msg, &p_msg2);
sgx_ra_msg3_t *p_msg3 = NULL;
uint32_t msg3_size;
int ret = 0;
do {
ret = sgx_ra_proc_msg2(context,
this->enclave->getID(),
sgx_ra_proc_msg2_trusted,
sgx_ra_get_msg3_trusted,
p_msg2,
size,
&p_msg3,
&msg3_size);
} while (SGX_ERROR_BUSY == ret && busy_retry_time--);
SafeFree(p_msg2);
if (SGX_SUCCESS != (sgx_status_t)ret) {
Log("Error, call sgx_ra_proc_msg2 fail, error code: 0x%x", ret);
} else {
Log("Call sgx_ra_proc_msg2 success");
Messages::MessageMSG3 msg3;
msg3.set_type(RA_MSG3);
msg3.set_size(msg3_size);
msg3.set_context(context);
for (int i=0; i<SGX_MAC_SIZE; i++)
msg3.add_sgx_mac(p_msg3->mac[i]);
for (int i=0; i<SGX_ECP256_KEY_SIZE; i++) {
msg3.add_gax_msg3(p_msg3->g_a.gx[i]);
msg3.add_gay_msg3(p_msg3->g_a.gy[i]);
}
for (int i=0; i<256; i++) {
msg3.add_sec_property(p_msg3->ps_sec_prop.sgx_ps_sec_prop_desc[i]);
}
for (int i=0; i<1116; i++) {
msg3.add_quote(p_msg3->quote[i]);
}
SafeFree(p_msg3);
return nm->serialize(msg3);
}
SafeFree(p_msg3);
return "";
}
void MessageHandler::assembleAttestationMSG(Messages::AttestationMessage msg, ra_samp_response_header_t **pp_att_msg) {
sample_ra_att_result_msg_t *p_att_result_msg = NULL;
ra_samp_response_header_t* p_att_result_msg_full = NULL;
int total_size = msg.size() + sizeof(ra_samp_response_header_t) + msg.result_size();
p_att_result_msg_full = (ra_samp_response_header_t*) malloc(total_size);
memset(p_att_result_msg_full, 0, total_size);
p_att_result_msg_full->type = RA_ATT_RESULT;
p_att_result_msg_full->size = msg.size();
p_att_result_msg = (sample_ra_att_result_msg_t *) p_att_result_msg_full->body;
p_att_result_msg->platform_info_blob.sample_epid_group_status = msg.epid_group_status();
p_att_result_msg->platform_info_blob.sample_tcb_evaluation_status = msg.tcb_evaluation_status();
p_att_result_msg->platform_info_blob.pse_evaluation_status = msg.pse_evaluation_status();
for (int i=0; i<PSVN_SIZE; i++)
p_att_result_msg->platform_info_blob.latest_equivalent_tcb_psvn[i] = msg.latest_equivalent_tcb_psvn(i);
for (int i=0; i<ISVSVN_SIZE; i++)
p_att_result_msg->platform_info_blob.latest_pse_isvsvn[i] = msg.latest_pse_isvsvn(i);
for (int i=0; i<PSDA_SVN_SIZE; i++)
p_att_result_msg->platform_info_blob.latest_psda_svn[i] = msg.latest_psda_svn(i);
for (int i=0; i<GID_SIZE; i++)
p_att_result_msg->platform_info_blob.performance_rekey_gid[i] = msg.performance_rekey_gid(i);
for (int i=0; i<SAMPLE_NISTP256_KEY_SIZE; i++) {
p_att_result_msg->platform_info_blob.signature.x[i] = msg.ec_sign256_x(i);
p_att_result_msg->platform_info_blob.signature.y[i] = msg.ec_sign256_y(i);
}
for (int i=0; i<SAMPLE_MAC_SIZE; i++)
p_att_result_msg->mac[i] = msg.mac_smk(i);
p_att_result_msg->secret.payload_size = msg.result_size();
for (int i=0; i<12; i++)
p_att_result_msg->secret.reserved[i] = msg.reserved(i);
for (int i=0; i<SAMPLE_SP_TAG_SIZE; i++)
p_att_result_msg->secret.payload_tag[i] = msg.payload_tag(i);
for (int i=0; i<SAMPLE_SP_TAG_SIZE; i++)
p_att_result_msg->secret.payload_tag[i] = msg.payload_tag(i);
for (int i=0; i<msg.result_size(); i++) {
p_att_result_msg->secret.payload[i] = (uint8_t)msg.payload(i);
}
*pp_att_msg = p_att_result_msg_full;
}
string MessageHandler::generateAttestationFailed(uint32_t id, sgx_ra_context_t context) {
Messages::MessagePsiSalt msg;
msg.set_type(RA_PSI_SLAT);
msg.set_size(0);
msg.set_state(0);
msg.set_context(context);
msg.add_salt(0);
msg.add_mac(0);
msg.set_id(id);
return nm->serialize(msg);
}
string MessageHandler::handleAttestationResult(Messages::AttestationMessage msg) {
Log("Received Attestation result");
ra_samp_response_header_t *p_att_result_msg_full = NULL;
this->assembleAttestationMSG(msg, &p_att_result_msg_full);
sample_ra_att_result_msg_t *p_att_result_msg_body = (sample_ra_att_result_msg_t *) ((uint8_t*) p_att_result_msg_full + sizeof(ra_samp_response_header_t));
sgx_status_t status;
sgx_status_t ret;
sgx_ra_context_t context = msg.context();
uint32_t id = 0;
uint8_t salt[SALT_SIZE];
uint8_t mac[SGX_MAC_SIZE];
ret = verify_att_result_mac(this->enclave->getID(),
&status,
context,
(uint8_t*)&p_att_result_msg_body->platform_info_blob,
sizeof(ias_platform_info_blob_t),
(uint8_t*)&p_att_result_msg_body->mac);
if ((SGX_SUCCESS != ret) || (SGX_SUCCESS != status)) {
Log("Error: INTEGRITY FAILED - attestation result message MK based cmac failed", log::error);
SafeFree(p_att_result_msg_full);
return generateAttestationFailed(context, id);
}
if (0 != p_att_result_msg_full->status[0] || 0 != p_att_result_msg_full->status[1]) {
Log("Error, attestation mac result message MK based cmac failed", log::error);
SafeFree(p_att_result_msg_full);
return generateAttestationFailed(context, id);
} else {
ret = verify_secret_data(this->enclave->getID(),
&status,
context,
p_att_result_msg_body->secret.payload,
p_att_result_msg_body->secret.payload_size,
p_att_result_msg_body->secret.payload_tag,
MAX_VERIFICATION_RESULT,
salt,
mac,
&id);
SafeFree(p_att_result_msg_full);
if (SGX_SUCCESS != ret) {
Log("Error, attestation result message secret using SK based AESGCM failed", log::error);
Log("Error on ret , code : %08X\n",ret);
print_error_message(ret);
return generateAttestationFailed(context, id);
} else if (SGX_SUCCESS != status) {
Log("Error, attestation result message secret using SK based AESGCM failed", log::error);
Log("Error on status, code : %08X\n",status);
print_error_message(status);
return generateAttestationFailed(context, id);
} else {
Log("Send attestation okay");
Messages::MessagePsiSalt msg;
msg.set_type(RA_PSI_SLAT);
msg.set_size(0);
msg.set_state(1);
msg.set_context(context);
msg.set_id(id);
for (int i = 0; i < SALT_SIZE; i++) {
msg.add_salt(salt[i]);
}
for (int i = 0; i < SGX_MAC_SIZE; i++) {
msg.add_mac(mac[i]);
}
return nm->serialize(msg);
}
}
return "";
}
string MessageHandler::handleMSG0(Messages::MessageMsg0 msg) {
Log("MSG0 response received");
if (msg.status() == TYPE_OK) {
Log("Sending msg1 to remote attestation service provider. Expecting msg2 back");
auto ret = this->generateMSG1();
return ret;
} else {
Log("MSG0 response status was not OK", log::error);
}
return "";
}
string MessageHandler::handleVerification() {
Log("Verification request received");
return this->generateMSG0();
}
string MessageHandler::createInitMsg(int type, string msg) {
Messages::InitialMessage init_msg;
init_msg.set_type(type);
init_msg.set_size(0);
return nm->serialize(init_msg);
}
string MessageHandler::handlePsiHashData(Messages::MessagePsiHashData msg) {
Log("[PSI] Received hash data");
uint8_t mac[SGX_MAC_SIZE] = {0};
sgx_ra_context_t context = msg.context();
uint32_t id = msg.id();
int data_size = msg.data_size();
uint8_t* data = (uint8_t*)malloc(data_size);
for (int i = 0; i < SGX_MAC_SIZE; i++) {
mac[i] = (uint8_t)msg.mac(i);
}
for (int i = 0; i < data_size; i++) {
data[i] = (uint8_t)msg.data(i);
}
sgx_status_t status;
sgx_status_t ret = add_hash_data(this->enclave->getID(),
&status,
id,
context,
data,
data_size,
mac);
if (SGX_SUCCESS != ret || SGX_SUCCESS != status) {
Log("[PSI] add_hash_data failed, %d, %d!", ret, status);
SafeFree(data);
return "";
}
SafeFree(data);
Messages::MessagePsiResult result;
result.set_type(RA_PSI_RESULT);
result.set_size(0);
result.set_state(0);
result.set_context(msg.context());
result.set_id(msg.id());
return nm->serialize(result);
}
string MessageHandler::handlePsiHashDataFinished(Messages::MessagePsiHashDataFinished msg, bool* again) {
sgx_ra_context_t context = msg.context();
uint32_t id = msg.id();
uint8_t mac[SGX_MAC_SIZE] = {0};
uint8_t * data = NULL;
size_t data_size = 0;
sgx_status_t status;
sgx_status_t ret;
Log("[PSI] Received hash data finished, %d", id);
ret = get_result_size(this->enclave->getID(), &status, id, &data_size);
if (SGX_SUCCESS != ret) {
Log("[PSI] get_result_size failed, %d", ret);
return "";
}
if (SGX_SUCCESS != status) {
if (status == SGX_ERROR_INVALID_STATE) {
*again = true;
Messages::MessagePsiResult result;
result.set_type(RA_PSI_RESULT);
result.set_size(0);
result.set_state(1); //tell sp req result again
result.set_context(msg.context());
result.set_id(msg.id());
Log("[PSI] has not calc result success");
return nm->serialize(result);
} else {
Log("[PSI] get_result_size failed, %d, %d", ret, status);
return "";
}
}
if (data_size > 0) {
data = (uint8_t*)malloc(data_size);
if (data == NULL) {
Log("[PSI] alloc buffer for intersect data failed!");
return "";
}
ret = get_result(this->enclave->getID(),
&status,
id,
context,
data,
data_size,
mac);
if (SGX_SUCCESS != ret || SGX_SUCCESS != status) {
Log("[PSI] get_result failed, %d, %d", ret, status);
return "";
}
}
Messages::MessagePsiIntersect intersect;
intersect.set_type(RA_PSI_INTERSECT);
intersect.set_size(0);
intersect.set_id(msg.id());
intersect.set_context(context);
for (int i = 0; i < SGX_MAC_SIZE; i++) {
intersect.add_mac(mac[i]);
}
if (data && data_size) {
for (int i = 0; i < data_size; i++) {
intersect.add_data(data[i]);
}
}
if (data) {
SafeFree(data);
}
enclave_ra_close(this->enclave->getID(), &status, context);
Log("[PSI] get result success, %d", data_size/SGX_HASH_SIZE);
return nm->serialize(intersect);
}
vector<string> MessageHandler::incomingHandler(string v, int type) {
vector<string> res;
string s;
bool ret;
switch (type) {
case RA_VERIFICATION: { //Verification request
Messages::InitialMessage init_msg;
ret = init_msg.ParseFromString(v);
if (ret && init_msg.type() == RA_VERIFICATION) {
s = this->handleVerification();
res.push_back(to_string(RA_MSG0));
}
}
break;
case RA_MSG0: { //Reply to MSG0
Messages::MessageMsg0 msg0;
ret = msg0.ParseFromString(v);
if (ret && (msg0.type() == RA_MSG0)) {
s = this->handleMSG0(msg0);
res.push_back(to_string(RA_MSG1));
}
}
break;
case RA_MSG2: { //MSG2
Messages::MessageMSG2 msg2;
ret = msg2.ParseFromString(v);
if (ret && (msg2.type() == RA_MSG2)) {
s = this->handleMSG2(msg2);
res.push_back(to_string(RA_MSG3));
}
}
break;
case RA_ATT_RESULT: { //Reply to MSG3
Messages::AttestationMessage att_msg;
ret = att_msg.ParseFromString(v);
if (ret && att_msg.type() == RA_ATT_RESULT) {
s = this->handleAttestationResult(att_msg);
res.push_back(to_string(RA_PSI_SLAT));
}
}
break;
case RA_PSI_HASHDATA: {
Messages::MessagePsiHashData data_msg;
ret = data_msg.ParseFromString(v);
if (ret && data_msg.type() == RA_PSI_HASHDATA) {
s = this->handlePsiHashData(data_msg);
res.push_back(to_string(RA_PSI_RESULT));
}
}
break;
case RA_PSI_HASHDATA_FINISHED: {
Messages::MessagePsiHashDataFinished finish_msg;
ret = finish_msg.ParseFromString(v);
if (ret && finish_msg.type() == RA_PSI_HASHDATA_FINISHED) {
bool again = false;
s = this->handlePsiHashDataFinished(finish_msg, &again);
if (again) {
res.push_back(to_string(RA_PSI_RESULT));
} else {
res.push_back(to_string(RA_PSI_INTERSECT));
}
}
}
break;
default:
Log("Unknown type: %d", type, log::error);
break;
}
res.push_back(s);
return res;
}