blob: 4ef65ff96258deb38fdf2849def18423e265e0fb [file] [log] [blame]
package org.apache.lucene.codecs;
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import java.io.UnsupportedEncodingException;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.Locale;
import java.util.TreeMap;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.index.DocsAndPositionsEnum;
import org.apache.lucene.index.DocsEnum;
import org.apache.lucene.index.FieldInfo.IndexOptions;
import org.apache.lucene.index.FieldInfo;
import org.apache.lucene.index.FieldInfos;
import org.apache.lucene.index.IndexFileNames;
import org.apache.lucene.index.SegmentInfo;
import org.apache.lucene.index.TermState;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.store.ByteArrayDataInput;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.IOContext;
import org.apache.lucene.store.IndexInput;
import org.apache.lucene.util.ArrayUtil;
import org.apache.lucene.util.Bits;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.IOUtils;
import org.apache.lucene.util.RamUsageEstimator;
import org.apache.lucene.util.StringHelper;
import org.apache.lucene.util.automaton.CompiledAutomaton;
import org.apache.lucene.util.automaton.RunAutomaton;
import org.apache.lucene.util.automaton.Transition;
import org.apache.lucene.util.fst.ByteSequenceOutputs;
import org.apache.lucene.util.fst.FST;
import org.apache.lucene.util.fst.Outputs;
import org.apache.lucene.util.fst.Util;
/** A block-based terms index and dictionary that assigns
* terms to variable length blocks according to how they
* share prefixes. The terms index is a prefix trie
* whose leaves are term blocks. The advantage of this
* approach is that seekExact is often able to
* determine a term cannot exist without doing any IO, and
* intersection with Automata is very fast. Note that this
* terms dictionary has it's own fixed terms index (ie, it
* does not support a pluggable terms index
* implementation).
*
* <p><b>NOTE</b>: this terms dictionary does not support
* index divisor when opening an IndexReader. Instead, you
* can change the min/maxItemsPerBlock during indexing.</p>
*
* <p>The data structure used by this implementation is very
* similar to a burst trie
* (http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.3499),
* but with added logic to break up too-large blocks of all
* terms sharing a given prefix into smaller ones.</p>
*
* <p>Use {@link org.apache.lucene.index.CheckIndex} with the <code>-verbose</code>
* option to see summary statistics on the blocks in the
* dictionary.
*
* See {@link BlockTreeTermsWriter}.
*
* @lucene.experimental
*/
public class BlockTreeTermsReader extends FieldsProducer {
// Open input to the main terms dict file (_X.tib)
private final IndexInput in;
//private static final boolean DEBUG = BlockTreeTermsWriter.DEBUG;
// Reads the terms dict entries, to gather state to
// produce DocsEnum on demand
private final PostingsReaderBase postingsReader;
private final TreeMap<String,FieldReader> fields = new TreeMap<String,FieldReader>();
/** File offset where the directory starts in the terms file. */
private long dirOffset;
/** File offset where the directory starts in the index file. */
private long indexDirOffset;
private String segment;
private final int version;
private final IndexInput indexIn;
/** Sole constructor. */
public BlockTreeTermsReader(Directory dir, FieldInfos fieldInfos, SegmentInfo info,
PostingsReaderBase postingsReader, IOContext ioContext,
String segmentSuffix, int indexDivisor)
throws IOException {
this.postingsReader = postingsReader;
this.segment = info.name;
in = dir.openInput(IndexFileNames.segmentFileName(segment, segmentSuffix, BlockTreeTermsWriter.TERMS_EXTENSION),
ioContext);
boolean success = false;
try {
version = readHeader(in);
if (indexDivisor != -1) {
indexIn = dir.openInput(IndexFileNames.segmentFileName(segment, segmentSuffix, BlockTreeTermsWriter.TERMS_INDEX_EXTENSION),
ioContext);
int indexVersion = readIndexHeader(indexIn);
if (indexVersion != version) {
throw new CorruptIndexException("mixmatched version files: " + in + "=" + version + "," + indexIn + "=" + indexVersion);
}
} else {
indexIn = null;
}
// Have PostingsReader init itself
postingsReader.init(in);
// Read per-field details
seekDir(in, dirOffset);
if (indexDivisor != -1) {
seekDir(indexIn, indexDirOffset);
}
final int numFields = in.readVInt();
if (numFields < 0) {
throw new CorruptIndexException("invalid numFields: " + numFields + " (resource=" + in + ")");
}
for(int i=0;i<numFields;i++) {
final int field = in.readVInt();
final long numTerms = in.readVLong();
assert numTerms >= 0;
final int numBytes = in.readVInt();
final BytesRef rootCode = new BytesRef(new byte[numBytes]);
in.readBytes(rootCode.bytes, 0, numBytes);
rootCode.length = numBytes;
final FieldInfo fieldInfo = fieldInfos.fieldInfo(field);
assert fieldInfo != null: "field=" + field;
final long sumTotalTermFreq = fieldInfo.getIndexOptions() == IndexOptions.DOCS_ONLY ? -1 : in.readVLong();
final long sumDocFreq = in.readVLong();
final int docCount = in.readVInt();
if (docCount < 0 || docCount > info.getDocCount()) { // #docs with field must be <= #docs
throw new CorruptIndexException("invalid docCount: " + docCount + " maxDoc: " + info.getDocCount() + " (resource=" + in + ")");
}
if (sumDocFreq < docCount) { // #postings must be >= #docs with field
throw new CorruptIndexException("invalid sumDocFreq: " + sumDocFreq + " docCount: " + docCount + " (resource=" + in + ")");
}
if (sumTotalTermFreq != -1 && sumTotalTermFreq < sumDocFreq) { // #positions must be >= #postings
throw new CorruptIndexException("invalid sumTotalTermFreq: " + sumTotalTermFreq + " sumDocFreq: " + sumDocFreq + " (resource=" + in + ")");
}
final long indexStartFP = indexDivisor != -1 ? indexIn.readVLong() : 0;
FieldReader previous = fields.put(fieldInfo.name, new FieldReader(fieldInfo, numTerms, rootCode, sumTotalTermFreq, sumDocFreq, docCount, indexStartFP, indexIn));
if (previous != null) {
throw new CorruptIndexException("duplicate field: " + fieldInfo.name + " (resource=" + in + ")");
}
}
success = true;
} finally {
if (!success) {
// this.close() will close in:
IOUtils.closeWhileHandlingException(this);
}
}
}
/** Reads terms file header. */
protected int readHeader(IndexInput input) throws IOException {
int version = CodecUtil.checkHeader(input, BlockTreeTermsWriter.TERMS_CODEC_NAME,
BlockTreeTermsWriter.TERMS_VERSION_START,
BlockTreeTermsWriter.TERMS_VERSION_CURRENT);
if (version < BlockTreeTermsWriter.TERMS_VERSION_APPEND_ONLY) {
dirOffset = input.readLong();
}
return version;
}
/** Reads index file header. */
protected int readIndexHeader(IndexInput input) throws IOException {
int version = CodecUtil.checkHeader(input, BlockTreeTermsWriter.TERMS_INDEX_CODEC_NAME,
BlockTreeTermsWriter.TERMS_INDEX_VERSION_START,
BlockTreeTermsWriter.TERMS_INDEX_VERSION_CURRENT);
if (version < BlockTreeTermsWriter.TERMS_INDEX_VERSION_APPEND_ONLY) {
indexDirOffset = input.readLong();
}
return version;
}
/** Seek {@code input} to the directory offset. */
protected void seekDir(IndexInput input, long dirOffset)
throws IOException {
if (version >= BlockTreeTermsWriter.TERMS_INDEX_VERSION_APPEND_ONLY) {
input.seek(input.length() - 8);
dirOffset = input.readLong();
}
input.seek(dirOffset);
}
// for debugging
// private static String toHex(int v) {
// return "0x" + Integer.toHexString(v);
// }
@Override
public void close() throws IOException {
try {
IOUtils.close(indexIn, in, postingsReader);
} finally {
// Clear so refs to terms index is GCable even if
// app hangs onto us:
fields.clear();
}
}
@Override
public Iterator<String> iterator() {
return Collections.unmodifiableSet(fields.keySet()).iterator();
}
@Override
public Terms terms(String field) throws IOException {
assert field != null;
return fields.get(field);
}
@Override
public int size() {
return fields.size();
}
// for debugging
String brToString(BytesRef b) {
if (b == null) {
return "null";
} else {
try {
return b.utf8ToString() + " " + b;
} catch (Throwable t) {
// If BytesRef isn't actually UTF8, or it's eg a
// prefix of UTF8 that ends mid-unicode-char, we
// fallback to hex:
return b.toString();
}
}
}
/**
* BlockTree statistics for a single field
* returned by {@link FieldReader#computeStats()}.
*/
public static class Stats {
/** How many nodes in the index FST. */
public long indexNodeCount;
/** How many arcs in the index FST. */
public long indexArcCount;
/** Byte size of the index. */
public long indexNumBytes;
/** Total number of terms in the field. */
public long totalTermCount;
/** Total number of bytes (sum of term lengths) across all terms in the field. */
public long totalTermBytes;
/** The number of normal (non-floor) blocks in the terms file. */
public int nonFloorBlockCount;
/** The number of floor blocks (meta-blocks larger than the
* allowed {@code maxItemsPerBlock}) in the terms file. */
public int floorBlockCount;
/** The number of sub-blocks within the floor blocks. */
public int floorSubBlockCount;
/** The number of "internal" blocks (that have both
* terms and sub-blocks). */
public int mixedBlockCount;
/** The number of "leaf" blocks (blocks that have only
* terms). */
public int termsOnlyBlockCount;
/** The number of "internal" blocks that do not contain
* terms (have only sub-blocks). */
public int subBlocksOnlyBlockCount;
/** Total number of blocks. */
public int totalBlockCount;
/** Number of blocks at each prefix depth. */
public int[] blockCountByPrefixLen = new int[10];
private int startBlockCount;
private int endBlockCount;
/** Total number of bytes used to store term suffixes. */
public long totalBlockSuffixBytes;
/** Total number of bytes used to store term stats (not
* including what the {@link PostingsBaseFormat}
* stores. */
public long totalBlockStatsBytes;
/** Total bytes stored by the {@link PostingsBaseFormat},
* plus the other few vInts stored in the frame. */
public long totalBlockOtherBytes;
/** Segment name. */
public final String segment;
/** Field name. */
public final String field;
Stats(String segment, String field) {
this.segment = segment;
this.field = field;
}
void startBlock(FieldReader.SegmentTermsEnum.Frame frame, boolean isFloor) {
totalBlockCount++;
if (isFloor) {
if (frame.fp == frame.fpOrig) {
floorBlockCount++;
}
floorSubBlockCount++;
} else {
nonFloorBlockCount++;
}
if (blockCountByPrefixLen.length <= frame.prefix) {
blockCountByPrefixLen = ArrayUtil.grow(blockCountByPrefixLen, 1+frame.prefix);
}
blockCountByPrefixLen[frame.prefix]++;
startBlockCount++;
totalBlockSuffixBytes += frame.suffixesReader.length();
totalBlockStatsBytes += frame.statsReader.length();
}
void endBlock(FieldReader.SegmentTermsEnum.Frame frame) {
final int termCount = frame.isLeafBlock ? frame.entCount : frame.state.termBlockOrd;
final int subBlockCount = frame.entCount - termCount;
totalTermCount += termCount;
if (termCount != 0 && subBlockCount != 0) {
mixedBlockCount++;
} else if (termCount != 0) {
termsOnlyBlockCount++;
} else if (subBlockCount != 0) {
subBlocksOnlyBlockCount++;
} else {
throw new IllegalStateException();
}
endBlockCount++;
final long otherBytes = frame.fpEnd - frame.fp - frame.suffixesReader.length() - frame.statsReader.length();
assert otherBytes > 0 : "otherBytes=" + otherBytes + " frame.fp=" + frame.fp + " frame.fpEnd=" + frame.fpEnd;
totalBlockOtherBytes += otherBytes;
}
void term(BytesRef term) {
totalTermBytes += term.length;
}
void finish() {
assert startBlockCount == endBlockCount: "startBlockCount=" + startBlockCount + " endBlockCount=" + endBlockCount;
assert totalBlockCount == floorSubBlockCount + nonFloorBlockCount: "floorSubBlockCount=" + floorSubBlockCount + " nonFloorBlockCount=" + nonFloorBlockCount + " totalBlockCount=" + totalBlockCount;
assert totalBlockCount == mixedBlockCount + termsOnlyBlockCount + subBlocksOnlyBlockCount: "totalBlockCount=" + totalBlockCount + " mixedBlockCount=" + mixedBlockCount + " subBlocksOnlyBlockCount=" + subBlocksOnlyBlockCount + " termsOnlyBlockCount=" + termsOnlyBlockCount;
}
@Override
public String toString() {
final ByteArrayOutputStream bos = new ByteArrayOutputStream(1024);
PrintStream out;
try {
out = new PrintStream(bos, false, "UTF-8");
} catch (UnsupportedEncodingException bogus) {
throw new RuntimeException(bogus);
}
out.println(" index FST:");
out.println(" " + indexNodeCount + " nodes");
out.println(" " + indexArcCount + " arcs");
out.println(" " + indexNumBytes + " bytes");
out.println(" terms:");
out.println(" " + totalTermCount + " terms");
out.println(" " + totalTermBytes + " bytes" + (totalTermCount != 0 ? " (" + String.format(Locale.ROOT, "%.1f", ((double) totalTermBytes)/totalTermCount) + " bytes/term)" : ""));
out.println(" blocks:");
out.println(" " + totalBlockCount + " blocks");
out.println(" " + termsOnlyBlockCount + " terms-only blocks");
out.println(" " + subBlocksOnlyBlockCount + " sub-block-only blocks");
out.println(" " + mixedBlockCount + " mixed blocks");
out.println(" " + floorBlockCount + " floor blocks");
out.println(" " + (totalBlockCount-floorSubBlockCount) + " non-floor blocks");
out.println(" " + floorSubBlockCount + " floor sub-blocks");
out.println(" " + totalBlockSuffixBytes + " term suffix bytes" + (totalBlockCount != 0 ? " (" + String.format(Locale.ROOT, "%.1f", ((double) totalBlockSuffixBytes)/totalBlockCount) + " suffix-bytes/block)" : ""));
out.println(" " + totalBlockStatsBytes + " term stats bytes" + (totalBlockCount != 0 ? " (" + String.format(Locale.ROOT, "%.1f", ((double) totalBlockStatsBytes)/totalBlockCount) + " stats-bytes/block)" : ""));
out.println(" " + totalBlockOtherBytes + " other bytes" + (totalBlockCount != 0 ? " (" + String.format(Locale.ROOT, "%.1f", ((double) totalBlockOtherBytes)/totalBlockCount) + " other-bytes/block)" : ""));
if (totalBlockCount != 0) {
out.println(" by prefix length:");
int total = 0;
for(int prefix=0;prefix<blockCountByPrefixLen.length;prefix++) {
final int blockCount = blockCountByPrefixLen[prefix];
total += blockCount;
if (blockCount != 0) {
out.println(" " + String.format(Locale.ROOT, "%2d", prefix) + ": " + blockCount);
}
}
assert totalBlockCount == total;
}
try {
return bos.toString("UTF-8");
} catch (UnsupportedEncodingException bogus) {
throw new RuntimeException(bogus);
}
}
}
final Outputs<BytesRef> fstOutputs = ByteSequenceOutputs.getSingleton();
final BytesRef NO_OUTPUT = fstOutputs.getNoOutput();
/** BlockTree's implementation of {@link Terms}. */
public final class FieldReader extends Terms {
final long numTerms;
final FieldInfo fieldInfo;
final long sumTotalTermFreq;
final long sumDocFreq;
final int docCount;
final long indexStartFP;
final long rootBlockFP;
final BytesRef rootCode;
private final FST<BytesRef> index;
//private boolean DEBUG;
FieldReader(FieldInfo fieldInfo, long numTerms, BytesRef rootCode, long sumTotalTermFreq, long sumDocFreq, int docCount, long indexStartFP, IndexInput indexIn) throws IOException {
assert numTerms > 0;
this.fieldInfo = fieldInfo;
//DEBUG = BlockTreeTermsReader.DEBUG && fieldInfo.name.equals("id");
this.numTerms = numTerms;
this.sumTotalTermFreq = sumTotalTermFreq;
this.sumDocFreq = sumDocFreq;
this.docCount = docCount;
this.indexStartFP = indexStartFP;
this.rootCode = rootCode;
// if (DEBUG) {
// System.out.println("BTTR: seg=" + segment + " field=" + fieldInfo.name + " rootBlockCode=" + rootCode + " divisor=" + indexDivisor);
// }
rootBlockFP = (new ByteArrayDataInput(rootCode.bytes, rootCode.offset, rootCode.length)).readVLong() >>> BlockTreeTermsWriter.OUTPUT_FLAGS_NUM_BITS;
if (indexIn != null) {
final IndexInput clone = indexIn.clone();
//System.out.println("start=" + indexStartFP + " field=" + fieldInfo.name);
clone.seek(indexStartFP);
index = new FST<BytesRef>(clone, ByteSequenceOutputs.getSingleton());
/*
if (false) {
final String dotFileName = segment + "_" + fieldInfo.name + ".dot";
Writer w = new OutputStreamWriter(new FileOutputStream(dotFileName));
Util.toDot(index, w, false, false);
System.out.println("FST INDEX: SAVED to " + dotFileName);
w.close();
}
*/
} else {
index = null;
}
}
/** For debugging -- used by CheckIndex too*/
// TODO: maybe push this into Terms?
public Stats computeStats() throws IOException {
return new SegmentTermsEnum().computeBlockStats();
}
@Override
public Comparator<BytesRef> getComparator() {
return BytesRef.getUTF8SortedAsUnicodeComparator();
}
@Override
public boolean hasOffsets() {
return fieldInfo.getIndexOptions().compareTo(IndexOptions.DOCS_AND_FREQS_AND_POSITIONS_AND_OFFSETS) >= 0;
}
@Override
public boolean hasPositions() {
return fieldInfo.getIndexOptions().compareTo(IndexOptions.DOCS_AND_FREQS_AND_POSITIONS) >= 0;
}
@Override
public boolean hasPayloads() {
return fieldInfo.hasPayloads();
}
@Override
public TermsEnum iterator(TermsEnum reuse) throws IOException {
return new SegmentTermsEnum();
}
@Override
public long size() {
return numTerms;
}
@Override
public long getSumTotalTermFreq() {
return sumTotalTermFreq;
}
@Override
public long getSumDocFreq() {
return sumDocFreq;
}
@Override
public int getDocCount() {
return docCount;
}
@Override
public TermsEnum intersect(CompiledAutomaton compiled, BytesRef startTerm) throws IOException {
if (compiled.type != CompiledAutomaton.AUTOMATON_TYPE.NORMAL) {
throw new IllegalArgumentException("please use CompiledAutomaton.getTermsEnum instead");
}
return new IntersectEnum(compiled, startTerm);
}
// NOTE: cannot seek!
private final class IntersectEnum extends TermsEnum {
private final IndexInput in;
private Frame[] stack;
@SuppressWarnings({"rawtypes","unchecked"}) private FST.Arc<BytesRef>[] arcs = new FST.Arc[5];
private final RunAutomaton runAutomaton;
private final CompiledAutomaton compiledAutomaton;
private Frame currentFrame;
private final BytesRef term = new BytesRef();
private final FST.BytesReader fstReader;
// TODO: can we share this with the frame in STE?
private final class Frame {
final int ord;
long fp;
long fpOrig;
long fpEnd;
long lastSubFP;
// State in automaton
int state;
int metaDataUpto;
byte[] suffixBytes = new byte[128];
final ByteArrayDataInput suffixesReader = new ByteArrayDataInput();
byte[] statBytes = new byte[64];
final ByteArrayDataInput statsReader = new ByteArrayDataInput();
byte[] floorData = new byte[32];
final ByteArrayDataInput floorDataReader = new ByteArrayDataInput();
// Length of prefix shared by all terms in this block
int prefix;
// Number of entries (term or sub-block) in this block
int entCount;
// Which term we will next read
int nextEnt;
// True if this block is either not a floor block,
// or, it's the last sub-block of a floor block
boolean isLastInFloor;
// True if all entries are terms
boolean isLeafBlock;
int numFollowFloorBlocks;
int nextFloorLabel;
Transition[] transitions;
int curTransitionMax;
int transitionIndex;
FST.Arc<BytesRef> arc;
final BlockTermState termState;
// Cumulative output so far
BytesRef outputPrefix;
private int startBytePos;
private int suffix;
public Frame(int ord) throws IOException {
this.ord = ord;
termState = postingsReader.newTermState();
termState.totalTermFreq = -1;
}
void loadNextFloorBlock() throws IOException {
assert numFollowFloorBlocks > 0;
//if (DEBUG) System.out.println(" loadNextFoorBlock trans=" + transitions[transitionIndex]);
do {
fp = fpOrig + (floorDataReader.readVLong() >>> 1);
numFollowFloorBlocks--;
// if (DEBUG) System.out.println(" skip floor block2! nextFloorLabel=" + (char) nextFloorLabel + " vs target=" + (char) transitions[transitionIndex].getMin() + " newFP=" + fp + " numFollowFloorBlocks=" + numFollowFloorBlocks);
if (numFollowFloorBlocks != 0) {
nextFloorLabel = floorDataReader.readByte() & 0xff;
} else {
nextFloorLabel = 256;
}
// if (DEBUG) System.out.println(" nextFloorLabel=" + (char) nextFloorLabel);
} while (numFollowFloorBlocks != 0 && nextFloorLabel <= transitions[transitionIndex].getMin());
load(null);
}
public void setState(int state) {
this.state = state;
transitionIndex = 0;
transitions = compiledAutomaton.sortedTransitions[state];
if (transitions.length != 0) {
curTransitionMax = transitions[0].getMax();
} else {
curTransitionMax = -1;
}
}
void load(BytesRef frameIndexData) throws IOException {
// if (DEBUG) System.out.println(" load fp=" + fp + " fpOrig=" + fpOrig + " frameIndexData=" + frameIndexData + " trans=" + (transitions.length != 0 ? transitions[0] : "n/a" + " state=" + state));
if (frameIndexData != null && transitions.length != 0) {
// Floor frame
if (floorData.length < frameIndexData.length) {
this.floorData = new byte[ArrayUtil.oversize(frameIndexData.length, 1)];
}
System.arraycopy(frameIndexData.bytes, frameIndexData.offset, floorData, 0, frameIndexData.length);
floorDataReader.reset(floorData, 0, frameIndexData.length);
// Skip first long -- has redundant fp, hasTerms
// flag, isFloor flag
final long code = floorDataReader.readVLong();
if ((code & BlockTreeTermsWriter.OUTPUT_FLAG_IS_FLOOR) != 0) {
numFollowFloorBlocks = floorDataReader.readVInt();
nextFloorLabel = floorDataReader.readByte() & 0xff;
// if (DEBUG) System.out.println(" numFollowFloorBlocks=" + numFollowFloorBlocks + " nextFloorLabel=" + nextFloorLabel);
// If current state is accept, we must process
// first block in case it has empty suffix:
if (!runAutomaton.isAccept(state)) {
// Maybe skip floor blocks:
while (numFollowFloorBlocks != 0 && nextFloorLabel <= transitions[0].getMin()) {
fp = fpOrig + (floorDataReader.readVLong() >>> 1);
numFollowFloorBlocks--;
// if (DEBUG) System.out.println(" skip floor block! nextFloorLabel=" + (char) nextFloorLabel + " vs target=" + (char) transitions[0].getMin() + " newFP=" + fp + " numFollowFloorBlocks=" + numFollowFloorBlocks);
if (numFollowFloorBlocks != 0) {
nextFloorLabel = floorDataReader.readByte() & 0xff;
} else {
nextFloorLabel = 256;
}
}
}
}
}
in.seek(fp);
int code = in.readVInt();
entCount = code >>> 1;
assert entCount > 0;
isLastInFloor = (code & 1) != 0;
// term suffixes:
code = in.readVInt();
isLeafBlock = (code & 1) != 0;
int numBytes = code >>> 1;
// if (DEBUG) System.out.println(" entCount=" + entCount + " lastInFloor?=" + isLastInFloor + " leafBlock?=" + isLeafBlock + " numSuffixBytes=" + numBytes);
if (suffixBytes.length < numBytes) {
suffixBytes = new byte[ArrayUtil.oversize(numBytes, 1)];
}
in.readBytes(suffixBytes, 0, numBytes);
suffixesReader.reset(suffixBytes, 0, numBytes);
// stats
numBytes = in.readVInt();
if (statBytes.length < numBytes) {
statBytes = new byte[ArrayUtil.oversize(numBytes, 1)];
}
in.readBytes(statBytes, 0, numBytes);
statsReader.reset(statBytes, 0, numBytes);
metaDataUpto = 0;
termState.termBlockOrd = 0;
nextEnt = 0;
postingsReader.readTermsBlock(in, fieldInfo, termState);
if (!isLastInFloor) {
// Sub-blocks of a single floor block are always
// written one after another -- tail recurse:
fpEnd = in.getFilePointer();
}
}
// TODO: maybe add scanToLabel; should give perf boost
public boolean next() {
return isLeafBlock ? nextLeaf() : nextNonLeaf();
}
// Decodes next entry; returns true if it's a sub-block
public boolean nextLeaf() {
//if (DEBUG) System.out.println(" frame.next ord=" + ord + " nextEnt=" + nextEnt + " entCount=" + entCount);
assert nextEnt != -1 && nextEnt < entCount: "nextEnt=" + nextEnt + " entCount=" + entCount + " fp=" + fp;
nextEnt++;
suffix = suffixesReader.readVInt();
startBytePos = suffixesReader.getPosition();
suffixesReader.skipBytes(suffix);
return false;
}
public boolean nextNonLeaf() {
//if (DEBUG) System.out.println(" frame.next ord=" + ord + " nextEnt=" + nextEnt + " entCount=" + entCount);
assert nextEnt != -1 && nextEnt < entCount: "nextEnt=" + nextEnt + " entCount=" + entCount + " fp=" + fp;
nextEnt++;
final int code = suffixesReader.readVInt();
suffix = code >>> 1;
startBytePos = suffixesReader.getPosition();
suffixesReader.skipBytes(suffix);
if ((code & 1) == 0) {
// A normal term
termState.termBlockOrd++;
return false;
} else {
// A sub-block; make sub-FP absolute:
lastSubFP = fp - suffixesReader.readVLong();
return true;
}
}
public int getTermBlockOrd() {
return isLeafBlock ? nextEnt : termState.termBlockOrd;
}
public void decodeMetaData() throws IOException {
// lazily catch up on metadata decode:
final int limit = getTermBlockOrd();
assert limit > 0;
// We must set/incr state.termCount because
// postings impl can look at this
termState.termBlockOrd = metaDataUpto;
// TODO: better API would be "jump straight to term=N"???
while (metaDataUpto < limit) {
// TODO: we could make "tiers" of metadata, ie,
// decode docFreq/totalTF but don't decode postings
// metadata; this way caller could get
// docFreq/totalTF w/o paying decode cost for
// postings
// TODO: if docFreq were bulk decoded we could
// just skipN here:
termState.docFreq = statsReader.readVInt();
//if (DEBUG) System.out.println(" dF=" + state.docFreq);
if (fieldInfo.getIndexOptions() != IndexOptions.DOCS_ONLY) {
termState.totalTermFreq = termState.docFreq + statsReader.readVLong();
//if (DEBUG) System.out.println(" totTF=" + state.totalTermFreq);
}
postingsReader.nextTerm(fieldInfo, termState);
metaDataUpto++;
termState.termBlockOrd++;
}
}
}
private BytesRef savedStartTerm;
// TODO: in some cases we can filter by length? eg
// regexp foo*bar must be at least length 6 bytes
public IntersectEnum(CompiledAutomaton compiled, BytesRef startTerm) throws IOException {
// if (DEBUG) {
// System.out.println("\nintEnum.init seg=" + segment + " commonSuffix=" + brToString(compiled.commonSuffixRef));
// }
runAutomaton = compiled.runAutomaton;
compiledAutomaton = compiled;
in = BlockTreeTermsReader.this.in.clone();
stack = new Frame[5];
for(int idx=0;idx<stack.length;idx++) {
stack[idx] = new Frame(idx);
}
for(int arcIdx=0;arcIdx<arcs.length;arcIdx++) {
arcs[arcIdx] = new FST.Arc<BytesRef>();
}
if (index == null) {
fstReader = null;
} else {
fstReader = index.getBytesReader();
}
// TODO: if the automaton is "smallish" we really
// should use the terms index to seek at least to
// the initial term and likely to subsequent terms
// (or, maybe just fallback to ATE for such cases).
// Else the seek cost of loading the frames will be
// too costly.
final FST.Arc<BytesRef> arc = index.getFirstArc(arcs[0]);
// Empty string prefix must have an output in the index!
assert arc.isFinal();
// Special pushFrame since it's the first one:
final Frame f = stack[0];
f.fp = f.fpOrig = rootBlockFP;
f.prefix = 0;
f.setState(runAutomaton.getInitialState());
f.arc = arc;
f.outputPrefix = arc.output;
f.load(rootCode);
// for assert:
assert setSavedStartTerm(startTerm);
currentFrame = f;
if (startTerm != null) {
seekToStartTerm(startTerm);
}
}
// only for assert:
private boolean setSavedStartTerm(BytesRef startTerm) {
savedStartTerm = startTerm == null ? null : BytesRef.deepCopyOf(startTerm);
return true;
}
@Override
public TermState termState() throws IOException {
currentFrame.decodeMetaData();
return currentFrame.termState.clone();
}
private Frame getFrame(int ord) throws IOException {
if (ord >= stack.length) {
final Frame[] next = new Frame[ArrayUtil.oversize(1+ord, RamUsageEstimator.NUM_BYTES_OBJECT_REF)];
System.arraycopy(stack, 0, next, 0, stack.length);
for(int stackOrd=stack.length;stackOrd<next.length;stackOrd++) {
next[stackOrd] = new Frame(stackOrd);
}
stack = next;
}
assert stack[ord].ord == ord;
return stack[ord];
}
private FST.Arc<BytesRef> getArc(int ord) {
if (ord >= arcs.length) {
@SuppressWarnings({"rawtypes","unchecked"}) final FST.Arc<BytesRef>[] next =
new FST.Arc[ArrayUtil.oversize(1+ord, RamUsageEstimator.NUM_BYTES_OBJECT_REF)];
System.arraycopy(arcs, 0, next, 0, arcs.length);
for(int arcOrd=arcs.length;arcOrd<next.length;arcOrd++) {
next[arcOrd] = new FST.Arc<BytesRef>();
}
arcs = next;
}
return arcs[ord];
}
private Frame pushFrame(int state) throws IOException {
final Frame f = getFrame(currentFrame == null ? 0 : 1+currentFrame.ord);
f.fp = f.fpOrig = currentFrame.lastSubFP;
f.prefix = currentFrame.prefix + currentFrame.suffix;
// if (DEBUG) System.out.println(" pushFrame state=" + state + " prefix=" + f.prefix);
f.setState(state);
// Walk the arc through the index -- we only
// "bother" with this so we can get the floor data
// from the index and skip floor blocks when
// possible:
FST.Arc<BytesRef> arc = currentFrame.arc;
int idx = currentFrame.prefix;
assert currentFrame.suffix > 0;
BytesRef output = currentFrame.outputPrefix;
while (idx < f.prefix) {
final int target = term.bytes[idx] & 0xff;
// TODO: we could be more efficient for the next()
// case by using current arc as starting point,
// passed to findTargetArc
arc = index.findTargetArc(target, arc, getArc(1+idx), fstReader);
assert arc != null;
output = fstOutputs.add(output, arc.output);
idx++;
}
f.arc = arc;
f.outputPrefix = output;
assert arc.isFinal();
f.load(fstOutputs.add(output, arc.nextFinalOutput));
return f;
}
@Override
public BytesRef term() {
return term;
}
@Override
public int docFreq() throws IOException {
//if (DEBUG) System.out.println("BTIR.docFreq");
currentFrame.decodeMetaData();
//if (DEBUG) System.out.println(" return " + currentFrame.termState.docFreq);
return currentFrame.termState.docFreq;
}
@Override
public long totalTermFreq() throws IOException {
currentFrame.decodeMetaData();
return currentFrame.termState.totalTermFreq;
}
@Override
public DocsEnum docs(Bits skipDocs, DocsEnum reuse, int flags) throws IOException {
currentFrame.decodeMetaData();
return postingsReader.docs(fieldInfo, currentFrame.termState, skipDocs, reuse, flags);
}
@Override
public DocsAndPositionsEnum docsAndPositions(Bits skipDocs, DocsAndPositionsEnum reuse, int flags) throws IOException {
if (fieldInfo.getIndexOptions().compareTo(IndexOptions.DOCS_AND_FREQS_AND_POSITIONS) < 0) {
// Positions were not indexed:
return null;
}
currentFrame.decodeMetaData();
return postingsReader.docsAndPositions(fieldInfo, currentFrame.termState, skipDocs, reuse, flags);
}
private int getState() {
int state = currentFrame.state;
for(int idx=0;idx<currentFrame.suffix;idx++) {
state = runAutomaton.step(state, currentFrame.suffixBytes[currentFrame.startBytePos+idx] & 0xff);
assert state != -1;
}
return state;
}
// NOTE: specialized to only doing the first-time
// seek, but we could generalize it to allow
// arbitrary seekExact/Ceil. Note that this is a
// seekFloor!
private void seekToStartTerm(BytesRef target) throws IOException {
//if (DEBUG) System.out.println("seek to startTerm=" + target.utf8ToString());
assert currentFrame.ord == 0;
if (term.length < target.length) {
term.bytes = ArrayUtil.grow(term.bytes, target.length);
}
FST.Arc<BytesRef> arc = arcs[0];
assert arc == currentFrame.arc;
for(int idx=0;idx<=target.length;idx++) {
while (true) {
final int savePos = currentFrame.suffixesReader.getPosition();
final int saveStartBytePos = currentFrame.startBytePos;
final int saveSuffix = currentFrame.suffix;
final long saveLastSubFP = currentFrame.lastSubFP;
final int saveTermBlockOrd = currentFrame.termState.termBlockOrd;
final boolean isSubBlock = currentFrame.next();
//if (DEBUG) System.out.println(" cycle ent=" + currentFrame.nextEnt + " (of " + currentFrame.entCount + ") prefix=" + currentFrame.prefix + " suffix=" + currentFrame.suffix + " isBlock=" + isSubBlock + " firstLabel=" + (currentFrame.suffix == 0 ? "" : (currentFrame.suffixBytes[currentFrame.startBytePos])&0xff));
term.length = currentFrame.prefix + currentFrame.suffix;
if (term.bytes.length < term.length) {
term.bytes = ArrayUtil.grow(term.bytes, term.length);
}
System.arraycopy(currentFrame.suffixBytes, currentFrame.startBytePos, term.bytes, currentFrame.prefix, currentFrame.suffix);
if (isSubBlock && StringHelper.startsWith(target, term)) {
// Recurse
//if (DEBUG) System.out.println(" recurse!");
currentFrame = pushFrame(getState());
break;
} else {
final int cmp = term.compareTo(target);
if (cmp < 0) {
if (currentFrame.nextEnt == currentFrame.entCount) {
if (!currentFrame.isLastInFloor) {
//if (DEBUG) System.out.println(" load floorBlock");
currentFrame.loadNextFloorBlock();
continue;
} else {
//if (DEBUG) System.out.println(" return term=" + brToString(term));
return;
}
}
continue;
} else if (cmp == 0) {
//if (DEBUG) System.out.println(" return term=" + brToString(term));
return;
} else {
// Fallback to prior entry: the semantics of
// this method is that the first call to
// next() will return the term after the
// requested term
currentFrame.nextEnt--;
currentFrame.lastSubFP = saveLastSubFP;
currentFrame.startBytePos = saveStartBytePos;
currentFrame.suffix = saveSuffix;
currentFrame.suffixesReader.setPosition(savePos);
currentFrame.termState.termBlockOrd = saveTermBlockOrd;
System.arraycopy(currentFrame.suffixBytes, currentFrame.startBytePos, term.bytes, currentFrame.prefix, currentFrame.suffix);
term.length = currentFrame.prefix + currentFrame.suffix;
// If the last entry was a block we don't
// need to bother recursing and pushing to
// the last term under it because the first
// next() will simply skip the frame anyway
return;
}
}
}
}
assert false;
}
@Override
public BytesRef next() throws IOException {
// if (DEBUG) {
// System.out.println("\nintEnum.next seg=" + segment);
// System.out.println(" frame ord=" + currentFrame.ord + " prefix=" + brToString(new BytesRef(term.bytes, term.offset, currentFrame.prefix)) + " state=" + currentFrame.state + " lastInFloor?=" + currentFrame.isLastInFloor + " fp=" + currentFrame.fp + " trans=" + (currentFrame.transitions.length == 0 ? "n/a" : currentFrame.transitions[currentFrame.transitionIndex]) + " outputPrefix=" + currentFrame.outputPrefix);
// }
nextTerm:
while(true) {
// Pop finished frames
while (currentFrame.nextEnt == currentFrame.entCount) {
if (!currentFrame.isLastInFloor) {
//if (DEBUG) System.out.println(" next-floor-block");
currentFrame.loadNextFloorBlock();
//if (DEBUG) System.out.println("\n frame ord=" + currentFrame.ord + " prefix=" + brToString(new BytesRef(term.bytes, term.offset, currentFrame.prefix)) + " state=" + currentFrame.state + " lastInFloor?=" + currentFrame.isLastInFloor + " fp=" + currentFrame.fp + " trans=" + (currentFrame.transitions.length == 0 ? "n/a" : currentFrame.transitions[currentFrame.transitionIndex]) + " outputPrefix=" + currentFrame.outputPrefix);
} else {
//if (DEBUG) System.out.println(" pop frame");
if (currentFrame.ord == 0) {
return null;
}
final long lastFP = currentFrame.fpOrig;
currentFrame = stack[currentFrame.ord-1];
assert currentFrame.lastSubFP == lastFP;
//if (DEBUG) System.out.println("\n frame ord=" + currentFrame.ord + " prefix=" + brToString(new BytesRef(term.bytes, term.offset, currentFrame.prefix)) + " state=" + currentFrame.state + " lastInFloor?=" + currentFrame.isLastInFloor + " fp=" + currentFrame.fp + " trans=" + (currentFrame.transitions.length == 0 ? "n/a" : currentFrame.transitions[currentFrame.transitionIndex]) + " outputPrefix=" + currentFrame.outputPrefix);
}
}
final boolean isSubBlock = currentFrame.next();
// if (DEBUG) {
// final BytesRef suffixRef = new BytesRef();
// suffixRef.bytes = currentFrame.suffixBytes;
// suffixRef.offset = currentFrame.startBytePos;
// suffixRef.length = currentFrame.suffix;
// System.out.println(" " + (isSubBlock ? "sub-block" : "term") + " " + currentFrame.nextEnt + " (of " + currentFrame.entCount + ") suffix=" + brToString(suffixRef));
// }
if (currentFrame.suffix != 0) {
final int label = currentFrame.suffixBytes[currentFrame.startBytePos] & 0xff;
while (label > currentFrame.curTransitionMax) {
if (currentFrame.transitionIndex >= currentFrame.transitions.length-1) {
// Stop processing this frame -- no further
// matches are possible because we've moved
// beyond what the max transition will allow
//if (DEBUG) System.out.println(" break: trans=" + (currentFrame.transitions.length == 0 ? "n/a" : currentFrame.transitions[currentFrame.transitionIndex]));
// sneaky! forces a pop above
currentFrame.isLastInFloor = true;
currentFrame.nextEnt = currentFrame.entCount;
continue nextTerm;
}
currentFrame.transitionIndex++;
currentFrame.curTransitionMax = currentFrame.transitions[currentFrame.transitionIndex].getMax();
//if (DEBUG) System.out.println(" next trans=" + currentFrame.transitions[currentFrame.transitionIndex]);
}
}
// First test the common suffix, if set:
if (compiledAutomaton.commonSuffixRef != null && !isSubBlock) {
final int termLen = currentFrame.prefix + currentFrame.suffix;
if (termLen < compiledAutomaton.commonSuffixRef.length) {
// No match
// if (DEBUG) {
// System.out.println(" skip: common suffix length");
// }
continue nextTerm;
}
final byte[] suffixBytes = currentFrame.suffixBytes;
final byte[] commonSuffixBytes = compiledAutomaton.commonSuffixRef.bytes;
final int lenInPrefix = compiledAutomaton.commonSuffixRef.length - currentFrame.suffix;
assert compiledAutomaton.commonSuffixRef.offset == 0;
int suffixBytesPos;
int commonSuffixBytesPos = 0;
if (lenInPrefix > 0) {
// A prefix of the common suffix overlaps with
// the suffix of the block prefix so we first
// test whether the prefix part matches:
final byte[] termBytes = term.bytes;
int termBytesPos = currentFrame.prefix - lenInPrefix;
assert termBytesPos >= 0;
final int termBytesPosEnd = currentFrame.prefix;
while (termBytesPos < termBytesPosEnd) {
if (termBytes[termBytesPos++] != commonSuffixBytes[commonSuffixBytesPos++]) {
// if (DEBUG) {
// System.out.println(" skip: common suffix mismatch (in prefix)");
// }
continue nextTerm;
}
}
suffixBytesPos = currentFrame.startBytePos;
} else {
suffixBytesPos = currentFrame.startBytePos + currentFrame.suffix - compiledAutomaton.commonSuffixRef.length;
}
// Test overlapping suffix part:
final int commonSuffixBytesPosEnd = compiledAutomaton.commonSuffixRef.length;
while (commonSuffixBytesPos < commonSuffixBytesPosEnd) {
if (suffixBytes[suffixBytesPos++] != commonSuffixBytes[commonSuffixBytesPos++]) {
// if (DEBUG) {
// System.out.println(" skip: common suffix mismatch");
// }
continue nextTerm;
}
}
}
// TODO: maybe we should do the same linear test
// that AutomatonTermsEnum does, so that if we
// reach a part of the automaton where .* is
// "temporarily" accepted, we just blindly .next()
// until the limit
// See if the term prefix matches the automaton:
int state = currentFrame.state;
for (int idx=0;idx<currentFrame.suffix;idx++) {
state = runAutomaton.step(state, currentFrame.suffixBytes[currentFrame.startBytePos+idx] & 0xff);
if (state == -1) {
// No match
//System.out.println(" no s=" + state);
continue nextTerm;
} else {
//System.out.println(" c s=" + state);
}
}
if (isSubBlock) {
// Match! Recurse:
//if (DEBUG) System.out.println(" sub-block match to state=" + state + "; recurse fp=" + currentFrame.lastSubFP);
copyTerm();
currentFrame = pushFrame(state);
//if (DEBUG) System.out.println("\n frame ord=" + currentFrame.ord + " prefix=" + brToString(new BytesRef(term.bytes, term.offset, currentFrame.prefix)) + " state=" + currentFrame.state + " lastInFloor?=" + currentFrame.isLastInFloor + " fp=" + currentFrame.fp + " trans=" + (currentFrame.transitions.length == 0 ? "n/a" : currentFrame.transitions[currentFrame.transitionIndex]) + " outputPrefix=" + currentFrame.outputPrefix);
} else if (runAutomaton.isAccept(state)) {
copyTerm();
//if (DEBUG) System.out.println(" term match to state=" + state + "; return term=" + brToString(term));
assert savedStartTerm == null || term.compareTo(savedStartTerm) > 0: "saveStartTerm=" + savedStartTerm.utf8ToString() + " term=" + term.utf8ToString();
return term;
} else {
//System.out.println(" no s=" + state);
}
}
}
private void copyTerm() {
//System.out.println(" copyTerm cur.prefix=" + currentFrame.prefix + " cur.suffix=" + currentFrame.suffix + " first=" + (char) currentFrame.suffixBytes[currentFrame.startBytePos]);
final int len = currentFrame.prefix + currentFrame.suffix;
if (term.bytes.length < len) {
term.bytes = ArrayUtil.grow(term.bytes, len);
}
System.arraycopy(currentFrame.suffixBytes, currentFrame.startBytePos, term.bytes, currentFrame.prefix, currentFrame.suffix);
term.length = len;
}
@Override
public Comparator<BytesRef> getComparator() {
return BytesRef.getUTF8SortedAsUnicodeComparator();
}
@Override
public boolean seekExact(BytesRef text, boolean useCache) {
throw new UnsupportedOperationException();
}
@Override
public void seekExact(long ord) {
throw new UnsupportedOperationException();
}
@Override
public long ord() {
throw new UnsupportedOperationException();
}
@Override
public SeekStatus seekCeil(BytesRef text, boolean useCache) {
throw new UnsupportedOperationException();
}
}
// Iterates through terms in this field
private final class SegmentTermsEnum extends TermsEnum {
private IndexInput in;
private Frame[] stack;
private final Frame staticFrame;
private Frame currentFrame;
private boolean termExists;
private int targetBeforeCurrentLength;
private final ByteArrayDataInput scratchReader = new ByteArrayDataInput();
// What prefix of the current term was present in the index:
private int validIndexPrefix;
// assert only:
private boolean eof;
final BytesRef term = new BytesRef();
private final FST.BytesReader fstReader;
@SuppressWarnings({"rawtypes","unchecked"}) private FST.Arc<BytesRef>[] arcs =
new FST.Arc[1];
public SegmentTermsEnum() throws IOException {
//if (DEBUG) System.out.println("BTTR.init seg=" + segment);
stack = new Frame[0];
// Used to hold seek by TermState, or cached seek
staticFrame = new Frame(-1);
if (index == null) {
fstReader = null;
} else {
fstReader = index.getBytesReader();
}
// Init w/ root block; don't use index since it may
// not (and need not) have been loaded
for(int arcIdx=0;arcIdx<arcs.length;arcIdx++) {
arcs[arcIdx] = new FST.Arc<BytesRef>();
}
currentFrame = staticFrame;
final FST.Arc<BytesRef> arc;
if (index != null) {
arc = index.getFirstArc(arcs[0]);
// Empty string prefix must have an output in the index!
assert arc.isFinal();
} else {
arc = null;
}
currentFrame = staticFrame;
//currentFrame = pushFrame(arc, rootCode, 0);
//currentFrame.loadBlock();
validIndexPrefix = 0;
// if (DEBUG) {
// System.out.println("init frame state " + currentFrame.ord);
// printSeekState();
// }
//System.out.println();
// computeBlockStats().print(System.out);
}
// Not private to avoid synthetic access$NNN methods
void initIndexInput() {
if (this.in == null) {
this.in = BlockTreeTermsReader.this.in.clone();
}
}
/** Runs next() through the entire terms dict,
* computing aggregate statistics. */
public Stats computeBlockStats() throws IOException {
Stats stats = new Stats(segment, fieldInfo.name);
if (index != null) {
stats.indexNodeCount = index.getNodeCount();
stats.indexArcCount = index.getArcCount();
stats.indexNumBytes = index.sizeInBytes();
}
currentFrame = staticFrame;
FST.Arc<BytesRef> arc;
if (index != null) {
arc = index.getFirstArc(arcs[0]);
// Empty string prefix must have an output in the index!
assert arc.isFinal();
} else {
arc = null;
}
// Empty string prefix must have an output in the
// index!
currentFrame = pushFrame(arc, rootCode, 0);
currentFrame.fpOrig = currentFrame.fp;
currentFrame.loadBlock();
validIndexPrefix = 0;
stats.startBlock(currentFrame, !currentFrame.isLastInFloor);
allTerms:
while (true) {
// Pop finished blocks
while (currentFrame.nextEnt == currentFrame.entCount) {
stats.endBlock(currentFrame);
if (!currentFrame.isLastInFloor) {
currentFrame.loadNextFloorBlock();
stats.startBlock(currentFrame, true);
} else {
if (currentFrame.ord == 0) {
break allTerms;
}
final long lastFP = currentFrame.fpOrig;
currentFrame = stack[currentFrame.ord-1];
assert lastFP == currentFrame.lastSubFP;
// if (DEBUG) {
// System.out.println(" reset validIndexPrefix=" + validIndexPrefix);
// }
}
}
while(true) {
if (currentFrame.next()) {
// Push to new block:
currentFrame = pushFrame(null, currentFrame.lastSubFP, term.length);
currentFrame.fpOrig = currentFrame.fp;
// This is a "next" frame -- even if it's
// floor'd we must pretend it isn't so we don't
// try to scan to the right floor frame:
currentFrame.isFloor = false;
//currentFrame.hasTerms = true;
currentFrame.loadBlock();
stats.startBlock(currentFrame, !currentFrame.isLastInFloor);
} else {
stats.term(term);
break;
}
}
}
stats.finish();
// Put root frame back:
currentFrame = staticFrame;
if (index != null) {
arc = index.getFirstArc(arcs[0]);
// Empty string prefix must have an output in the index!
assert arc.isFinal();
} else {
arc = null;
}
currentFrame = pushFrame(arc, rootCode, 0);
currentFrame.rewind();
currentFrame.loadBlock();
validIndexPrefix = 0;
term.length = 0;
return stats;
}
private Frame getFrame(int ord) throws IOException {
if (ord >= stack.length) {
final Frame[] next = new Frame[ArrayUtil.oversize(1+ord, RamUsageEstimator.NUM_BYTES_OBJECT_REF)];
System.arraycopy(stack, 0, next, 0, stack.length);
for(int stackOrd=stack.length;stackOrd<next.length;stackOrd++) {
next[stackOrd] = new Frame(stackOrd);
}
stack = next;
}
assert stack[ord].ord == ord;
return stack[ord];
}
private FST.Arc<BytesRef> getArc(int ord) {
if (ord >= arcs.length) {
@SuppressWarnings({"rawtypes","unchecked"}) final FST.Arc<BytesRef>[] next =
new FST.Arc[ArrayUtil.oversize(1+ord, RamUsageEstimator.NUM_BYTES_OBJECT_REF)];
System.arraycopy(arcs, 0, next, 0, arcs.length);
for(int arcOrd=arcs.length;arcOrd<next.length;arcOrd++) {
next[arcOrd] = new FST.Arc<BytesRef>();
}
arcs = next;
}
return arcs[ord];
}
@Override
public Comparator<BytesRef> getComparator() {
return BytesRef.getUTF8SortedAsUnicodeComparator();
}
// Pushes a frame we seek'd to
Frame pushFrame(FST.Arc<BytesRef> arc, BytesRef frameData, int length) throws IOException {
scratchReader.reset(frameData.bytes, frameData.offset, frameData.length);
final long code = scratchReader.readVLong();
final long fpSeek = code >>> BlockTreeTermsWriter.OUTPUT_FLAGS_NUM_BITS;
final Frame f = getFrame(1+currentFrame.ord);
f.hasTerms = (code & BlockTreeTermsWriter.OUTPUT_FLAG_HAS_TERMS) != 0;
f.hasTermsOrig = f.hasTerms;
f.isFloor = (code & BlockTreeTermsWriter.OUTPUT_FLAG_IS_FLOOR) != 0;
if (f.isFloor) {
f.setFloorData(scratchReader, frameData);
}
pushFrame(arc, fpSeek, length);
return f;
}
// Pushes next'd frame or seek'd frame; we later
// lazy-load the frame only when needed
Frame pushFrame(FST.Arc<BytesRef> arc, long fp, int length) throws IOException {
final Frame f = getFrame(1+currentFrame.ord);
f.arc = arc;
if (f.fpOrig == fp && f.nextEnt != -1) {
//if (DEBUG) System.out.println(" push reused frame ord=" + f.ord + " fp=" + f.fp + " isFloor?=" + f.isFloor + " hasTerms=" + f.hasTerms + " pref=" + term + " nextEnt=" + f.nextEnt + " targetBeforeCurrentLength=" + targetBeforeCurrentLength + " term.length=" + term.length + " vs prefix=" + f.prefix);
if (f.prefix > targetBeforeCurrentLength) {
f.rewind();
} else {
// if (DEBUG) {
// System.out.println(" skip rewind!");
// }
}
assert length == f.prefix;
} else {
f.nextEnt = -1;
f.prefix = length;
f.state.termBlockOrd = 0;
f.fpOrig = f.fp = fp;
f.lastSubFP = -1;
// if (DEBUG) {
// final int sav = term.length;
// term.length = length;
// System.out.println(" push new frame ord=" + f.ord + " fp=" + f.fp + " hasTerms=" + f.hasTerms + " isFloor=" + f.isFloor + " pref=" + brToString(term));
// term.length = sav;
// }
}
return f;
}
// asserts only
private boolean clearEOF() {
eof = false;
return true;
}
// asserts only
private boolean setEOF() {
eof = true;
return true;
}
@Override
public boolean seekExact(final BytesRef target, final boolean useCache) throws IOException {
if (index == null) {
throw new IllegalStateException("terms index was not loaded");
}
if (term.bytes.length <= target.length) {
term.bytes = ArrayUtil.grow(term.bytes, 1+target.length);
}
assert clearEOF();
// if (DEBUG) {
// System.out.println("\nBTTR.seekExact seg=" + segment + " target=" + fieldInfo.name + ":" + brToString(target) + " current=" + brToString(term) + " (exists?=" + termExists + ") validIndexPrefix=" + validIndexPrefix);
// printSeekState();
// }
FST.Arc<BytesRef> arc;
int targetUpto;
BytesRef output;
targetBeforeCurrentLength = currentFrame.ord;
if (currentFrame != staticFrame) {
// We are already seek'd; find the common
// prefix of new seek term vs current term and
// re-use the corresponding seek state. For
// example, if app first seeks to foobar, then
// seeks to foobaz, we can re-use the seek state
// for the first 5 bytes.
// if (DEBUG) {
// System.out.println(" re-use current seek state validIndexPrefix=" + validIndexPrefix);
// }
arc = arcs[0];
assert arc.isFinal();
output = arc.output;
targetUpto = 0;
Frame lastFrame = stack[0];
assert validIndexPrefix <= term.length;
final int targetLimit = Math.min(target.length, validIndexPrefix);
int cmp = 0;
// TODO: reverse vLong byte order for better FST
// prefix output sharing
// First compare up to valid seek frames:
while (targetUpto < targetLimit) {
cmp = (term.bytes[targetUpto]&0xFF) - (target.bytes[target.offset + targetUpto]&0xFF);
// if (DEBUG) {
// System.out.println(" cycle targetUpto=" + targetUpto + " (vs limit=" + targetLimit + ") cmp=" + cmp + " (targetLabel=" + (char) (target.bytes[target.offset + targetUpto]) + " vs termLabel=" + (char) (term.bytes[targetUpto]) + ")" + " arc.output=" + arc.output + " output=" + output);
// }
if (cmp != 0) {
break;
}
arc = arcs[1+targetUpto];
//if (arc.label != (target.bytes[target.offset + targetUpto] & 0xFF)) {
//System.out.println("FAIL: arc.label=" + (char) arc.label + " targetLabel=" + (char) (target.bytes[target.offset + targetUpto] & 0xFF));
//}
assert arc.label == (target.bytes[target.offset + targetUpto] & 0xFF): "arc.label=" + (char) arc.label + " targetLabel=" + (char) (target.bytes[target.offset + targetUpto] & 0xFF);
if (arc.output != NO_OUTPUT) {
output = fstOutputs.add(output, arc.output);
}
if (arc.isFinal()) {
lastFrame = stack[1+lastFrame.ord];
}
targetUpto++;
}
if (cmp == 0) {
final int targetUptoMid = targetUpto;
// Second compare the rest of the term, but
// don't save arc/output/frame; we only do this
// to find out if the target term is before,
// equal or after the current term
final int targetLimit2 = Math.min(target.length, term.length);
while (targetUpto < targetLimit2) {
cmp = (term.bytes[targetUpto]&0xFF) - (target.bytes[target.offset + targetUpto]&0xFF);
// if (DEBUG) {
// System.out.println(" cycle2 targetUpto=" + targetUpto + " (vs limit=" + targetLimit + ") cmp=" + cmp + " (targetLabel=" + (char) (target.bytes[target.offset + targetUpto]) + " vs termLabel=" + (char) (term.bytes[targetUpto]) + ")");
// }
if (cmp != 0) {
break;
}
targetUpto++;
}
if (cmp == 0) {
cmp = term.length - target.length;
}
targetUpto = targetUptoMid;
}
if (cmp < 0) {
// Common case: target term is after current
// term, ie, app is seeking multiple terms
// in sorted order
// if (DEBUG) {
// System.out.println(" target is after current (shares prefixLen=" + targetUpto + "); frame.ord=" + lastFrame.ord);
// }
currentFrame = lastFrame;
} else if (cmp > 0) {
// Uncommon case: target term
// is before current term; this means we can
// keep the currentFrame but we must rewind it
// (so we scan from the start)
targetBeforeCurrentLength = 0;
// if (DEBUG) {
// System.out.println(" target is before current (shares prefixLen=" + targetUpto + "); rewind frame ord=" + lastFrame.ord);
// }
currentFrame = lastFrame;
currentFrame.rewind();
} else {
// Target is exactly the same as current term
assert term.length == target.length;
if (termExists) {
// if (DEBUG) {
// System.out.println(" target is same as current; return true");
// }
return true;
} else {
// if (DEBUG) {
// System.out.println(" target is same as current but term doesn't exist");
// }
}
//validIndexPrefix = currentFrame.depth;
//term.length = target.length;
//return termExists;
}
} else {
targetBeforeCurrentLength = -1;
arc = index.getFirstArc(arcs[0]);
// Empty string prefix must have an output (block) in the index!
assert arc.isFinal();
assert arc.output != null;
// if (DEBUG) {
// System.out.println(" no seek state; push root frame");
// }
output = arc.output;
currentFrame = staticFrame;
//term.length = 0;
targetUpto = 0;
currentFrame = pushFrame(arc, fstOutputs.add(output, arc.nextFinalOutput), 0);
}
// if (DEBUG) {
// System.out.println(" start index loop targetUpto=" + targetUpto + " output=" + output + " currentFrame.ord=" + currentFrame.ord + " targetBeforeCurrentLength=" + targetBeforeCurrentLength);
// }
while (targetUpto < target.length) {
final int targetLabel = target.bytes[target.offset + targetUpto] & 0xFF;
final FST.Arc<BytesRef> nextArc = index.findTargetArc(targetLabel, arc, getArc(1+targetUpto), fstReader);
if (nextArc == null) {
// Index is exhausted
// if (DEBUG) {
// System.out.println(" index: index exhausted label=" + ((char) targetLabel) + " " + toHex(targetLabel));
// }
validIndexPrefix = currentFrame.prefix;
//validIndexPrefix = targetUpto;
currentFrame.scanToFloorFrame(target);
if (!currentFrame.hasTerms) {
termExists = false;
term.bytes[targetUpto] = (byte) targetLabel;
term.length = 1+targetUpto;
// if (DEBUG) {
// System.out.println(" FAST NOT_FOUND term=" + brToString(term));
// }
return false;
}
currentFrame.loadBlock();
final SeekStatus result = currentFrame.scanToTerm(target, true);
if (result == SeekStatus.FOUND) {
// if (DEBUG) {
// System.out.println(" return FOUND term=" + term.utf8ToString() + " " + term);
// }
return true;
} else {
// if (DEBUG) {
// System.out.println(" got " + result + "; return NOT_FOUND term=" + brToString(term));
// }
return false;
}
} else {
// Follow this arc
arc = nextArc;
term.bytes[targetUpto] = (byte) targetLabel;
// Aggregate output as we go:
assert arc.output != null;
if (arc.output != NO_OUTPUT) {
output = fstOutputs.add(output, arc.output);
}
// if (DEBUG) {
// System.out.println(" index: follow label=" + toHex(target.bytes[target.offset + targetUpto]&0xff) + " arc.output=" + arc.output + " arc.nfo=" + arc.nextFinalOutput);
// }
targetUpto++;
if (arc.isFinal()) {
//if (DEBUG) System.out.println(" arc is final!");
currentFrame = pushFrame(arc, fstOutputs.add(output, arc.nextFinalOutput), targetUpto);
//if (DEBUG) System.out.println(" curFrame.ord=" + currentFrame.ord + " hasTerms=" + currentFrame.hasTerms);
}
}
}
//validIndexPrefix = targetUpto;
validIndexPrefix = currentFrame.prefix;
currentFrame.scanToFloorFrame(target);
// Target term is entirely contained in the index:
if (!currentFrame.hasTerms) {
termExists = false;
term.length = targetUpto;
// if (DEBUG) {
// System.out.println(" FAST NOT_FOUND term=" + brToString(term));
// }
return false;
}
currentFrame.loadBlock();
final SeekStatus result = currentFrame.scanToTerm(target, true);
if (result == SeekStatus.FOUND) {
// if (DEBUG) {
// System.out.println(" return FOUND term=" + term.utf8ToString() + " " + term);
// }
return true;
} else {
// if (DEBUG) {
// System.out.println(" got result " + result + "; return NOT_FOUND term=" + term.utf8ToString());
// }
return false;
}
}
@Override
public SeekStatus seekCeil(final BytesRef target, final boolean useCache) throws IOException {
if (index == null) {
throw new IllegalStateException("terms index was not loaded");
}
if (term.bytes.length <= target.length) {
term.bytes = ArrayUtil.grow(term.bytes, 1+target.length);
}
assert clearEOF();
//if (DEBUG) {
//System.out.println("\nBTTR.seekCeil seg=" + segment + " target=" + fieldInfo.name + ":" + target.utf8ToString() + " " + target + " current=" + brToString(term) + " (exists?=" + termExists + ") validIndexPrefix= " + validIndexPrefix);
//printSeekState();
//}
FST.Arc<BytesRef> arc;
int targetUpto;
BytesRef output;
targetBeforeCurrentLength = currentFrame.ord;
if (currentFrame != staticFrame) {
// We are already seek'd; find the common
// prefix of new seek term vs current term and
// re-use the corresponding seek state. For
// example, if app first seeks to foobar, then
// seeks to foobaz, we can re-use the seek state
// for the first 5 bytes.
//if (DEBUG) {
//System.out.println(" re-use current seek state validIndexPrefix=" + validIndexPrefix);
//}
arc = arcs[0];
assert arc.isFinal();
output = arc.output;
targetUpto = 0;
Frame lastFrame = stack[0];
assert validIndexPrefix <= term.length;
final int targetLimit = Math.min(target.length, validIndexPrefix);
int cmp = 0;
// TOOD: we should write our vLong backwards (MSB
// first) to get better sharing from the FST
// First compare up to valid seek frames:
while (targetUpto < targetLimit) {
cmp = (term.bytes[targetUpto]&0xFF) - (target.bytes[target.offset + targetUpto]&0xFF);
//if (DEBUG) {
//System.out.println(" cycle targetUpto=" + targetUpto + " (vs limit=" + targetLimit + ") cmp=" + cmp + " (targetLabel=" + (char) (target.bytes[target.offset + targetUpto]) + " vs termLabel=" + (char) (term.bytes[targetUpto]) + ")" + " arc.output=" + arc.output + " output=" + output);
//}
if (cmp != 0) {
break;
}
arc = arcs[1+targetUpto];
assert arc.label == (target.bytes[target.offset + targetUpto] & 0xFF): "arc.label=" + (char) arc.label + " targetLabel=" + (char) (target.bytes[target.offset + targetUpto] & 0xFF);
// TOOD: we could save the outputs in local
// byte[][] instead of making new objs ever
// seek; but, often the FST doesn't have any
// shared bytes (but this could change if we
// reverse vLong byte order)
if (arc.output != NO_OUTPUT) {
output = fstOutputs.add(output, arc.output);
}
if (arc.isFinal()) {
lastFrame = stack[1+lastFrame.ord];
}
targetUpto++;
}
if (cmp == 0) {
final int targetUptoMid = targetUpto;
// Second compare the rest of the term, but
// don't save arc/output/frame:
final int targetLimit2 = Math.min(target.length, term.length);
while (targetUpto < targetLimit2) {
cmp = (term.bytes[targetUpto]&0xFF) - (target.bytes[target.offset + targetUpto]&0xFF);
//if (DEBUG) {
//System.out.println(" cycle2 targetUpto=" + targetUpto + " (vs limit=" + targetLimit + ") cmp=" + cmp + " (targetLabel=" + (char) (target.bytes[target.offset + targetUpto]) + " vs termLabel=" + (char) (term.bytes[targetUpto]) + ")");
//}
if (cmp != 0) {
break;
}
targetUpto++;
}
if (cmp == 0) {
cmp = term.length - target.length;
}
targetUpto = targetUptoMid;
}
if (cmp < 0) {
// Common case: target term is after current
// term, ie, app is seeking multiple terms
// in sorted order
//if (DEBUG) {
//System.out.println(" target is after current (shares prefixLen=" + targetUpto + "); clear frame.scanned ord=" + lastFrame.ord);
//}
currentFrame = lastFrame;
} else if (cmp > 0) {
// Uncommon case: target term
// is before current term; this means we can
// keep the currentFrame but we must rewind it
// (so we scan from the start)
targetBeforeCurrentLength = 0;
//if (DEBUG) {
//System.out.println(" target is before current (shares prefixLen=" + targetUpto + "); rewind frame ord=" + lastFrame.ord);
//}
currentFrame = lastFrame;
currentFrame.rewind();
} else {
// Target is exactly the same as current term
assert term.length == target.length;
if (termExists) {
//if (DEBUG) {
//System.out.println(" target is same as current; return FOUND");
//}
return SeekStatus.FOUND;
} else {
//if (DEBUG) {
//System.out.println(" target is same as current but term doesn't exist");
//}
}
}
} else {
targetBeforeCurrentLength = -1;
arc = index.getFirstArc(arcs[0]);
// Empty string prefix must have an output (block) in the index!
assert arc.isFinal();
assert arc.output != null;
//if (DEBUG) {
//System.out.println(" no seek state; push root frame");
//}
output = arc.output;
currentFrame = staticFrame;
//term.length = 0;
targetUpto = 0;
currentFrame = pushFrame(arc, fstOutputs.add(output, arc.nextFinalOutput), 0);
}
//if (DEBUG) {
//System.out.println(" start index loop targetUpto=" + targetUpto + " output=" + output + " currentFrame.ord+1=" + currentFrame.ord + " targetBeforeCurrentLength=" + targetBeforeCurrentLength);
//}
while (targetUpto < target.length) {
final int targetLabel = target.bytes[target.offset + targetUpto] & 0xFF;
final FST.Arc<BytesRef> nextArc = index.findTargetArc(targetLabel, arc, getArc(1+targetUpto), fstReader);
if (nextArc == null) {
// Index is exhausted
// if (DEBUG) {
// System.out.println(" index: index exhausted label=" + ((char) targetLabel) + " " + toHex(targetLabel));
// }
validIndexPrefix = currentFrame.prefix;
//validIndexPrefix = targetUpto;
currentFrame.scanToFloorFrame(target);
currentFrame.loadBlock();
final SeekStatus result = currentFrame.scanToTerm(target, false);
if (result == SeekStatus.END) {
term.copyBytes(target);
termExists = false;
if (next() != null) {
//if (DEBUG) {
//System.out.println(" return NOT_FOUND term=" + brToString(term) + " " + term);
//}
return SeekStatus.NOT_FOUND;
} else {
//if (DEBUG) {
//System.out.println(" return END");
//}
return SeekStatus.END;
}
} else {
//if (DEBUG) {
//System.out.println(" return " + result + " term=" + brToString(term) + " " + term);
//}
return result;
}
} else {
// Follow this arc
term.bytes[targetUpto] = (byte) targetLabel;
arc = nextArc;
// Aggregate output as we go:
assert arc.output != null;
if (arc.output != NO_OUTPUT) {
output = fstOutputs.add(output, arc.output);
}
//if (DEBUG) {
//System.out.println(" index: follow label=" + toHex(target.bytes[target.offset + targetUpto]&0xff) + " arc.output=" + arc.output + " arc.nfo=" + arc.nextFinalOutput);
//}
targetUpto++;
if (arc.isFinal()) {
//if (DEBUG) System.out.println(" arc is final!");
currentFrame = pushFrame(arc, fstOutputs.add(output, arc.nextFinalOutput), targetUpto);
//if (DEBUG) System.out.println(" curFrame.ord=" + currentFrame.ord + " hasTerms=" + currentFrame.hasTerms);
}
}
}
//validIndexPrefix = targetUpto;
validIndexPrefix = currentFrame.prefix;
currentFrame.scanToFloorFrame(target);
currentFrame.loadBlock();
final SeekStatus result = currentFrame.scanToTerm(target, false);
if (result == SeekStatus.END) {
term.copyBytes(target);
termExists = false;
if (next() != null) {
//if (DEBUG) {
//System.out.println(" return NOT_FOUND term=" + term.utf8ToString() + " " + term);
//}
return SeekStatus.NOT_FOUND;
} else {
//if (DEBUG) {
//System.out.println(" return END");
//}
return SeekStatus.END;
}
} else {
return result;
}
}
@SuppressWarnings("unused")
private void printSeekState(PrintStream out) throws IOException {
if (currentFrame == staticFrame) {
out.println(" no prior seek");
} else {
out.println(" prior seek state:");
int ord = 0;
boolean isSeekFrame = true;
while(true) {
Frame f = getFrame(ord);
assert f != null;
final BytesRef prefix = new BytesRef(term.bytes, 0, f.prefix);
if (f.nextEnt == -1) {
out.println(" frame " + (isSeekFrame ? "(seek)" : "(next)") + " ord=" + ord + " fp=" + f.fp + (f.isFloor ? (" (fpOrig=" + f.fpOrig + ")") : "") + " prefixLen=" + f.prefix + " prefix=" + prefix + (f.nextEnt == -1 ? "" : (" (of " + f.entCount + ")")) + " hasTerms=" + f.hasTerms + " isFloor=" + f.isFloor + " code=" + ((f.fp<<BlockTreeTermsWriter.OUTPUT_FLAGS_NUM_BITS) + (f.hasTerms ? BlockTreeTermsWriter.OUTPUT_FLAG_HAS_TERMS:0) + (f.isFloor ? BlockTreeTermsWriter.OUTPUT_FLAG_IS_FLOOR:0)) + " isLastInFloor=" + f.isLastInFloor + " mdUpto=" + f.metaDataUpto + " tbOrd=" + f.getTermBlockOrd());
} else {
out.println(" frame " + (isSeekFrame ? "(seek, loaded)" : "(next, loaded)") + " ord=" + ord + " fp=" + f.fp + (f.isFloor ? (" (fpOrig=" + f.fpOrig + ")") : "") + " prefixLen=" + f.prefix + " prefix=" + prefix + " nextEnt=" + f.nextEnt + (f.nextEnt == -1 ? "" : (" (of " + f.entCount + ")")) + " hasTerms=" + f.hasTerms + " isFloor=" + f.isFloor + " code=" + ((f.fp<<BlockTreeTermsWriter.OUTPUT_FLAGS_NUM_BITS) + (f.hasTerms ? BlockTreeTermsWriter.OUTPUT_FLAG_HAS_TERMS:0) + (f.isFloor ? BlockTreeTermsWriter.OUTPUT_FLAG_IS_FLOOR:0)) + " lastSubFP=" + f.lastSubFP + " isLastInFloor=" + f.isLastInFloor + " mdUpto=" + f.metaDataUpto + " tbOrd=" + f.getTermBlockOrd());
}
if (index != null) {
assert !isSeekFrame || f.arc != null: "isSeekFrame=" + isSeekFrame + " f.arc=" + f.arc;
if (f.prefix > 0 && isSeekFrame && f.arc.label != (term.bytes[f.prefix-1]&0xFF)) {
out.println(" broken seek state: arc.label=" + (char) f.arc.label + " vs term byte=" + (char) (term.bytes[f.prefix-1]&0xFF));
throw new RuntimeException("seek state is broken");
}
BytesRef output = Util.get(index, prefix);
if (output == null) {
out.println(" broken seek state: prefix is not final in index");
throw new RuntimeException("seek state is broken");
} else if (isSeekFrame && !f.isFloor) {
final ByteArrayDataInput reader = new ByteArrayDataInput(output.bytes, output.offset, output.length);
final long codeOrig = reader.readVLong();
final long code = (f.fp << BlockTreeTermsWriter.OUTPUT_FLAGS_NUM_BITS) | (f.hasTerms ? BlockTreeTermsWriter.OUTPUT_FLAG_HAS_TERMS:0) | (f.isFloor ? BlockTreeTermsWriter.OUTPUT_FLAG_IS_FLOOR:0);
if (codeOrig != code) {
out.println(" broken seek state: output code=" + codeOrig + " doesn't match frame code=" + code);
throw new RuntimeException("seek state is broken");
}
}
}
if (f == currentFrame) {
break;
}
if (f.prefix == validIndexPrefix) {
isSeekFrame = false;
}
ord++;
}
}
}
/* Decodes only the term bytes of the next term. If caller then asks for
metadata, ie docFreq, totalTermFreq or pulls a D/&PEnum, we then (lazily)
decode all metadata up to the current term. */
@Override
public BytesRef next() throws IOException {
if (in == null) {
// Fresh TermsEnum; seek to first term:
final FST.Arc<BytesRef> arc;
if (index != null) {
arc = index.getFirstArc(arcs[0]);
// Empty string prefix must have an output in the index!
assert arc.isFinal();
} else {
arc = null;
}
currentFrame = pushFrame(arc, rootCode, 0);
currentFrame.loadBlock();
}
targetBeforeCurrentLength = currentFrame.ord;
assert !eof;
//if (DEBUG) {
//System.out.println("\nBTTR.next seg=" + segment + " term=" + brToString(term) + " termExists?=" + termExists + " field=" + fieldInfo.name + " termBlockOrd=" + currentFrame.state.termBlockOrd + " validIndexPrefix=" + validIndexPrefix);
//printSeekState();
//}
if (currentFrame == staticFrame) {
// If seek was previously called and the term was
// cached, or seek(TermState) was called, usually
// caller is just going to pull a D/&PEnum or get
// docFreq, etc. But, if they then call next(),
// this method catches up all internal state so next()
// works properly:
//if (DEBUG) System.out.println(" re-seek to pending term=" + term.utf8ToString() + " " + term);
final boolean result = seekExact(term, false);
assert result;
}
// Pop finished blocks
while (currentFrame.nextEnt == currentFrame.entCount) {
if (!currentFrame.isLastInFloor) {
currentFrame.loadNextFloorBlock();
} else {
//if (DEBUG) System.out.println(" pop frame");
if (currentFrame.ord == 0) {
//if (DEBUG) System.out.println(" return null");
assert setEOF();
term.length = 0;
validIndexPrefix = 0;
currentFrame.rewind();
termExists = false;
return null;
}
final long lastFP = currentFrame.fpOrig;
currentFrame = stack[currentFrame.ord-1];
if (currentFrame.nextEnt == -1 || currentFrame.lastSubFP != lastFP) {
// We popped into a frame that's not loaded
// yet or not scan'd to the right entry
currentFrame.scanToFloorFrame(term);
currentFrame.loadBlock();
currentFrame.scanToSubBlock(lastFP);
}
// Note that the seek state (last seek) has been
// invalidated beyond this depth
validIndexPrefix = Math.min(validIndexPrefix, currentFrame.prefix);
//if (DEBUG) {
//System.out.println(" reset validIndexPrefix=" + validIndexPrefix);
//}
}
}
while(true) {
if (currentFrame.next()) {
// Push to new block:
//if (DEBUG) System.out.println(" push frame");
currentFrame = pushFrame(null, currentFrame.lastSubFP, term.length);
// This is a "next" frame -- even if it's
// floor'd we must pretend it isn't so we don't
// try to scan to the right floor frame:
currentFrame.isFloor = false;
//currentFrame.hasTerms = true;
currentFrame.loadBlock();
} else {
//if (DEBUG) System.out.println(" return term=" + term.utf8ToString() + " " + term + " currentFrame.ord=" + currentFrame.ord);
return term;
}
}
}
@Override
public BytesRef term() {
assert !eof;
return term;
}
@Override
public int docFreq() throws IOException {
assert !eof;
//if (DEBUG) System.out.println("BTR.docFreq");
currentFrame.decodeMetaData();
//if (DEBUG) System.out.println(" return " + currentFrame.state.docFreq);
return currentFrame.state.docFreq;
}
@Override
public long totalTermFreq() throws IOException {
assert !eof;
currentFrame.decodeMetaData();
return currentFrame.state.totalTermFreq;
}
@Override
public DocsEnum docs(Bits skipDocs, DocsEnum reuse, int flags) throws IOException {
assert !eof;
//if (DEBUG) {
//System.out.println("BTTR.docs seg=" + segment);
//}
currentFrame.decodeMetaData();
//if (DEBUG) {
//System.out.println(" state=" + currentFrame.state);
//}
return postingsReader.docs(fieldInfo, currentFrame.state, skipDocs, reuse, flags);
}
@Override
public DocsAndPositionsEnum docsAndPositions(Bits skipDocs, DocsAndPositionsEnum reuse, int flags) throws IOException {
if (fieldInfo.getIndexOptions().compareTo(IndexOptions.DOCS_AND_FREQS_AND_POSITIONS) < 0) {
// Positions were not indexed:
return null;
}
assert !eof;
currentFrame.decodeMetaData();
return postingsReader.docsAndPositions(fieldInfo, currentFrame.state, skipDocs, reuse, flags);
}
@Override
public void seekExact(BytesRef target, TermState otherState) {
// if (DEBUG) {
// System.out.println("BTTR.seekExact termState seg=" + segment + " target=" + target.utf8ToString() + " " + target + " state=" + otherState);
// }
assert clearEOF();
if (target.compareTo(term) != 0 || !termExists) {
assert otherState != null && otherState instanceof BlockTermState;
currentFrame = staticFrame;
currentFrame.state.copyFrom(otherState);
term.copyBytes(target);
currentFrame.metaDataUpto = currentFrame.getTermBlockOrd();
assert currentFrame.metaDataUpto > 0;
validIndexPrefix = 0;
} else {
// if (DEBUG) {
// System.out.println(" skip seek: already on target state=" + currentFrame.state);
// }
}
}
@Override
public TermState termState() throws IOException {
assert !eof;
currentFrame.decodeMetaData();
TermState ts = currentFrame.state.clone();
//if (DEBUG) System.out.println("BTTR.termState seg=" + segment + " state=" + ts);
return ts;
}
@Override
public void seekExact(long ord) {
throw new UnsupportedOperationException();
}
@Override
public long ord() {
throw new UnsupportedOperationException();
}
// Not static -- references term, postingsReader,
// fieldInfo, in
private final class Frame {
// Our index in stack[]:
final int ord;
boolean hasTerms;
boolean hasTermsOrig;
boolean isFloor;
FST.Arc<BytesRef> arc;
// File pointer where this block was loaded from
long fp;
long fpOrig;
long fpEnd;
byte[] suffixBytes = new byte[128];
final ByteArrayDataInput suffixesReader = new ByteArrayDataInput();
byte[] statBytes = new byte[64];
final ByteArrayDataInput statsReader = new ByteArrayDataInput();
byte[] floorData = new byte[32];
final ByteArrayDataInput floorDataReader = new ByteArrayDataInput();
// Length of prefix shared by all terms in this block
int prefix;
// Number of entries (term or sub-block) in this block
int entCount;
// Which term we will next read, or -1 if the block
// isn't loaded yet
int nextEnt;
// True if this block is either not a floor block,
// or, it's the last sub-block of a floor block
boolean isLastInFloor;
// True if all entries are terms
boolean isLeafBlock;
long lastSubFP;
int nextFloorLabel;
int numFollowFloorBlocks;
// Next term to decode metaData; we decode metaData
// lazily so that scanning to find the matching term is
// fast and only if you find a match and app wants the
// stats or docs/positions enums, will we decode the
// metaData
int metaDataUpto;
final BlockTermState state;
public Frame(int ord) throws IOException {
this.ord = ord;
state = postingsReader.newTermState();
state.totalTermFreq = -1;
}
public void setFloorData(ByteArrayDataInput in, BytesRef source) {
final int numBytes = source.length - (in.getPosition() - source.offset);
if (numBytes > floorData.length) {
floorData = new byte[ArrayUtil.oversize(numBytes, 1)];
}
System.arraycopy(source.bytes, source.offset+in.getPosition(), floorData, 0, numBytes);
floorDataReader.reset(floorData, 0, numBytes);
numFollowFloorBlocks = floorDataReader.readVInt();
nextFloorLabel = floorDataReader.readByte() & 0xff;
//if (DEBUG) {
//System.out.println(" setFloorData fpOrig=" + fpOrig + " bytes=" + new BytesRef(source.bytes, source.offset + in.getPosition(), numBytes) + " numFollowFloorBlocks=" + numFollowFloorBlocks + " nextFloorLabel=" + toHex(nextFloorLabel));
//}
}
public int getTermBlockOrd() {
return isLeafBlock ? nextEnt : state.termBlockOrd;
}
void loadNextFloorBlock() throws IOException {
//if (DEBUG) {
//System.out.println(" loadNextFloorBlock fp=" + fp + " fpEnd=" + fpEnd);
//}
assert arc == null || isFloor: "arc=" + arc + " isFloor=" + isFloor;
fp = fpEnd;
nextEnt = -1;
loadBlock();
}
/* Does initial decode of next block of terms; this
doesn't actually decode the docFreq, totalTermFreq,
postings details (frq/prx offset, etc.) metadata;
it just loads them as byte[] blobs which are then
decoded on-demand if the metadata is ever requested
for any term in this block. This enables terms-only
intensive consumes (eg certain MTQs, respelling) to
not pay the price of decoding metadata they won't
use. */
void loadBlock() throws IOException {
// Clone the IndexInput lazily, so that consumers
// that just pull a TermsEnum to
// seekExact(TermState) don't pay this cost:
initIndexInput();
if (nextEnt != -1) {
// Already loaded
return;
}
//System.out.println("blc=" + blockLoadCount);
in.seek(fp);
int code = in.readVInt();
entCount = code >>> 1;
assert entCount > 0;
isLastInFloor = (code & 1) != 0;
assert arc == null || (isLastInFloor || isFloor);
// TODO: if suffixes were stored in random-access
// array structure, then we could do binary search
// instead of linear scan to find target term; eg
// we could have simple array of offsets
// term suffixes:
code = in.readVInt();
isLeafBlock = (code & 1) != 0;
int numBytes = code >>> 1;
if (suffixBytes.length < numBytes) {
suffixBytes = new byte[ArrayUtil.oversize(numBytes, 1)];
}
in.readBytes(suffixBytes, 0, numBytes);
suffixesReader.reset(suffixBytes, 0, numBytes);
/*if (DEBUG) {
if (arc == null) {
System.out.println(" loadBlock (next) fp=" + fp + " entCount=" + entCount + " prefixLen=" + prefix + " isLastInFloor=" + isLastInFloor + " leaf?=" + isLeafBlock);
} else {
System.out.println(" loadBlock (seek) fp=" + fp + " entCount=" + entCount + " prefixLen=" + prefix + " hasTerms?=" + hasTerms + " isFloor?=" + isFloor + " isLastInFloor=" + isLastInFloor + " leaf?=" + isLeafBlock);
}
}*/
// stats
numBytes = in.readVInt();
if (statBytes.length < numBytes) {
statBytes = new byte[ArrayUtil.oversize(numBytes, 1)];
}
in.readBytes(statBytes, 0, numBytes);
statsReader.reset(statBytes, 0, numBytes);
metaDataUpto = 0;
state.termBlockOrd = 0;
nextEnt = 0;
lastSubFP = -1;
// TODO: we could skip this if !hasTerms; but
// that's rare so won't help much
postingsReader.readTermsBlock(in, fieldInfo, state);
// Sub-blocks of a single floor block are always
// written one after another -- tail recurse:
fpEnd = in.getFilePointer();
// if (DEBUG) {
// System.out.println(" fpEnd=" + fpEnd);
// }
}
void rewind() {
// Force reload:
fp = fpOrig;
nextEnt = -1;
hasTerms = hasTermsOrig;
if (isFloor) {
floorDataReader.rewind();
numFollowFloorBlocks = floorDataReader.readVInt();
nextFloorLabel = floorDataReader.readByte() & 0xff;
}
/*
//System.out.println("rewind");
// Keeps the block loaded, but rewinds its state:
if (nextEnt > 0 || fp != fpOrig) {
if (DEBUG) {
System.out.println(" rewind frame ord=" + ord + " fpOrig=" + fpOrig + " fp=" + fp + " hasTerms?=" + hasTerms + " isFloor?=" + isFloor + " nextEnt=" + nextEnt + " prefixLen=" + prefix);
}
if (fp != fpOrig) {
fp = fpOrig;
nextEnt = -1;
} else {
nextEnt = 0;
}
hasTerms = hasTermsOrig;
if (isFloor) {
floorDataReader.rewind();
numFollowFloorBlocks = floorDataReader.readVInt();
nextFloorLabel = floorDataReader.readByte() & 0xff;
}
assert suffixBytes != null;
suffixesReader.rewind();
assert statBytes != null;
statsReader.rewind();
metaDataUpto = 0;
state.termBlockOrd = 0;
// TODO: skip this if !hasTerms? Then postings
// impl wouldn't have to write useless 0 byte
postingsReader.resetTermsBlock(fieldInfo, state);
lastSubFP = -1;
} else if (DEBUG) {
System.out.println(" skip rewind fp=" + fp + " fpOrig=" + fpOrig + " nextEnt=" + nextEnt + " ord=" + ord);
}
*/
}
public boolean next() {
return isLeafBlock ? nextLeaf() : nextNonLeaf();
}
// Decodes next entry; returns true if it's a sub-block
public boolean nextLeaf() {
//if (DEBUG) System.out.println(" frame.next ord=" + ord + " nextEnt=" + nextEnt + " entCount=" + entCount);
assert nextEnt != -1 && nextEnt < entCount: "nextEnt=" + nextEnt + " entCount=" + entCount + " fp=" + fp;
nextEnt++;
suffix = suffixesReader.readVInt();
startBytePos = suffixesReader.getPosition();
term.length = prefix + suffix;
if (term.bytes.length < term.length) {
term.grow(term.length);
}
suffixesReader.readBytes(term.bytes, prefix, suffix);
// A normal term
termExists = true;
return false;
}
public boolean nextNonLeaf() {
//if (DEBUG) System.out.println(" frame.next ord=" + ord + " nextEnt=" + nextEnt + " entCount=" + entCount);
assert nextEnt != -1 && nextEnt < entCount: "nextEnt=" + nextEnt + " entCount=" + entCount + " fp=" + fp;
nextEnt++;
final int code = suffixesReader.readVInt();
suffix = code >>> 1;
startBytePos = suffixesReader.getPosition();
term.length = prefix + suffix;
if (term.bytes.length < term.length) {
term.grow(term.length);
}
suffixesReader.readBytes(term.bytes, prefix, suffix);
if ((code & 1) == 0) {
// A normal term
termExists = true;
subCode = 0;
state.termBlockOrd++;
return false;
} else {
// A sub-block; make sub-FP absolute:
termExists = false;
subCode = suffixesReader.readVLong();
lastSubFP = fp - subCode;
//if (DEBUG) {
//System.out.println(" lastSubFP=" + lastSubFP);
//}
return true;
}
}
// TODO: make this array'd so we can do bin search?
// likely not worth it? need to measure how many
// floor blocks we "typically" get
public void scanToFloorFrame(BytesRef target) {
if (!isFloor || target.length <= prefix) {
// if (DEBUG) {
// System.out.println(" scanToFloorFrame skip: isFloor=" + isFloor + " target.length=" + target.length + " vs prefix=" + prefix);
// }
return;
}
final int targetLabel = target.bytes[target.offset + prefix] & 0xFF;
// if (DEBUG) {
// System.out.println(" scanToFloorFrame fpOrig=" + fpOrig + " targetLabel=" + toHex(targetLabel) + " vs nextFloorLabel=" + toHex(nextFloorLabel) + " numFollowFloorBlocks=" + numFollowFloorBlocks);
// }
if (targetLabel < nextFloorLabel) {
// if (DEBUG) {
// System.out.println(" already on correct block");
// }
return;
}
assert numFollowFloorBlocks != 0;
long newFP = fpOrig;
while (true) {
final long code = floorDataReader.readVLong();
newFP = fpOrig + (code >>> 1);
hasTerms = (code & 1) != 0;
// if (DEBUG) {
// System.out.println(" label=" + toHex(nextFloorLabel) + " fp=" + newFP + " hasTerms?=" + hasTerms + " numFollowFloor=" + numFollowFloorBlocks);
// }
isLastInFloor = numFollowFloorBlocks == 1;
numFollowFloorBlocks--;
if (isLastInFloor) {
nextFloorLabel = 256;
// if (DEBUG) {
// System.out.println(" stop! last block nextFloorLabel=" + toHex(nextFloorLabel));
// }
break;
} else {
nextFloorLabel = floorDataReader.readByte() & 0xff;
if (targetLabel < nextFloorLabel) {
// if (DEBUG) {
// System.out.println(" stop! nextFloorLabel=" + toHex(nextFloorLabel));
// }
break;
}
}
}
if (newFP != fp) {
// Force re-load of the block:
// if (DEBUG) {
// System.out.println(" force switch to fp=" + newFP + " oldFP=" + fp);
// }
nextEnt = -1;
fp = newFP;
} else {
// if (DEBUG) {
// System.out.println(" stay on same fp=" + newFP);
// }
}
}
public void decodeMetaData() throws IOException {
//if (DEBUG) System.out.println("\nBTTR.decodeMetadata seg=" + segment + " mdUpto=" + metaDataUpto + " vs termBlockOrd=" + state.termBlockOrd);
// lazily catch up on metadata decode:
final int limit = getTermBlockOrd();
assert limit > 0;
// We must set/incr state.termCount because
// postings impl can look at this
state.termBlockOrd = metaDataUpto;
// TODO: better API would be "jump straight to term=N"???
while (metaDataUpto < limit) {
// TODO: we could make "tiers" of metadata, ie,
// decode docFreq/totalTF but don't decode postings
// metadata; this way caller could get
// docFreq/totalTF w/o paying decode cost for
// postings
// TODO: if docFreq were bulk decoded we could
// just skipN here:
state.docFreq = statsReader.readVInt();
//if (DEBUG) System.out.println(" dF=" + state.docFreq);
if (fieldInfo.getIndexOptions() != IndexOptions.DOCS_ONLY) {
state.totalTermFreq = state.docFreq + statsReader.readVLong();
//if (DEBUG) System.out.println(" totTF=" + state.totalTermFreq);
}
postingsReader.nextTerm(fieldInfo, state);
metaDataUpto++;
state.termBlockOrd++;
}
}
// Used only by assert
private boolean prefixMatches(BytesRef target) {
for(int bytePos=0;bytePos<prefix;bytePos++) {
if (target.bytes[target.offset + bytePos] != term.bytes[bytePos]) {
return false;
}
}
return true;
}
// Scans to sub-block that has this target fp; only
// called by next(); NOTE: does not set
// startBytePos/suffix as a side effect
public void scanToSubBlock(long subFP) {
assert !isLeafBlock;
//if (DEBUG) System.out.println(" scanToSubBlock fp=" + fp + " subFP=" + subFP + " entCount=" + entCount + " lastSubFP=" + lastSubFP);
//assert nextEnt == 0;
if (lastSubFP == subFP) {
//if (DEBUG) System.out.println(" already positioned");
return;
}
assert subFP < fp : "fp=" + fp + " subFP=" + subFP;
final long targetSubCode = fp - subFP;
//if (DEBUG) System.out.println(" targetSubCode=" + targetSubCode);
while(true) {
assert nextEnt < entCount;
nextEnt++;
final int code = suffixesReader.readVInt();
suffixesReader.skipBytes(isLeafBlock ? code : code >>> 1);
//if (DEBUG) System.out.println(" " + nextEnt + " (of " + entCount + ") ent isSubBlock=" + ((code&1)==1));
if ((code & 1) != 0) {
final long subCode = suffixesReader.readVLong();
//if (DEBUG) System.out.println(" subCode=" + subCode);
if (targetSubCode == subCode) {
//if (DEBUG) System.out.println(" match!");
lastSubFP = subFP;
return;
}
} else {
state.termBlockOrd++;
}
}
}
// NOTE: sets startBytePos/suffix as a side effect
public SeekStatus scanToTerm(BytesRef target, boolean exactOnly) throws IOException {
return isLeafBlock ? scanToTermLeaf(target, exactOnly) : scanToTermNonLeaf(target, exactOnly);
}
private int startBytePos;
private int suffix;
private long subCode;
// Target's prefix matches this block's prefix; we
// scan the entries check if the suffix matches.
public SeekStatus scanToTermLeaf(BytesRef target, boolean exactOnly) throws IOException {
// if (DEBUG) System.out.println(" scanToTermLeaf: block fp=" + fp + " prefix=" + prefix + " nextEnt=" + nextEnt + " (of " + entCount + ") target=" + brToString(target) + " term=" + brToString(term));
assert nextEnt != -1;
termExists = true;
subCode = 0;
if (nextEnt == entCount) {
if (exactOnly) {
fillTerm();
}
return SeekStatus.END;
}
assert prefixMatches(target);
// Loop over each entry (term or sub-block) in this block:
//nextTerm: while(nextEnt < entCount) {
nextTerm: while (true) {
nextEnt++;
suffix = suffixesReader.readVInt();
// if (DEBUG) {
// BytesRef suffixBytesRef = new BytesRef();
// suffixBytesRef.bytes = suffixBytes;
// suffixBytesRef.offset = suffixesReader.getPosition();
// suffixBytesRef.length = suffix;
// System.out.println(" cycle: term " + (nextEnt-1) + " (of " + entCount + ") suffix=" + brToString(suffixBytesRef));
// }
final int termLen = prefix + suffix;
startBytePos = suffixesReader.getPosition();
suffixesReader.skipBytes(suffix);
final int targetLimit = target.offset + (target.length < termLen ? target.length : termLen);
int targetPos = target.offset + prefix;
// Loop over bytes in the suffix, comparing to
// the target
int bytePos = startBytePos;
while(true) {
final int cmp;
final boolean stop;
if (targetPos < targetLimit) {
cmp = (suffixBytes[bytePos++]&0xFF) - (target.bytes[targetPos++]&0xFF);
stop = false;
} else {
assert targetPos == targetLimit;
cmp = termLen - target.length;
stop = true;
}
if (cmp < 0) {
// Current entry is still before the target;
// keep scanning
if (nextEnt == entCount) {
if (exactOnly) {
fillTerm();
}
// We are done scanning this block
break nextTerm;
} else {
continue nextTerm;
}
} else if (cmp > 0) {
// Done! Current entry is after target --
// return NOT_FOUND:
fillTerm();
if (!exactOnly && !termExists) {
// We are on a sub-block, and caller wants
// us to position to the next term after
// the target, so we must recurse into the
// sub-frame(s):
currentFrame = pushFrame(null, currentFrame.lastSubFP, termLen);
currentFrame.loadBlock();
while (currentFrame.next()) {
currentFrame = pushFrame(null, currentFrame.lastSubFP, term.length);
currentFrame.loadBlock();
}
}
//if (DEBUG) System.out.println(" not found");
return SeekStatus.NOT_FOUND;
} else if (stop) {
// Exact match!
// This cannot be a sub-block because we
// would have followed the index to this
// sub-block from the start:
assert termExists;
fillTerm();
//if (DEBUG) System.out.println(" found!");
return SeekStatus.FOUND;
}
}
}
// It is possible (and OK) that terms index pointed us
// at this block, but, we scanned the entire block and
// did not find the term to position to. This happens
// when the target is after the last term in the block
// (but, before the next term in the index). EG
// target could be foozzz, and terms index pointed us
// to the foo* block, but the last term in this block
// was fooz (and, eg, first term in the next block will
// bee fop).
//if (DEBUG) System.out.println(" block end");
if (exactOnly) {
fillTerm();
}
// TODO: not consistent that in the
// not-exact case we don't next() into the next
// frame here
return SeekStatus.END;
}
// Target's prefix matches this block's prefix; we
// scan the entries check if the suffix matches.
public SeekStatus scanToTermNonLeaf(BytesRef target, boolean exactOnly) throws IOException {
//if (DEBUG) System.out.println(" scanToTermNonLeaf: block fp=" + fp + " prefix=" + prefix + " nextEnt=" + nextEnt + " (of " + entCount + ") target=" + brToString(target) + " term=" + brToString(term));
assert nextEnt != -1;
if (nextEnt == entCount) {
if (exactOnly) {
fillTerm();
termExists = subCode == 0;
}
return SeekStatus.END;
}
assert prefixMatches(target);
// Loop over each entry (term or sub-block) in this block:
//nextTerm: while(nextEnt < entCount) {
nextTerm: while (true) {
nextEnt++;
final int code = suffixesReader.readVInt();
suffix = code >>> 1;
// if (DEBUG) {
// BytesRef suffixBytesRef = new BytesRef();
// suffixBytesRef.bytes = suffixBytes;
// suffixBytesRef.offset = suffixesReader.getPosition();
// suffixBytesRef.length = suffix;
// System.out.println(" cycle: " + ((code&1)==1 ? "sub-block" : "term") + " " + (nextEnt-1) + " (of " + entCount + ") suffix=" + brToString(suffixBytesRef));
// }
termExists = (code & 1) == 0;
final int termLen = prefix + suffix;
startBytePos = suffixesReader.getPosition();
suffixesReader.skipBytes(suffix);
if (termExists) {
state.termBlockOrd++;
subCode = 0;
} else {
subCode = suffixesReader.readVLong();
lastSubFP = fp - subCode;
}
final int targetLimit = target.offset + (target.length < termLen ? target.length : termLen);
int targetPos = target.offset + prefix;
// Loop over bytes in the suffix, comparing to
// the target
int bytePos = startBytePos;
while(true) {
final int cmp;
final boolean stop;
if (targetPos < targetLimit) {
cmp = (suffixBytes[bytePos++]&0xFF) - (target.bytes[targetPos++]&0xFF);
stop = false;
} else {
assert targetPos == targetLimit;
cmp = termLen - target.length;
stop = true;
}
if (cmp < 0) {
// Current entry is still before the target;
// keep scanning
if (nextEnt == entCount) {
if (exactOnly) {
fillTerm();
//termExists = true;
}
// We are done scanning this block
break nextTerm;
} else {
continue nextTerm;
}
} else if (cmp > 0) {
// Done! Current entry is after target --
// return NOT_FOUND:
fillTerm();
if (!exactOnly && !termExists) {
// We are on a sub-block, and caller wants
// us to position to the next term after
// the target, so we must recurse into the
// sub-frame(s):
currentFrame = pushFrame(null, currentFrame.lastSubFP, termLen);
currentFrame.loadBlock();
while (currentFrame.next()) {
currentFrame = pushFrame(null, currentFrame.lastSubFP, term.length);
currentFrame.loadBlock();
}
}
//if (DEBUG) System.out.println(" not found");
return SeekStatus.NOT_FOUND;
} else if (stop) {
// Exact match!
// This cannot be a sub-block because we
// would have followed the index to this
// sub-block from the start:
assert termExists;
fillTerm();
//if (DEBUG) System.out.println(" found!");
return SeekStatus.FOUND;
}
}
}
// It is possible (and OK) that terms index pointed us
// at this block, but, we scanned the entire block and
// did not find the term to position to. This happens
// when the target is after the last term in the block
// (but, before the next term in the index). EG
// target could be foozzz, and terms index pointed us
// to the foo* block, but the last term in this block
// was fooz (and, eg, first term in the next block will
// bee fop).
//if (DEBUG) System.out.println(" block end");
if (exactOnly) {
fillTerm();
}
// TODO: not consistent that in the
// not-exact case we don't next() into the next
// frame here
return SeekStatus.END;
}
private void fillTerm() {
final int termLength = prefix + suffix;
term.length = prefix + suffix;
if (term.bytes.length < termLength) {
term.grow(termLength);
}
System.arraycopy(suffixBytes, startBytePos, term.bytes, prefix, suffix);
}
}
}
}
}