blob: 550ecd8b1e88990e4e0164c4f6d054e9f149361e [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License..
use sgx_trts::libc as c;
use core::cmp::Ordering;
use core::fmt;
use core::hash;
use crate::io::Write;
use crate::sys_common::{AsInner, FromInner};
/// An IP address, either IPv4 or IPv6.
///
/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
/// respective documentation for more details.
///
/// The size of an `IpAddr` instance may vary depending on the target operating
/// system.
///
/// [`Ipv4Addr`]: ../../std/net/struct.Ipv4Addr.html
/// [`Ipv6Addr`]: ../../std/net/struct.Ipv6Addr.html
///
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpAddr {
/// An IPv4 address.
V4(Ipv4Addr),
/// An IPv6 address.
V6(Ipv6Addr),
}
/// An IPv4 address.
///
/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
/// They are usually represented as four octets.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv4Addr` struct may vary depending on the target operating
/// system.
///
/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
/// [`IpAddr`]: ../../std/net/enum.IpAddr.html
///
/// # Textual representation
///
/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
/// notation, divided by `.` (this is called "dot-decimal notation").
///
/// [`FromStr`]: ../../std/str/trait.FromStr.html
///
#[derive(Copy)]
pub struct Ipv4Addr {
inner: c::in_addr,
}
/// An IPv6 address.
///
/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
/// They are usually represented as eight 16-bit segments.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv6Addr` struct may vary depending on the target operating
/// system.
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`IpAddr`]: ../../std/net/enum.IpAddr.html
///
/// # Textual representation
///
/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
/// an IPv6 address in text, but in general, each segments is written in hexadecimal
/// notation, and segments are separated by `:`. For more information, see
/// [IETF RFC 5952].
///
/// [`FromStr`]: ../../std/str/trait.FromStr.html
/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
///
#[derive(Copy)]
pub struct Ipv6Addr {
inner: c::in6_addr,
}
#[allow(missing_docs)]
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum Ipv6MulticastScope {
InterfaceLocal,
LinkLocal,
RealmLocal,
AdminLocal,
SiteLocal,
OrganizationLocal,
Global,
}
impl IpAddr {
/// Returns [`true`] for the special 'unspecified' address.
///
/// See the documentation for [`Ipv4Addr::is_unspecified`][IPv4] and
/// [`Ipv6Addr::is_unspecified`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_unspecified
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_unspecified
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_unspecified(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_unspecified(),
IpAddr::V6(ip) => ip.is_unspecified(),
}
}
/// Returns [`true`] if this is a loopback address.
///
/// See the documentation for [`Ipv4Addr::is_loopback`][IPv4] and
/// [`Ipv6Addr::is_loopback`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_loopback
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_loopback
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_loopback(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_loopback(),
IpAddr::V6(ip) => ip.is_loopback(),
}
}
/// Returns [`true`] if the address appears to be globally routable.
///
/// See the documentation for [`Ipv4Addr::is_global`][IPv4] and
/// [`Ipv6Addr::is_global`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_global
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_global
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_global(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_global(),
IpAddr::V6(ip) => ip.is_global(),
}
}
/// Returns [`true`] if this is a multicast address.
///
/// See the documentation for [`Ipv4Addr::is_multicast`][IPv4] and
/// [`Ipv6Addr::is_multicast`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_multicast
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_multicast
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_multicast(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_multicast(),
IpAddr::V6(ip) => ip.is_multicast(),
}
}
/// Returns [`true`] if this address is in a range designated for documentation.
///
/// See the documentation for [`Ipv4Addr::is_documentation`][IPv4] and
/// [`Ipv6Addr::is_documentation`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_documentation
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_documentation
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_documentation(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_documentation(),
IpAddr::V6(ip) => ip.is_documentation(),
}
}
/// Returns [`true`] if this address is an [IPv4 address], and [`false`] otherwise.
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
/// [IPv4 address]: #variant.V4
///
pub fn is_ipv4(&self) -> bool {
matches!(self, IpAddr::V4(_))
}
/// Returns [`true`] if this address is an [IPv6 address], and [`false`] otherwise.
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
/// [IPv6 address]: #variant.V6
///
pub fn is_ipv6(&self) -> bool {
matches!(self, IpAddr::V6(_))
}
}
impl Ipv4Addr {
/// Creates a new IPv4 address from four eight-bit octets.
///
/// The result will represent the IP address `a`.`b`.`c`.`d`.
///
pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
// FIXME: should just be u32::from_be_bytes([a, b, c, d]),
// once that method is no longer rustc_const_unstable
Ipv4Addr {
inner: c::in_addr {
s_addr: u32::to_be(
((a as u32) << 24) | ((b as u32) << 16) | ((c as u32) << 8) | (d as u32),
),
},
}
}
/// An IPv4 address with the address pointing to localhost: 127.0.0.1.
///
pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
/// An IPv4 address representing an unspecified address: 0.0.0.0
///
pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
/// An IPv4 address representing the broadcast address: 255.255.255.255
///
pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
/// Returns the four eight-bit integers that make up this address.
///
pub fn octets(&self) -> [u8; 4] {
// This returns the order we want because s_addr is stored in big-endian.
self.inner.s_addr.to_ne_bytes()
}
/// Returns [`true`] for the special 'unspecified' address (0.0.0.0).
///
/// This property is defined in _UNIX Network Programming, Second Edition_,
/// W. Richard Stevens, p. 891; see also [ip7].
///
/// [ip7]: http://man7.org/linux/man-pages/man7/ip.7.html
/// [`true`]: ../../std/primitive.bool.html
///
pub const fn is_unspecified(&self) -> bool {
self.inner.s_addr == 0
}
/// Returns [`true`] if this is a loopback address (127.0.0.0/8).
///
/// This property is defined by [IETF RFC 1122].
///
/// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_loopback(&self) -> bool {
self.octets()[0] == 127
}
/// Returns [`true`] if this is a private address.
///
/// The private address ranges are defined in [IETF RFC 1918] and include:
///
/// - 10.0.0.0/8
/// - 172.16.0.0/12
/// - 192.168.0.0/16
///
/// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_private(&self) -> bool {
match self.octets() {
[10, ..] => true,
[172, b, ..] if b >= 16 && b <= 31 => true,
[192, 168, ..] => true,
_ => false,
}
}
/// Returns [`true`] if the address is link-local (169.254.0.0/16).
///
/// This property is defined by [IETF RFC 3927].
///
/// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_link_local(&self) -> bool {
match self.octets() {
[169, 254, ..] => true,
_ => false,
}
}
/// Returns [`true`] if the address appears to be globally routable.
/// See [iana-ipv4-special-registry][ipv4-sr].
///
/// The following return false:
///
/// - private addresses (see [`is_private()`](#method.is_private))
/// - the loopback address (see [`is_loopback()`](#method.is_loopback))
/// - the link-local address (see [`is_link_local()`](#method.is_link_local))
/// - the broadcast address (see [`is_broadcast()`](#method.is_broadcast))
/// - addresses used for documentation (see [`is_documentation()`](#method.is_documentation))
/// - the unspecified address (see [`is_unspecified()`](#method.is_unspecified)), and the whole
/// 0.0.0.0/8 block
/// - addresses reserved for future protocols (see
/// [`is_ietf_protocol_assignment()`](#method.is_ietf_protocol_assignment), except
/// `192.0.0.9/32` and `192.0.0.10/32` which are globally routable
/// - addresses reserved for future use (see [`is_reserved()`](#method.is_reserved)
/// - addresses reserved for networking devices benchmarking (see
/// [`is_benchmarking`](#method.is_benchmarking))
///
/// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_global(&self) -> bool {
// check if this address is 192.0.0.9 or 192.0.0.10. These addresses are the only two
// globally routable addresses in the 192.0.0.0/24 range.
if u32::from(*self) == 0xc0000009 || u32::from(*self) == 0xc000000a {
return true;
}
!self.is_private()
&& !self.is_loopback()
&& !self.is_link_local()
&& !self.is_broadcast()
&& !self.is_documentation()
&& !self.is_shared()
&& !self.is_ietf_protocol_assignment()
&& !self.is_reserved()
&& !self.is_benchmarking()
// Make sure the address is not in 0.0.0.0/8
&& self.octets()[0] != 0
}
/// Returns [`true`] if this address is part of the Shared Address Space defined in
/// [IETF RFC 6598] (`100.64.0.0/10`).
///
/// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_shared(&self) -> bool {
self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
}
/// Returns [`true`] if this address is part of `192.0.0.0/24`, which is reserved to
/// IANA for IETF protocol assignments, as documented in [IETF RFC 6890].
///
/// Note that parts of this block are in use:
///
/// - `192.0.0.8/32` is the "IPv4 dummy address" (see [IETF RFC 7600])
/// - `192.0.0.9/32` is the "Port Control Protocol Anycast" (see [IETF RFC 7723])
/// - `192.0.0.10/32` is used for NAT traversal (see [IETF RFC 8155])
///
/// [IETF RFC 6890]: https://tools.ietf.org/html/rfc6890
/// [IETF RFC 7600]: https://tools.ietf.org/html/rfc7600
/// [IETF RFC 7723]: https://tools.ietf.org/html/rfc7723
/// [IETF RFC 8155]: https://tools.ietf.org/html/rfc8155
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_ietf_protocol_assignment(&self) -> bool {
self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0
}
/// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
/// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0`
/// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
///
/// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
/// [errata 423]: https://www.rfc-editor.org/errata/eid423
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_benchmarking(&self) -> bool {
self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
}
/// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112]
/// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the
/// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since
/// it is obviously not reserved for future use.
///
/// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
/// [`true`]: ../../std/primitive.bool.html
///
/// # Warning
///
/// As IANA assigns new addresses, this method will be
/// updated. This may result in non-reserved addresses being
/// treated as reserved in code that relies on an outdated version
/// of this method.
///
pub fn is_reserved(&self) -> bool {
self.octets()[0] & 240 == 240 && !self.is_broadcast()
}
/// Returns [`true`] if this is a multicast address (224.0.0.0/4).
///
/// Multicast addresses have a most significant octet between 224 and 239,
/// and is defined by [IETF RFC 5771].
///
/// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_multicast(&self) -> bool {
self.octets()[0] >= 224 && self.octets()[0] <= 239
}
/// Returns [`true`] if this is a broadcast address (255.255.255.255).
///
/// A broadcast address has all octets set to 255 as defined in [IETF RFC 919].
///
/// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_broadcast(&self) -> bool {
self == &Self::BROADCAST
}
/// Returns [`true`] if this address is in a range designated for documentation.
///
/// This is defined in [IETF RFC 5737]:
///
/// - 192.0.2.0/24 (TEST-NET-1)
/// - 198.51.100.0/24 (TEST-NET-2)
/// - 203.0.113.0/24 (TEST-NET-3)
///
/// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_documentation(&self) -> bool {
match self.octets() {
[192, 0, 2, _] => true,
[198, 51, 100, _] => true,
[203, 0, 113, _] => true,
_ => false,
}
}
/// Converts this address to an IPv4-compatible [IPv6 address].
///
/// a.b.c.d becomes ::a.b.c.d
///
/// [IPv6 address]: ../../std/net/struct.Ipv6Addr.html
///
pub fn to_ipv6_compatible(&self) -> Ipv6Addr {
let octets = self.octets();
Ipv6Addr::from([
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, octets[0], octets[1], octets[2], octets[3],
])
}
/// Converts this address to an IPv4-mapped [IPv6 address].
///
/// a.b.c.d becomes ::ffff:a.b.c.d
///
/// [IPv6 address]: ../../std/net/struct.Ipv6Addr.html
///
pub fn to_ipv6_mapped(&self) -> Ipv6Addr {
let octets = self.octets();
Ipv6Addr::from([
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, octets[0], octets[1], octets[2], octets[3],
])
}
}
impl fmt::Display for IpAddr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
IpAddr::V4(ip) => ip.fmt(fmt),
IpAddr::V6(ip) => ip.fmt(fmt),
}
}
}
impl From<Ipv4Addr> for IpAddr {
fn from(ipv4: Ipv4Addr) -> IpAddr {
IpAddr::V4(ipv4)
}
}
impl From<Ipv6Addr> for IpAddr {
/// Copies this address to a new `IpAddr::V6`.
///
fn from(ipv6: Ipv6Addr) -> IpAddr {
IpAddr::V6(ipv6)
}
}
impl fmt::Display for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
const IPV4_BUF_LEN: usize = 15; // Long enough for the longest possible IPv4 address
let mut buf = [0u8; IPV4_BUF_LEN];
let mut buf_slice = &mut buf[..];
let octets = self.octets();
// Note: The call to write should never fail, hence the unwrap
write!(buf_slice, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
let len = IPV4_BUF_LEN - buf_slice.len();
// This unsafe is OK because we know what is being written to the buffer
let buf = unsafe { crate::str::from_utf8_unchecked(&buf[..len]) };
fmt.pad(buf)
}
}
impl fmt::Debug for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl Clone for Ipv4Addr {
fn clone(&self) -> Ipv4Addr {
*self
}
}
impl PartialEq for Ipv4Addr {
fn eq(&self, other: &Ipv4Addr) -> bool {
self.inner.s_addr == other.inner.s_addr
}
}
impl PartialEq<Ipv4Addr> for IpAddr {
fn eq(&self, other: &Ipv4Addr) -> bool {
match self {
IpAddr::V4(v4) => v4 == other,
IpAddr::V6(_) => false,
}
}
}
impl PartialEq<IpAddr> for Ipv4Addr {
fn eq(&self, other: &IpAddr) -> bool {
match other {
IpAddr::V4(v4) => self == v4,
IpAddr::V6(_) => false,
}
}
}
impl Eq for Ipv4Addr {}
impl hash::Hash for Ipv4Addr {
fn hash<H: hash::Hasher>(&self, s: &mut H) {
// `inner` is #[repr(packed)], so we need to copy `s_addr`.
{ self.inner.s_addr }.hash(s)
}
}
impl PartialOrd for Ipv4Addr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialOrd<Ipv4Addr> for IpAddr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
match self {
IpAddr::V4(v4) => v4.partial_cmp(other),
IpAddr::V6(_) => Some(Ordering::Greater),
}
}
}
impl PartialOrd<IpAddr> for Ipv4Addr {
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
match other {
IpAddr::V4(v4) => self.partial_cmp(v4),
IpAddr::V6(_) => Some(Ordering::Less),
}
}
}
impl Ord for Ipv4Addr {
fn cmp(&self, other: &Ipv4Addr) -> Ordering {
u32::from_be(self.inner.s_addr).cmp(&u32::from_be(other.inner.s_addr))
}
}
impl AsInner<c::in_addr> for Ipv4Addr {
fn as_inner(&self) -> &c::in_addr {
&self.inner
}
}
impl FromInner<c::in_addr> for Ipv4Addr {
fn from_inner(addr: c::in_addr) -> Ipv4Addr {
Ipv4Addr { inner: addr }
}
}
impl From<Ipv4Addr> for u32 {
/// Converts an `Ipv4Addr` into a host byte order `u32`.
///
fn from(ip: Ipv4Addr) -> u32 {
let ip = ip.octets();
u32::from_be_bytes(ip)
}
}
impl From<u32> for Ipv4Addr {
/// Converts a host byte order `u32` into an `Ipv4Addr`.
///
fn from(ip: u32) -> Ipv4Addr {
Ipv4Addr::from(ip.to_be_bytes())
}
}
impl From<[u8; 4]> for Ipv4Addr {
/// Creates an `Ipv4Addr` from a four element byte array.
///
fn from(octets: [u8; 4]) -> Ipv4Addr {
Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3])
}
}
impl From<[u8; 4]> for IpAddr {
/// Creates an `IpAddr::V4` from a four element byte array.
///
fn from(octets: [u8; 4]) -> IpAddr {
IpAddr::V4(Ipv4Addr::from(octets))
}
}
impl Ipv6Addr {
/// Creates a new IPv6 address from eight 16-bit segments.
///
/// The result will represent the IP address `a:b:c:d:e:f:g:h`.
///
pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
Ipv6Addr {
inner: c::in6_addr {
s6_addr: [
(a >> 8) as u8,
a as u8,
(b >> 8) as u8,
b as u8,
(c >> 8) as u8,
c as u8,
(d >> 8) as u8,
d as u8,
(e >> 8) as u8,
e as u8,
(f >> 8) as u8,
f as u8,
(g >> 8) as u8,
g as u8,
(h >> 8) as u8,
h as u8,
],
},
}
}
/// An IPv6 address representing localhost: `::1`.
///
pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
/// An IPv6 address representing the unspecified address: `::`
///
pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
/// Returns the eight 16-bit segments that make up this address.
///
pub fn segments(&self) -> [u16; 8] {
let arr = &self.inner.s6_addr;
[
u16::from_be_bytes([arr[0], arr[1]]),
u16::from_be_bytes([arr[2], arr[3]]),
u16::from_be_bytes([arr[4], arr[5]]),
u16::from_be_bytes([arr[6], arr[7]]),
u16::from_be_bytes([arr[8], arr[9]]),
u16::from_be_bytes([arr[10], arr[11]]),
u16::from_be_bytes([arr[12], arr[13]]),
u16::from_be_bytes([arr[14], arr[15]]),
]
}
/// Returns [`true`] for the special 'unspecified' address (::).
///
/// This property is defined in [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_unspecified(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 0]
}
/// Returns [`true`] if this is a loopback address (::1).
///
/// This property is defined in [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_loopback(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 1]
}
/// Returns [`true`] if the address appears to be globally routable.
///
/// The following return [`false`]:
///
/// - the loopback address
/// - link-local and unique local unicast addresses
/// - interface-, link-, realm-, admin- and site-local multicast addresses
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
///
pub fn is_global(&self) -> bool {
match self.multicast_scope() {
Some(Ipv6MulticastScope::Global) => true,
None => self.is_unicast_global(),
_ => false,
}
}
/// Returns [`true`] if this is a unique local address (`fc00::/7`).
///
/// This property is defined in [IETF RFC 4193].
///
/// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_unique_local(&self) -> bool {
(self.segments()[0] & 0xfe00) == 0xfc00
}
/// Returns [`true`] if the address is a unicast link-local address (`fe80::/64`).
///
/// A common mis-conception is to think that "unicast link-local addresses start with
/// `fe80::`", but the [IETF RFC 4291] actually defines a stricter format for these addresses:
///
/// ```no_rust
/// | 10 |
/// | bits | 54 bits | 64 bits |
/// +----------+-------------------------+----------------------------+
/// |1111111010| 0 | interface ID |
/// +----------+-------------------------+----------------------------+
/// ```
///
/// This method validates the format defined in the RFC and won't recognize the following
/// addresses such as `fe80:0:0:1::` or `fe81::` as unicast link-local addresses for example.
/// If you need a less strict validation use [`is_unicast_link_local()`] instead.
///
/// # See also
///
/// - [IETF RFC 4291 section 2.5.6]
/// - [RFC 4291 errata 4406]
/// - [`is_unicast_link_local()`]
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [IETF RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
/// [`true`]: ../../std/primitive.bool.html
/// [RFC 4291 errata 4406]: https://www.rfc-editor.org/errata/eid4406
/// [`is_unicast_link_local()`]: ../../std/net/struct.Ipv6Addr.html#method.is_unicast_link_local
///
pub fn is_unicast_link_local_strict(&self) -> bool {
(self.segments()[0] & 0xffff) == 0xfe80
&& (self.segments()[1] & 0xffff) == 0
&& (self.segments()[2] & 0xffff) == 0
&& (self.segments()[3] & 0xffff) == 0
}
/// Returns [`true`] if the address is a unicast link-local address (`fe80::/10`).
///
/// This method returns [`true`] for addresses in the range reserved by [RFC 4291 section 2.4],
/// i.e. addresses with the following format:
///
/// ```no_rust
/// | 10 |
/// | bits | 54 bits | 64 bits |
/// +----------+-------------------------+----------------------------+
/// |1111111010| arbitratry value | interface ID |
/// +----------+-------------------------+----------------------------+
/// ```
///
/// As a result, this method consider addresses such as `fe80:0:0:1::` or `fe81::` to be
/// unicast link-local addresses, whereas [`is_unicast_link_local_strict()`] does not. If you
/// need a strict validation fully compliant with the RFC, use
/// [`is_unicast_link_local_strict()`].
///
/// # See also
///
/// - [IETF RFC 4291 section 2.4]
/// - [RFC 4291 errata 4406]
///
/// [IETF RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
/// [`true`]: ../../std/primitive.bool.html
/// [RFC 4291 errata 4406]: https://www.rfc-editor.org/errata/eid4406
/// [`is_unicast_link_local_strict()`]: ../../std/net/struct.Ipv6Addr.html#method.is_unicast_link_local_strict
///
pub fn is_unicast_link_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfe80
}
/// Returns [`true`] if this is a deprecated unicast site-local address (fec0::/10). The
/// unicast site-local address format is defined in [RFC 4291 section 2.5.7] as:
///
/// ```no_rust
/// | 10 |
/// | bits | 54 bits | 64 bits |
/// +----------+-------------------------+----------------------------+
/// |1111111011| subnet ID | interface ID |
/// +----------+-------------------------+----------------------------+
/// ```
///
/// [`true`]: ../../std/primitive.bool.html
/// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
///
/// # Warning
///
/// As per [RFC 3879], the whole `FEC0::/10` prefix is
/// deprecated. New software must not support site-local
/// addresses.
///
/// [RFC 3879]: https://tools.ietf.org/html/rfc3879
pub fn is_unicast_site_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfec0
}
/// Returns [`true`] if this is an address reserved for documentation
/// (2001:db8::/32).
///
/// This property is defined in [IETF RFC 3849].
///
/// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_documentation(&self) -> bool {
(self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8)
}
/// Returns [`true`] if the address is a globally routable unicast address.
///
/// The following return false:
///
/// - the loopback address
/// - the link-local addresses
/// - unique local addresses
/// - the unspecified address
/// - the address range reserved for documentation
///
/// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
///
/// ```no_rust
/// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
/// be supported in new implementations (i.e., new implementations must treat this prefix as
/// Global Unicast).
/// ```
///
/// [`true`]: ../../std/primitive.bool.html
/// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
///
pub fn is_unicast_global(&self) -> bool {
!self.is_multicast()
&& !self.is_loopback()
&& !self.is_unicast_link_local()
&& !self.is_unique_local()
&& !self.is_unspecified()
&& !self.is_documentation()
}
/// Returns the address's multicast scope if the address is multicast.
///
pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
if self.is_multicast() {
match self.segments()[0] & 0x000f {
1 => Some(Ipv6MulticastScope::InterfaceLocal),
2 => Some(Ipv6MulticastScope::LinkLocal),
3 => Some(Ipv6MulticastScope::RealmLocal),
4 => Some(Ipv6MulticastScope::AdminLocal),
5 => Some(Ipv6MulticastScope::SiteLocal),
8 => Some(Ipv6MulticastScope::OrganizationLocal),
14 => Some(Ipv6MulticastScope::Global),
_ => None,
}
} else {
None
}
}
/// Returns [`true`] if this is a multicast address (ff00::/8).
///
/// This property is defined by [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
pub fn is_multicast(&self) -> bool {
(self.segments()[0] & 0xff00) == 0xff00
}
/// Converts this address to an [IPv4 address]. Returns [`None`] if this address is
/// neither IPv4-compatible or IPv4-mapped.
///
/// ::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d
///
/// [IPv4 address]: ../../std/net/struct.Ipv4Addr.html
/// [`None`]: ../../std/option/enum.Option.html#variant.None
///
pub fn to_ipv4(&self) -> Option<Ipv4Addr> {
match self.segments() {
[0, 0, 0, 0, 0, f, g, h] if f == 0 || f == 0xffff => {
Some(Ipv4Addr::new((g >> 8) as u8, g as u8, (h >> 8) as u8, h as u8))
}
_ => None,
}
}
/// Returns the sixteen eight-bit integers the IPv6 address consists of.
///
pub const fn octets(&self) -> [u8; 16] {
self.inner.s6_addr
}
}
impl fmt::Display for Ipv6Addr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
// Note: The calls to write should never fail, hence the unwraps in the function
// Long enough for the longest possible IPv6: 39
const IPV6_BUF_LEN: usize = 39;
let mut buf = [0u8; IPV6_BUF_LEN];
let mut buf_slice = &mut buf[..];
match self.segments() {
// We need special cases for :: and ::1, otherwise they're formatted
// as ::0.0.0.[01]
[0, 0, 0, 0, 0, 0, 0, 0] => write!(buf_slice, "::").unwrap(),
[0, 0, 0, 0, 0, 0, 0, 1] => write!(buf_slice, "::1").unwrap(),
// Ipv4 Compatible address
[0, 0, 0, 0, 0, 0, g, h] => {
write!(
buf_slice,
"::{}.{}.{}.{}",
(g >> 8) as u8,
g as u8,
(h >> 8) as u8,
h as u8
)
.unwrap();
}
// Ipv4-Mapped address
[0, 0, 0, 0, 0, 0xffff, g, h] => {
write!(
buf_slice,
"::ffff:{}.{}.{}.{}",
(g >> 8) as u8,
g as u8,
(h >> 8) as u8,
h as u8
)
.unwrap();
}
_ => {
fn find_zero_slice(segments: &[u16; 8]) -> (usize, usize) {
let mut longest_span_len = 0;
let mut longest_span_at = 0;
let mut cur_span_len = 0;
let mut cur_span_at = 0;
for i in 0..8 {
if segments[i] == 0 {
if cur_span_len == 0 {
cur_span_at = i;
}
cur_span_len += 1;
if cur_span_len > longest_span_len {
longest_span_len = cur_span_len;
longest_span_at = cur_span_at;
}
} else {
cur_span_len = 0;
cur_span_at = 0;
}
}
(longest_span_at, longest_span_len)
}
let (zeros_at, zeros_len) = find_zero_slice(&self.segments());
if zeros_len > 1 {
fn fmt_subslice(segments: &[u16], buf: &mut &mut [u8]) {
if !segments.is_empty() {
write!(*buf, "{:x}", segments[0]).unwrap();
for &seg in &segments[1..] {
write!(*buf, ":{:x}", seg).unwrap();
}
}
}
fmt_subslice(&self.segments()[..zeros_at], &mut buf_slice);
write!(buf_slice, "::").unwrap();
fmt_subslice(&self.segments()[zeros_at + zeros_len..], &mut buf_slice);
} else {
let &[a, b, c, d, e, f, g, h] = &self.segments();
write!(
buf_slice,
"{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}",
a, b, c, d, e, f, g, h
)
.unwrap();
}
}
}
let len = IPV6_BUF_LEN - buf_slice.len();
// This is safe because we know exactly what can be in this buffer
let buf = unsafe { crate::str::from_utf8_unchecked(&buf[..len]) };
fmt.pad(buf)
}
}
impl fmt::Debug for Ipv6Addr {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl Clone for Ipv6Addr {
fn clone(&self) -> Ipv6Addr {
*self
}
}
impl PartialEq for Ipv6Addr {
fn eq(&self, other: &Ipv6Addr) -> bool {
self.inner.s6_addr == other.inner.s6_addr
}
}
impl PartialEq<IpAddr> for Ipv6Addr {
fn eq(&self, other: &IpAddr) -> bool {
match other {
IpAddr::V4(_) => false,
IpAddr::V6(v6) => self == v6,
}
}
}
impl PartialEq<Ipv6Addr> for IpAddr {
fn eq(&self, other: &Ipv6Addr) -> bool {
match self {
IpAddr::V4(_) => false,
IpAddr::V6(v6) => v6 == other,
}
}
}
impl Eq for Ipv6Addr {}
impl hash::Hash for Ipv6Addr {
fn hash<H: hash::Hasher>(&self, s: &mut H) {
self.inner.s6_addr.hash(s)
}
}
impl PartialOrd for Ipv6Addr {
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialOrd<Ipv6Addr> for IpAddr {
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
match self {
IpAddr::V4(_) => Some(Ordering::Less),
IpAddr::V6(v6) => v6.partial_cmp(other),
}
}
}
impl PartialOrd<IpAddr> for Ipv6Addr {
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
match other {
IpAddr::V4(_) => Some(Ordering::Greater),
IpAddr::V6(v6) => self.partial_cmp(v6),
}
}
}
impl Ord for Ipv6Addr {
fn cmp(&self, other: &Ipv6Addr) -> Ordering {
self.segments().cmp(&other.segments())
}
}
impl AsInner<c::in6_addr> for Ipv6Addr {
fn as_inner(&self) -> &c::in6_addr {
&self.inner
}
}
impl FromInner<c::in6_addr> for Ipv6Addr {
fn from_inner(addr: c::in6_addr) -> Ipv6Addr {
Ipv6Addr { inner: addr }
}
}
impl From<Ipv6Addr> for u128 {
/// Convert an `Ipv6Addr` into a host byte order `u128`.
///
fn from(ip: Ipv6Addr) -> u128 {
let ip = ip.octets();
u128::from_be_bytes(ip)
}
}
impl From<u128> for Ipv6Addr {
/// Convert a host byte order `u128` into an `Ipv6Addr`.
///
fn from(ip: u128) -> Ipv6Addr {
Ipv6Addr::from(ip.to_be_bytes())
}
}
impl From<[u8; 16]> for Ipv6Addr {
fn from(octets: [u8; 16]) -> Ipv6Addr {
let inner = c::in6_addr { s6_addr: octets };
Ipv6Addr::from_inner(inner)
}
}
impl From<[u16; 8]> for Ipv6Addr {
/// Creates an `Ipv6Addr` from an eight element 16-bit array.
///
fn from(segments: [u16; 8]) -> Ipv6Addr {
let [a, b, c, d, e, f, g, h] = segments;
Ipv6Addr::new(a, b, c, d, e, f, g, h)
}
}
impl From<[u8; 16]> for IpAddr {
/// Creates an `IpAddr::V6` from a sixteen element byte array.
///
fn from(octets: [u8; 16]) -> IpAddr {
IpAddr::V6(Ipv6Addr::from(octets))
}
}
impl From<[u16; 8]> for IpAddr {
/// Creates an `IpAddr::V6` from an eight element 16-bit array.
///
fn from(segments: [u16; 8]) -> IpAddr {
IpAddr::V6(Ipv6Addr::from(segments))
}
}