blob: 1f96aff2866862901fc486d8ef037f8933ad1d77 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License..
use core::fmt;
use crate::sync::{SgxCondvar, SgxMutex};
/// A barrier enables multiple threads to synchronize the beginning
/// of some computation.
///
pub struct Barrier {
lock: SgxMutex<BarrierState>,
cvar: SgxCondvar,
num_threads: usize,
}
// The inner state of a double barrier
struct BarrierState {
count: usize,
generation_id: usize,
}
/// A `BarrierWaitResult` is returned by [`wait`] when all threads in the [`Barrier`]
/// have rendezvoused.
///
/// [`wait`]: struct.Barrier.html#method.wait
/// [`Barrier`]: struct.Barrier.html
///
pub struct BarrierWaitResult(bool);
impl fmt::Debug for Barrier {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("Barrier { .. }")
}
}
impl Barrier {
/// Creates a new barrier that can block a given number of threads.
///
/// A barrier will block `n`-1 threads which call [`wait`] and then wake up
/// all threads at once when the `n`th thread calls [`wait`].
///
/// [`wait`]: #method.wait
///
pub fn new(n: usize) -> Barrier {
Barrier {
lock: SgxMutex::new(BarrierState { count: 0, generation_id: 0 }),
cvar: SgxCondvar::new(),
num_threads: n,
}
}
/// Blocks the current thread until all threads have rendezvoused here.
///
/// Barriers are re-usable after all threads have rendezvoused once, and can
/// be used continuously.
///
/// A single (arbitrary) thread will receive a [`BarrierWaitResult`] that
/// returns `true` from [`is_leader`] when returning from this function, and
/// all other threads will receive a result that will return `false` from
/// [`is_leader`].
///
/// [`BarrierWaitResult`]: struct.BarrierWaitResult.html
/// [`is_leader`]: struct.BarrierWaitResult.html#method.is_leader
///
pub fn wait(&self) -> BarrierWaitResult {
let mut lock = self.lock.lock().unwrap();
let local_gen = lock.generation_id;
lock.count += 1;
if lock.count < self.num_threads {
// We need a while loop to guard against spurious wakeups.
// http://en.wikipedia.org/wiki/Spurious_wakeup
while local_gen == lock.generation_id && lock.count < self.num_threads {
lock = self.cvar.wait(lock).unwrap();
}
BarrierWaitResult(false)
} else {
lock.count = 0;
lock.generation_id = lock.generation_id.wrapping_add(1);
self.cvar.notify_all();
BarrierWaitResult(true)
}
}
}
impl fmt::Debug for BarrierWaitResult {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("BarrierWaitResult").field("is_leader", &self.is_leader()).finish()
}
}
impl BarrierWaitResult {
/// Returns `true` if this thread from [`wait`] is the "leader thread".
///
/// Only one thread will have `true` returned from their result, all other
/// threads will have `false` returned.
///
/// [`wait`]: struct.Barrier.html#method.wait
///
pub fn is_leader(&self) -> bool {
self.0
}
}