blob: fc716665caac2d90fb4acb43393f2e9863c29f63 [file] [log] [blame]
// Copyright (C) 2017-2019 Baidu, Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Baidu, Inc., nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//! Standard library macros
//!
//! This modules contains a set of macros which are exported from the standard
//! library. Each macro is available for use when linking against the standard
//! library.
/// The entry point for panic of Rust threads.
///
/// This macro is used to inject panic into a Rust thread, causing the thread to
/// panic entirely. Each thread's panic can be reaped as the `Box<Any>` type,
/// and the single-argument form of the `panic!` macro will be the value which
/// is transmitted.
///
/// The multi-argument form of this macro panics with a string and has the
/// `format!` syntax for building a string.
///
/// # Current implementation
///
/// If the main thread panics it will terminate all your threads and end your
/// program with code `101`.
///
#[macro_export]
#[allow_internal_unstable(__rust_unstable_column, libstd_sys_internals)]
macro_rules! panic {
() => ({
panic!("explicit panic")
});
($msg:expr) => ({
$crate::rt::begin_panic($msg, &(file!(), line!(), column!()))
});
($msg:expr,) => ({
panic!($msg)
});
($fmt:expr, $($arg:tt)+) => ({
$crate::rt::begin_panic_fmt(&format_args!($fmt, $($arg)+),
&(file!(), line!(), column!()))
});
}
/// Macro for printing to the standard output.
///
/// Equivalent to the `println!` macro except that a newline is not printed at
/// the end of the message.
///
/// Note that stdout is frequently line-buffered by default so it may be
/// necessary to use `io::stdout().flush()` to ensure the output is emitted
/// immediately.
///
/// Use `print!` only for the primary output of your program. Use
/// `eprint!` instead to print error and progress messages.
///
/// # Panics
///
/// Panics if writing to `io::stdout()` fails.
#[cfg(feature = "stdio")]
#[macro_export]
#[allow_internal_unstable(print_internals)]
macro_rules! print {
($($arg:tt)*) => ($crate::io::_print(format_args!($($arg)*)));
}
/// Macro for printing to the standard output, with a newline. On all
/// platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
///
/// Use the `format!` syntax to write data to the standard output.
/// See `std::fmt` for more information.
///
/// Use `println!` only for the primary output of your program. Use
/// `eprintln!` instead to print error and progress messages.
///
/// # Panics
///
/// Panics if writing to `io::stdout` fails.
#[cfg(feature = "stdio")]
#[macro_export]
macro_rules! println {
() => (print!("\n"));
($fmt:expr) => (print!(concat!($fmt, "\n")));
($fmt:expr, $($arg:tt)*) => (print!(concat!($fmt, "\n"), $($arg)*));
}
#[cfg(not(feature = "stdio"))]
#[macro_export]
macro_rules! print { ($($arg:tt)*) => ({}) }
#[cfg(not(feature = "stdio"))]
#[macro_export]
macro_rules! println { ($($arg:tt)*) => ({}) }
/// Macro for printing to the standard error.
///
/// Equivalent to the `print!` macro, except that output goes to
/// `io::stderr` instead of `io::stdout`. See `print!` for
/// example usage.
///
/// Use `eprint!` only for error and progress messages. Use `print!`
/// instead for the primary output of your program.
///
/// # Panics
///
/// Panics if writing to `io::stderr` fails.
#[cfg(feature = "stdio")]
#[macro_export]
#[allow_internal_unstable(print_internals, format_args_nl)]
macro_rules! eprint {
($($arg:tt)*) => ($crate::io::_eprint(format_args!($($arg)*)));
}
/// Macro for printing to the standard error, with a newline.
///
/// Equivalent to the `println!` macro, except that output goes to
/// `io::stderr` instead of `io::stdout`. See `println!` for
/// example usage.
///
/// Use `eprintln!` only for error and progress messages. Use `println!`
/// instead for the primary output of your program.
///
/// # Panics
///
/// Panics if writing to `io::stderr` fails.
#[cfg(feature = "stdio")]
#[macro_export]
macro_rules! eprintln {
() => (eprint!("\n"));
($fmt:expr) => (eprint!(concat!($fmt, "\n")));
($fmt:expr, $($arg:tt)*) => (eprint!(concat!($fmt, "\n"), $($arg)*));
}
#[cfg(not(feature = "stdio"))]
#[macro_export]
macro_rules! eprint { ($($arg:tt)*) => ({}) }
#[cfg(not(feature = "stdio"))]
#[macro_export]
macro_rules! eprintln { ($($arg:tt)*) => ({}) }
/// Prints and returns the value of a given expression for quick and dirty
/// debugging.
///
/// An example:
///
/// ```rust
/// let a = 2;
/// let b = dbg!(a * 2) + 1;
/// // ^-- prints: [src/main.rs:2] a * 2 = 4
/// assert_eq!(b, 5);
/// ```
///
/// The macro works by using the `Debug` implementation of the type of
/// the given expression to print the value to [stderr] along with the
/// source location of the macro invocation as well as the source code
/// of the expression.
///
/// Invoking the macro on an expression moves and takes ownership of it
/// before returning the evaluated expression unchanged. If the type
/// of the expression does not implement `Copy` and you don't want
/// to give up ownership, you can instead borrow with `dbg!(&expr)`
/// for some expression `expr`.
///
/// The `dbg!` macro works exactly the same in release builds.
/// This is useful when debugging issues that only occur in release
/// builds or when debugging in release mode is significantly faster.
///
/// Note that the macro is intended as a debugging tool and therefore you
/// should avoid having uses of it in version control for longer periods.
/// Use cases involving debug output that should be added to version control
/// are better served by macros such as [`debug!`] from the [`log`] crate.
///
/// # Stability
///
/// The exact output printed by this macro should not be relied upon
/// and is subject to future changes.
///
/// # Panics
///
/// Panics if writing to `io::stderr` fails.
///
/// # Further examples
///
/// With a method call:
///
/// ```rust
/// fn foo(n: usize) {
/// if let Some(_) = dbg!(n.checked_sub(4)) {
/// // ...
/// }
/// }
///
/// foo(3)
/// ```
///
/// This prints to [stderr]:
///
/// ```text,ignore
/// [src/main.rs:4] n.checked_sub(4) = None
/// ```
///
/// Naive factorial implementation:
///
/// ```rust
/// fn factorial(n: u32) -> u32 {
/// if dbg!(n <= 1) {
/// dbg!(1)
/// } else {
/// dbg!(n * factorial(n - 1))
/// }
/// }
///
/// dbg!(factorial(4));
/// ```
///
/// This prints to [stderr]:
///
/// ```text,ignore
/// [src/main.rs:3] n <= 1 = false
/// [src/main.rs:3] n <= 1 = false
/// [src/main.rs:3] n <= 1 = false
/// [src/main.rs:3] n <= 1 = true
/// [src/main.rs:4] 1 = 1
/// [src/main.rs:5] n * factorial(n - 1) = 2
/// [src/main.rs:5] n * factorial(n - 1) = 6
/// [src/main.rs:5] n * factorial(n - 1) = 24
/// [src/main.rs:11] factorial(4) = 24
/// ```
///
/// The `dbg!(..)` macro moves the input:
///
/// ```compile_fail
/// /// A wrapper around `usize` which importantly is not Copyable.
/// #[derive(Debug)]
/// struct NoCopy(usize);
///
/// let a = NoCopy(42);
/// let _ = dbg!(a); // <-- `a` is moved here.
/// let _ = dbg!(a); // <-- `a` is moved again; error!
/// ```
///
/// You can also use `dbg!()` without a value to just print the
/// file and line whenever it's reached.
///
/// Finally, if you want to `dbg!(..)` multiple values, it will treat them as
/// a tuple (and return it, too):
///
/// ```
/// assert_eq!(dbg!(1usize, 2u32), (1, 2));
/// ```
///
/// However, a single argument with a trailing comma will still not be treated
/// as a tuple, following the convention of ignoring trailing commas in macro
/// invocations. You can use a 1-tuple directly if you need one:
///
/// ```
/// assert_eq!(1, dbg!(1u32,)); // trailing comma ignored
/// assert_eq!((1,), dbg!((1u32,))); // 1-tuple
/// ```
///
/// [stderr]: https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
/// [`debug!`]: https://docs.rs/log/*/log/macro.debug.html
/// [`log`]: https://crates.io/crates/log
#[macro_export]
macro_rules! dbg {
() => {
$crate::eprintln!("[{}:{}]", file!(), line!());
};
($val:expr) => {
// Use of `match` here is intentional because it affects the lifetimes
// of temporaries - https://stackoverflow.com/a/48732525/1063961
match $val {
tmp => {
$crate::eprintln!("[{}:{}] {} = {:#?}",
file!(), line!(), stringify!($val), &tmp);
tmp
}
}
};
// Trailing comma with single argument is ignored
($val:expr,) => { $crate::dbg!($val) };
($($val:expr),+ $(,)?) => {
($($crate::dbg!($val)),+,)
};
}