blob: 579814ec81ac6b57d0ef8552f6499f404b93f62d [file] [log] [blame]
/* Copyright 2002-2004 Justin Erenkrantz and Greg Stein
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----
*
* For the OpenSSL thread-safety locking code:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Originally developed by Aaron Bannert and Justin Erenkrantz, eBuilt.
*/
#include <apr_pools.h>
#include <apr_network_io.h>
#include <apr_portable.h>
#include <apr_strings.h>
#include <apr_base64.h>
#include <apr_version.h>
#include <apr_atomic.h>
#include "serf.h"
#include "serf_private.h"
#include "serf_bucket_util.h"
#include <openssl/bio.h>
#include <openssl/ssl.h>
#include <openssl/err.h>
#include <openssl/pkcs12.h>
#include <openssl/x509v3.h>
#ifndef APR_VERSION_AT_LEAST /* Introduced in APR 1.3.0 */
#define APR_VERSION_AT_LEAST(major,minor,patch) \
(((major) < APR_MAJOR_VERSION) \
|| ((major) == APR_MAJOR_VERSION && (minor) < APR_MINOR_VERSION) \
|| ((major) == APR_MAJOR_VERSION && (minor) == APR_MINOR_VERSION && \
(patch) <= APR_PATCH_VERSION))
#endif /* APR_VERSION_AT_LEAST */
#ifndef APR_ARRAY_PUSH
#define APR_ARRAY_PUSH(ary,type) (*((type *)apr_array_push(ary)))
#endif
/*
* Here's an overview of the SSL bucket's relationship to OpenSSL and serf.
*
* HTTP request: SSLENCRYPT(REQUEST)
* [context.c reads from SSLENCRYPT and writes out to the socket]
* HTTP response: RESPONSE(SSLDECRYPT(SOCKET))
* [handler function reads from RESPONSE which in turn reads from SSLDECRYPT]
*
* HTTP request read call path:
*
* write_to_connection
* |- serf_bucket_read on SSLENCRYPT
* |- serf_ssl_read
* |- serf_databuf_read
* |- common_databuf_prep
* |- ssl_encrypt
* |- 1. Try to read pending encrypted data; If available, return.
* |- 2. Try to read from ctx->stream [REQUEST bucket]
* |- 3. Call SSL_write with read data
* |- ...
* |- bio_bucket_read can be called
* |- bio_bucket_write with encrypted data
* |- store in sink
* |- 4. If successful, read pending encrypted data and return.
* |- 5. If fails, place read data back in ctx->stream
*
* HTTP response read call path:
*
* read_from_connection
* |- acceptor
* |- handler
* |- ...
* |- serf_bucket_read(SSLDECRYPT)
* |- serf_ssl_read
* |- serf_databuf_read
* |- ssl_decrypt
* |- 1. SSL_read() for pending decrypted data; if any, return.
* |- 2. Try to read from ctx->stream [SOCKET bucket]
* |- 3. Append data to ssl_ctx->source
* |- 4. Call SSL_read()
* |- ...
* |- bio_bucket_write can be called
* |- bio_bucket_read
* |- read data from ssl_ctx->source
* |- If data read, return it.
* |- If an error, set the STATUS value and return.
*
*/
typedef struct bucket_list {
serf_bucket_t *bucket;
struct bucket_list *next;
} bucket_list_t;
typedef struct {
/* Helper to read data. Wraps stream. */
serf_databuf_t databuf;
/* Our source for more data. */
serf_bucket_t *stream;
/* The next set of buckets */
bucket_list_t *stream_next;
/* The status of the last thing we read. */
apr_status_t status;
apr_status_t exhausted;
int exhausted_reset;
/* Data we've read but not processed. */
serf_bucket_t *pending;
} serf_ssl_stream_t;
struct serf_ssl_context_t {
/* How many open buckets refer to this context. */
int refcount;
/* The pool that this context uses. */
apr_pool_t *pool;
/* The allocator associated with the above pool. */
serf_bucket_alloc_t *allocator;
/* Internal OpenSSL parameters */
SSL_CTX *ctx;
SSL *ssl;
BIO *bio;
serf_ssl_stream_t encrypt;
serf_ssl_stream_t decrypt;
/* Client cert callbacks */
serf_ssl_need_client_cert_t cert_callback;
void *cert_userdata;
apr_pool_t *cert_cache_pool;
const char *cert_file_success;
/* Client cert PW callbacks */
serf_ssl_need_cert_password_t cert_pw_callback;
void *cert_pw_userdata;
apr_pool_t *cert_pw_cache_pool;
const char *cert_pw_success;
/* Server cert callbacks */
serf_ssl_need_server_cert_t server_cert_callback;
serf_ssl_server_cert_chain_cb_t server_cert_chain_callback;
void *server_cert_userdata;
const char *cert_path;
X509 *cached_cert;
EVP_PKEY *cached_cert_pw;
apr_status_t pending_err;
/* Status of a fatal error, returned on subsequent encrypt or decrypt
requests. */
apr_status_t fatal_err;
};
typedef struct {
/* The bucket-independent ssl context that this bucket is associated with */
serf_ssl_context_t *ssl_ctx;
/* Pointer to the 'right' databuf. */
serf_databuf_t *databuf;
/* Pointer to our stream, so we can find it later. */
serf_bucket_t **our_stream;
} ssl_context_t;
struct serf_ssl_certificate_t {
X509 *ssl_cert;
int depth;
};
static void disable_compression(serf_ssl_context_t *ssl_ctx);
static char *
pstrdup_escape_nul_bytes(const char *buf, int len, apr_pool_t *pool);
#if SSL_VERBOSE
/* Log all ssl alerts that we receive from the server. */
static void
apps_ssl_info_callback(const SSL *s, int where, int ret)
{
const char *str;
int w;
w = where & ~SSL_ST_MASK;
if (w & SSL_ST_CONNECT)
str = "SSL_connect";
else if (w & SSL_ST_ACCEPT)
str = "SSL_accept";
else
str = "undefined";
if (where & SSL_CB_LOOP) {
serf__log(SSL_VERBOSE, __FILE__, "%s:%s\n", str,
SSL_state_string_long(s));
}
else if (where & SSL_CB_ALERT) {
str = (where & SSL_CB_READ) ? "read" : "write";
serf__log(SSL_VERBOSE, __FILE__, "SSL3 alert %s:%s:%s\n",
str,
SSL_alert_type_string_long(ret),
SSL_alert_desc_string_long(ret));
}
else if (where & SSL_CB_EXIT) {
if (ret == 0)
serf__log(SSL_VERBOSE, __FILE__, "%s:failed in %s\n", str,
SSL_state_string_long(s));
else if (ret < 0) {
serf__log(SSL_VERBOSE, __FILE__, "%s:error in %s\n", str,
SSL_state_string_long(s));
}
}
}
#endif
/* Returns the amount read. */
static int bio_bucket_read(BIO *bio, char *in, int inlen)
{
serf_ssl_context_t *ctx = bio->ptr;
const char *data;
apr_status_t status;
apr_size_t len;
serf__log(SSL_VERBOSE, __FILE__, "bio_bucket_read called for %d bytes\n",
inlen);
if (ctx->encrypt.status == SERF_ERROR_WAIT_CONN
&& BIO_should_read(ctx->bio)) {
serf__log(SSL_VERBOSE, __FILE__,
"bio_bucket_read waiting: (%d %d %d)\n",
BIO_should_retry(ctx->bio), BIO_should_read(ctx->bio),
BIO_get_retry_flags(ctx->bio));
/* Falling back... */
ctx->encrypt.exhausted_reset = 1;
BIO_clear_retry_flags(bio);
}
status = serf_bucket_read(ctx->decrypt.pending, inlen, &data, &len);
ctx->decrypt.status = status;
serf__log(SSL_VERBOSE, __FILE__, "bio_bucket_read received %d bytes (%d)\n",
len, status);
if (!SERF_BUCKET_READ_ERROR(status)) {
/* Oh suck. */
if (len) {
memcpy(in, data, len);
return len;
}
if (APR_STATUS_IS_EOF(status)) {
BIO_set_retry_read(bio);
return -1;
}
}
return -1;
}
/* Returns the amount written. */
static int bio_bucket_write(BIO *bio, const char *in, int inl)
{
serf_ssl_context_t *ctx = bio->ptr;
serf_bucket_t *tmp;
serf__log(SSL_VERBOSE, __FILE__, "bio_bucket_write called for %d bytes\n",
inl);
if (ctx->encrypt.status == SERF_ERROR_WAIT_CONN
&& !BIO_should_read(ctx->bio)) {
serf__log(SSL_VERBOSE, __FILE__,
"bio_bucket_write waiting: (%d %d %d)\n",
BIO_should_retry(ctx->bio), BIO_should_read(ctx->bio),
BIO_get_retry_flags(ctx->bio));
/* Falling back... */
ctx->encrypt.exhausted_reset = 1;
BIO_clear_retry_flags(bio);
}
tmp = serf_bucket_simple_copy_create(in, inl,
ctx->encrypt.pending->allocator);
serf_bucket_aggregate_append(ctx->encrypt.pending, tmp);
return inl;
}
/* Returns the amount read. */
static int bio_file_read(BIO *bio, char *in, int inlen)
{
apr_file_t *file = bio->ptr;
apr_status_t status;
apr_size_t len;
BIO_clear_retry_flags(bio);
len = inlen;
status = apr_file_read(file, in, &len);
if (!SERF_BUCKET_READ_ERROR(status)) {
/* Oh suck. */
if (APR_STATUS_IS_EOF(status)) {
BIO_set_retry_read(bio);
return -1;
} else {
return len;
}
}
return -1;
}
/* Returns the amount written. */
static int bio_file_write(BIO *bio, const char *in, int inl)
{
apr_file_t *file = bio->ptr;
apr_size_t nbytes;
BIO_clear_retry_flags(bio);
nbytes = inl;
apr_file_write(file, in, &nbytes);
return nbytes;
}
static int bio_file_gets(BIO *bio, char *in, int inlen)
{
return bio_file_read(bio, in, inlen);
}
static int bio_bucket_create(BIO *bio)
{
bio->shutdown = 1;
bio->init = 1;
bio->num = -1;
bio->ptr = NULL;
return 1;
}
static int bio_bucket_destroy(BIO *bio)
{
/* Did we already free this? */
if (bio == NULL) {
return 0;
}
return 1;
}
static long bio_bucket_ctrl(BIO *bio, int cmd, long num, void *ptr)
{
long ret = 1;
switch (cmd) {
default:
/* abort(); */
break;
case BIO_CTRL_FLUSH:
/* At this point we can't force a flush. */
break;
case BIO_CTRL_PUSH:
case BIO_CTRL_POP:
ret = 0;
break;
}
return ret;
}
static BIO_METHOD bio_bucket_method = {
BIO_TYPE_MEM,
"Serf SSL encryption and decryption buckets",
bio_bucket_write,
bio_bucket_read,
NULL, /* Is this called? */
NULL, /* Is this called? */
bio_bucket_ctrl,
bio_bucket_create,
bio_bucket_destroy,
#ifdef OPENSSL_VERSION_NUMBER
NULL /* sslc does not have the callback_ctrl field */
#endif
};
static BIO_METHOD bio_file_method = {
BIO_TYPE_FILE,
"Wrapper around APR file structures",
bio_file_write,
bio_file_read,
NULL, /* Is this called? */
bio_file_gets, /* Is this called? */
bio_bucket_ctrl,
bio_bucket_create,
bio_bucket_destroy,
#ifdef OPENSSL_VERSION_NUMBER
NULL /* sslc does not have the callback_ctrl field */
#endif
};
typedef enum san_copy_t {
EscapeNulAndCopy = 0,
ErrorOnNul = 1,
} san_copy_t;
static apr_status_t
get_subject_alt_names(apr_array_header_t **san_arr, X509 *ssl_cert,
san_copy_t copy_action, apr_pool_t *pool)
{
STACK_OF(GENERAL_NAME) *names;
/* assert: copy_action == ErrorOnNul || (san_arr && pool) */
if (san_arr) {
*san_arr = NULL;
}
/* Get subjectAltNames */
names = X509_get_ext_d2i(ssl_cert, NID_subject_alt_name, NULL, NULL);
if (names) {
int names_count = sk_GENERAL_NAME_num(names);
int name_idx;
if (san_arr)
*san_arr = apr_array_make(pool, names_count, sizeof(char*));
for (name_idx = 0; name_idx < names_count; name_idx++) {
char *p = NULL;
GENERAL_NAME *nm = sk_GENERAL_NAME_value(names, name_idx);
switch (nm->type) {
case GEN_DNS:
if (copy_action == ErrorOnNul &&
strlen(nm->d.ia5->data) != nm->d.ia5->length)
return SERF_ERROR_SSL_CERT_FAILED;
if (san_arr && *san_arr)
p = pstrdup_escape_nul_bytes((const char *)nm->d.ia5->data,
nm->d.ia5->length,
pool);
break;
default:
/* Don't know what to do - skip. */
break;
}
if (p) {
APR_ARRAY_PUSH(*san_arr, char*) = p;
}
}
sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free);
}
return APR_SUCCESS;
}
static apr_status_t validate_cert_hostname(X509 *server_cert, apr_pool_t *pool)
{
char buf[1024];
int length;
apr_status_t ret;
ret = get_subject_alt_names(NULL, server_cert, ErrorOnNul, NULL);
if (ret) {
return ret;
} else {
/* Fail if the subject's CN field contains \0 characters. */
X509_NAME *subject = X509_get_subject_name(server_cert);
if (!subject)
return SERF_ERROR_SSL_CERT_FAILED;
length = X509_NAME_get_text_by_NID(subject, NID_commonName, buf, 1024);
if (length != -1)
if (strlen(buf) != length)
return SERF_ERROR_SSL_CERT_FAILED;
}
return APR_SUCCESS;
}
static int
validate_server_certificate(int cert_valid, X509_STORE_CTX *store_ctx)
{
SSL *ssl;
serf_ssl_context_t *ctx;
X509 *server_cert;
int err, depth;
int failures = 0;
apr_status_t status;
ssl = X509_STORE_CTX_get_ex_data(store_ctx,
SSL_get_ex_data_X509_STORE_CTX_idx());
ctx = SSL_get_app_data(ssl);
server_cert = X509_STORE_CTX_get_current_cert(store_ctx);
depth = X509_STORE_CTX_get_error_depth(store_ctx);
/* If the certification was found invalid, get the error and convert it to
something our caller will understand. */
if (! cert_valid) {
err = X509_STORE_CTX_get_error(store_ctx);
switch(err) {
case X509_V_ERR_CERT_NOT_YET_VALID:
failures |= SERF_SSL_CERT_NOTYETVALID;
break;
case X509_V_ERR_CERT_HAS_EXPIRED:
failures |= SERF_SSL_CERT_EXPIRED;
break;
case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
failures |= SERF_SSL_CERT_SELF_SIGNED;
break;
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
case X509_V_ERR_CERT_UNTRUSTED:
case X509_V_ERR_INVALID_CA:
case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
failures |= SERF_SSL_CERT_UNKNOWNCA;
break;
case X509_V_ERR_CERT_REVOKED:
failures |= SERF_SSL_CERT_REVOKED;
break;
default:
failures |= SERF_SSL_CERT_UNKNOWN_FAILURE;
break;
}
}
/* Validate hostname */
status = validate_cert_hostname(server_cert, ctx->pool);
if (status)
failures |= SERF_SSL_CERT_UNKNOWN_FAILURE;
/* Check certificate expiry dates. */
if (X509_cmp_current_time(X509_get_notBefore(server_cert)) >= 0) {
failures |= SERF_SSL_CERT_NOTYETVALID;
}
else if (X509_cmp_current_time(X509_get_notAfter(server_cert)) <= 0) {
failures |= SERF_SSL_CERT_EXPIRED;
}
if (ctx->server_cert_callback &&
(depth == 0 || failures)) {
serf_ssl_certificate_t *cert;
apr_pool_t *subpool;
apr_pool_create(&subpool, ctx->pool);
cert = apr_palloc(subpool, sizeof(serf_ssl_certificate_t));
cert->ssl_cert = server_cert;
cert->depth = depth;
/* Callback for further verification. */
status = ctx->server_cert_callback(ctx->server_cert_userdata,
failures, cert);
if (status == APR_SUCCESS)
cert_valid = 1;
else {
/* Even if openssl found the certificate valid, the application
told us to reject it. */
cert_valid = 0;
/* Pass the error back to the caller through the context-run. */
ctx->pending_err = status;
}
apr_pool_destroy(subpool);
}
if (ctx->server_cert_chain_callback
&& (depth == 0 || failures)) {
STACK_OF(X509) *chain;
const serf_ssl_certificate_t **certs;
int certs_len;
apr_pool_t *subpool;
apr_pool_create(&subpool, ctx->pool);
/* Borrow the chain to pass to the callback. */
chain = X509_STORE_CTX_get_chain(store_ctx);
/* If the chain can't be retrieved, just pass the current
certificate. */
/* ### can this actually happen with _get_chain() ? */
if (!chain) {
serf_ssl_certificate_t *cert = apr_palloc(subpool, sizeof(*cert));
cert->ssl_cert = server_cert;
cert->depth = depth;
/* Room for the server_cert and a trailing NULL. */
certs = apr_palloc(subpool, sizeof(*certs) * 2);
certs[0] = cert;
certs_len = 1;
} else {
int i;
certs_len = sk_X509_num(chain);
/* Room for all the certs and a trailing NULL. */
certs = apr_palloc(subpool, sizeof(*certs) * (certs_len + 1));
for (i = 0; i < certs_len; ++i) {
serf_ssl_certificate_t *cert;
cert = apr_palloc(subpool, sizeof(*cert));
cert->ssl_cert = sk_X509_value(chain, i);
cert->depth = i;
certs[i] = cert;
}
}
certs[certs_len] = NULL;
/* Callback for further verification. */
status = ctx->server_cert_chain_callback(ctx->server_cert_userdata,
failures, depth,
certs, certs_len);
if (status == APR_SUCCESS) {
cert_valid = 1;
} else {
/* Even if openssl found the certificate valid, the application
told us to reject it. */
cert_valid = 0;
/* Pass the error back to the caller through the context-run. */
ctx->pending_err = status;
}
apr_pool_destroy(subpool);
}
/* Return a specific error if the server certificate is not accepted by
OpenSSL and the application has not set callbacks to override this. */
if (!cert_valid &&
!ctx->server_cert_chain_callback &&
!ctx->server_cert_callback)
{
ctx->pending_err = SERF_ERROR_SSL_CERT_FAILED;
}
return cert_valid;
}
/* This function reads an encrypted stream and returns the decrypted stream. */
static apr_status_t ssl_decrypt(void *baton, apr_size_t bufsize,
char *buf, apr_size_t *len)
{
serf_ssl_context_t *ctx = baton;
apr_size_t priv_len;
apr_status_t status;
const char *data;
int ssl_len;
if (ctx->fatal_err)
return ctx->fatal_err;
serf__log(SSL_VERBOSE, __FILE__, "ssl_decrypt: begin %d\n", bufsize);
/* Is there some data waiting to be read? */
ssl_len = SSL_read(ctx->ssl, buf, bufsize);
if (ssl_len > 0) {
serf__log(SSL_VERBOSE, __FILE__,
"ssl_decrypt: %d bytes (%d); status: %d; flags: %d\n",
ssl_len, bufsize, ctx->decrypt.status,
BIO_get_retry_flags(ctx->bio));
*len = ssl_len;
return APR_SUCCESS;
}
status = serf_bucket_read(ctx->decrypt.stream, bufsize, &data, &priv_len);
if (!SERF_BUCKET_READ_ERROR(status) && priv_len) {
serf_bucket_t *tmp;
serf__log(SSL_VERBOSE, __FILE__,
"ssl_decrypt: read %d bytes (%d); status: %d\n",
priv_len, bufsize, status);
tmp = serf_bucket_simple_copy_create(data, priv_len,
ctx->decrypt.pending->allocator);
serf_bucket_aggregate_append(ctx->decrypt.pending, tmp);
ssl_len = SSL_read(ctx->ssl, buf, bufsize);
if (ssl_len < 0) {
int ssl_err;
ssl_err = SSL_get_error(ctx->ssl, ssl_len);
switch (ssl_err) {
case SSL_ERROR_SYSCALL:
*len = 0;
/* Return the underlying network error that caused OpenSSL
to fail. ### This can be a crypt error! */
status = ctx->decrypt.status;
break;
case SSL_ERROR_WANT_READ:
case SSL_ERROR_WANT_WRITE:
*len = 0;
status = APR_EAGAIN;
break;
case SSL_ERROR_SSL:
*len = 0;
if (ctx->pending_err) {
status = ctx->pending_err;
ctx->pending_err = 0;
} else {
ctx->fatal_err = status = SERF_ERROR_SSL_COMM_FAILED;
}
break;
default:
*len = 0;
ctx->fatal_err = status = SERF_ERROR_SSL_COMM_FAILED;
break;
}
} else if (ssl_len == 0) {
/* The server shut down the connection. */
int ssl_err, shutdown;
*len = 0;
/* Check for SSL_RECEIVED_SHUTDOWN */
shutdown = SSL_get_shutdown(ctx->ssl);
/* Check for SSL_ERROR_ZERO_RETURN */
ssl_err = SSL_get_error(ctx->ssl, ssl_len);
if (shutdown == SSL_RECEIVED_SHUTDOWN &&
ssl_err == SSL_ERROR_ZERO_RETURN) {
/* The server closed the SSL session. While this doesn't
necessary mean the connection is closed, let's close
it here anyway.
We can optimize this later. */
serf__log(SSL_VERBOSE, __FILE__,
"ssl_decrypt: SSL read error: server"
" shut down connection!\n");
status = APR_EOF;
} else {
/* A fatal error occurred. */
ctx->fatal_err = status = SERF_ERROR_SSL_COMM_FAILED;
}
} else {
*len = ssl_len;
serf__log(SSL_MSG_VERBOSE, __FILE__,
"---\n%.*s\n-(%d)-\n", *len, buf, *len);
}
}
else {
*len = 0;
}
serf__log(SSL_VERBOSE, __FILE__,
"ssl_decrypt: %d %d %d\n", status, *len,
BIO_get_retry_flags(ctx->bio));
return status;
}
/* This function reads a decrypted stream and returns an encrypted stream. */
static apr_status_t ssl_encrypt(void *baton, apr_size_t bufsize,
char *buf, apr_size_t *len)
{
const char *data;
apr_size_t interim_bufsize;
serf_ssl_context_t *ctx = baton;
apr_status_t status;
if (ctx->fatal_err)
return ctx->fatal_err;
serf__log(SSL_VERBOSE, __FILE__, "ssl_encrypt: begin %d\n", bufsize);
/* Try to read already encrypted but unread data first. */
status = serf_bucket_read(ctx->encrypt.pending, bufsize, &data, len);
if (SERF_BUCKET_READ_ERROR(status)) {
return status;
}
/* Aha, we read something. Return that now. */
if (*len) {
memcpy(buf, data, *len);
if (APR_STATUS_IS_EOF(status)) {
status = APR_SUCCESS;
}
serf__log(SSL_VERBOSE, __FILE__, "ssl_encrypt: %d %d %d (quick read)\n",
status, *len, BIO_get_retry_flags(ctx->bio));
return status;
}
if (BIO_should_retry(ctx->bio) && BIO_should_write(ctx->bio)) {
serf__log(SSL_VERBOSE, __FILE__,
"ssl_encrypt: %d %d %d (should write exit)\n",
status, *len, BIO_get_retry_flags(ctx->bio));
return APR_EAGAIN;
}
/* If we were previously blocked, unblock ourselves now. */
if (BIO_should_read(ctx->bio)) {
serf__log(SSL_VERBOSE, __FILE__, "ssl_encrypt: reset %d %d (%d %d %d)\n",
status, ctx->encrypt.status,
BIO_should_retry(ctx->bio), BIO_should_read(ctx->bio),
BIO_get_retry_flags(ctx->bio));
ctx->encrypt.status = APR_SUCCESS;
ctx->encrypt.exhausted_reset = 0;
}
/* Oh well, read from our stream now. */
interim_bufsize = bufsize;
do {
apr_size_t interim_len;
if (!ctx->encrypt.status) {
struct iovec vecs[64];
int vecs_read;
status = serf_bucket_read_iovec(ctx->encrypt.stream,
interim_bufsize, 64, vecs,
&vecs_read);
if (!SERF_BUCKET_READ_ERROR(status) && vecs_read) {
char *vecs_data;
int i, cur, vecs_data_len;
int ssl_len;
/* Combine the buffers of the iovec into one buffer, as
that is with SSL_write requires. */
vecs_data_len = 0;
for (i = 0; i < vecs_read; i++) {
vecs_data_len += vecs[i].iov_len;
}
vecs_data = serf_bucket_mem_alloc(ctx->allocator,
vecs_data_len);
cur = 0;
for (i = 0; i < vecs_read; i++) {
memcpy(vecs_data + cur, vecs[i].iov_base, vecs[i].iov_len);
cur += vecs[i].iov_len;
}
interim_bufsize -= vecs_data_len;
interim_len = vecs_data_len;
serf__log(SSL_VERBOSE, __FILE__,
"ssl_encrypt: bucket read %d bytes; "\
"status %d\n", interim_len, status);
serf__log(SSL_MSG_VERBOSE, __FILE__, "---\n%.*s\n-(%d)-\n",
interim_len, vecs_data, interim_len);
/* Stash our status away. */
ctx->encrypt.status = status;
ssl_len = SSL_write(ctx->ssl, vecs_data, interim_len);
serf__log(SSL_VERBOSE, __FILE__,
"ssl_encrypt: SSL write: %d\n", ssl_len);
/* If we failed to write... */
if (ssl_len < 0) {
int ssl_err;
/* Ah, bugger. We need to put that data back.
Note: use the copy here, we do not own the original iovec
data buffer so it will be freed on next read. */
serf_bucket_t *vecs_copy =
serf_bucket_simple_own_create(vecs_data,
vecs_data_len,
ctx->allocator);
serf_bucket_aggregate_prepend(ctx->encrypt.stream,
vecs_copy);
ssl_err = SSL_get_error(ctx->ssl, ssl_len);
serf__log(SSL_VERBOSE, __FILE__,
"ssl_encrypt: SSL write error: %d\n", ssl_err);
if (ssl_err == SSL_ERROR_SYSCALL) {
/* Return the underlying network error that caused OpenSSL
to fail. ### This can be a decrypt error! */
status = ctx->encrypt.status;
if (SERF_BUCKET_READ_ERROR(status)) {
return status;
}
}
else {
/* Oh, no. */
if (ssl_err == SSL_ERROR_WANT_READ) {
status = SERF_ERROR_WAIT_CONN;
}
else {
ctx->fatal_err = status =
SERF_ERROR_SSL_COMM_FAILED;
}
}
serf__log(SSL_VERBOSE, __FILE__,
"ssl_encrypt: SSL write error: %d %d\n",
status, *len);
} else {
/* We're done with this data. */
serf_bucket_mem_free(ctx->allocator, vecs_data);
}
}
}
else {
interim_len = 0;
*len = 0;
status = ctx->encrypt.status;
}
} while (!status && interim_bufsize);
/* Okay, we exhausted our underlying stream. */
if (!SERF_BUCKET_READ_ERROR(status)) {
apr_status_t agg_status;
struct iovec vecs[64];
int vecs_read, i;
/* We read something! */
agg_status = serf_bucket_read_iovec(ctx->encrypt.pending, bufsize,
64, vecs, &vecs_read);
*len = 0;
for (i = 0; i < vecs_read; i++) {
memcpy(buf + *len, vecs[i].iov_base, vecs[i].iov_len);
*len += vecs[i].iov_len;
}
serf__log(SSL_VERBOSE, __FILE__,
"ssl_encrypt read agg: %d %d %d %d\n", status, agg_status,
ctx->encrypt.status, *len);
if (!agg_status) {
status = agg_status;
}
}
if (status == SERF_ERROR_WAIT_CONN
&& BIO_should_retry(ctx->bio) && BIO_should_read(ctx->bio)) {
ctx->encrypt.exhausted = ctx->encrypt.status;
ctx->encrypt.status = SERF_ERROR_WAIT_CONN;
}
serf__log(SSL_VERBOSE, __FILE__,
"ssl_encrypt finished: %d %d (%d %d %d)\n", status, *len,
BIO_should_retry(ctx->bio), BIO_should_read(ctx->bio),
BIO_get_retry_flags(ctx->bio));
return status;
}
#if APR_HAS_THREADS
static apr_pool_t *ssl_pool;
static apr_thread_mutex_t **ssl_locks;
typedef struct CRYPTO_dynlock_value {
apr_thread_mutex_t *lock;
} CRYPTO_dynlock_value;
static CRYPTO_dynlock_value *ssl_dyn_create(const char* file, int line)
{
CRYPTO_dynlock_value *l;
apr_status_t rv;
l = apr_palloc(ssl_pool, sizeof(CRYPTO_dynlock_value));
rv = apr_thread_mutex_create(&l->lock, APR_THREAD_MUTEX_DEFAULT, ssl_pool);
if (rv != APR_SUCCESS) {
/* FIXME: return error here */
}
return l;
}
static void ssl_dyn_lock(int mode, CRYPTO_dynlock_value *l, const char *file,
int line)
{
if (mode & CRYPTO_LOCK) {
apr_thread_mutex_lock(l->lock);
}
else if (mode & CRYPTO_UNLOCK) {
apr_thread_mutex_unlock(l->lock);
}
}
static void ssl_dyn_destroy(CRYPTO_dynlock_value *l, const char *file,
int line)
{
apr_thread_mutex_destroy(l->lock);
}
static void ssl_lock(int mode, int n, const char *file, int line)
{
if (mode & CRYPTO_LOCK) {
apr_thread_mutex_lock(ssl_locks[n]);
}
else if (mode & CRYPTO_UNLOCK) {
apr_thread_mutex_unlock(ssl_locks[n]);
}
}
static unsigned long ssl_id(void)
{
/* FIXME: This is lame and not portable. -aaron */
return (unsigned long) apr_os_thread_current();
}
static apr_status_t cleanup_ssl(void *data)
{
CRYPTO_set_locking_callback(NULL);
CRYPTO_set_id_callback(NULL);
CRYPTO_set_dynlock_create_callback(NULL);
CRYPTO_set_dynlock_lock_callback(NULL);
CRYPTO_set_dynlock_destroy_callback(NULL);
return APR_SUCCESS;
}
#endif
#if !APR_VERSION_AT_LEAST(1,0,0)
#define apr_atomic_cas32(mem, with, cmp) apr_atomic_cas(mem, with, cmp)
#endif
enum ssl_init_e
{
INIT_UNINITIALIZED = 0,
INIT_BUSY = 1,
INIT_DONE = 2
};
static volatile apr_uint32_t have_init_ssl = INIT_UNINITIALIZED;
static void init_ssl_libraries(void)
{
apr_uint32_t val;
val = apr_atomic_cas32(&have_init_ssl, INIT_BUSY, INIT_UNINITIALIZED);
if (!val) {
#if APR_HAS_THREADS
int i, numlocks;
#endif
#ifdef SSL_VERBOSE
/* Warn when compile-time and run-time version of OpenSSL differ in
major/minor version number. */
long libver = SSLeay();
if ((libver ^ OPENSSL_VERSION_NUMBER) & 0xFFF00000) {
serf__log(SSL_VERBOSE, __FILE__,
"Warning: OpenSSL library version mismatch, compile-time "
"was %lx, runtime is %lx.\n",
OPENSSL_VERSION_NUMBER, libver);
}
#endif
CRYPTO_malloc_init();
ERR_load_crypto_strings();
SSL_load_error_strings();
SSL_library_init();
OpenSSL_add_all_algorithms();
#if APR_HAS_THREADS
numlocks = CRYPTO_num_locks();
apr_pool_create(&ssl_pool, NULL);
ssl_locks = apr_palloc(ssl_pool, sizeof(apr_thread_mutex_t*)*numlocks);
for (i = 0; i < numlocks; i++) {
apr_status_t rv;
/* Intraprocess locks don't /need/ a filename... */
rv = apr_thread_mutex_create(&ssl_locks[i],
APR_THREAD_MUTEX_DEFAULT, ssl_pool);
if (rv != APR_SUCCESS) {
/* FIXME: error out here */
}
}
CRYPTO_set_locking_callback(ssl_lock);
CRYPTO_set_id_callback(ssl_id);
CRYPTO_set_dynlock_create_callback(ssl_dyn_create);
CRYPTO_set_dynlock_lock_callback(ssl_dyn_lock);
CRYPTO_set_dynlock_destroy_callback(ssl_dyn_destroy);
apr_pool_cleanup_register(ssl_pool, NULL, cleanup_ssl, cleanup_ssl);
#endif
apr_atomic_cas32(&have_init_ssl, INIT_DONE, INIT_BUSY);
}
else
{
/* Make sure we don't continue before the initialization in another
thread has completed */
while (val != INIT_DONE) {
apr_sleep(APR_USEC_PER_SEC / 1000);
val = apr_atomic_cas32(&have_init_ssl,
INIT_UNINITIALIZED,
INIT_UNINITIALIZED);
}
}
}
static int ssl_need_client_cert(SSL *ssl, X509 **cert, EVP_PKEY **pkey)
{
serf_ssl_context_t *ctx = SSL_get_app_data(ssl);
apr_status_t status;
if (ctx->cached_cert) {
*cert = ctx->cached_cert;
*pkey = ctx->cached_cert_pw;
return 1;
}
while (ctx->cert_callback) {
const char *cert_path;
apr_file_t *cert_file;
BIO *bio;
PKCS12 *p12;
int i;
int retrying_success = 0;
if (ctx->cert_file_success) {
status = APR_SUCCESS;
cert_path = ctx->cert_file_success;
ctx->cert_file_success = NULL;
retrying_success = 1;
} else {
status = ctx->cert_callback(ctx->cert_userdata, &cert_path);
}
if (status || !cert_path) {
break;
}
/* Load the x.509 cert file stored in PKCS12 */
status = apr_file_open(&cert_file, cert_path, APR_READ, APR_OS_DEFAULT,
ctx->pool);
if (status) {
continue;
}
bio = BIO_new(&bio_file_method);
bio->ptr = cert_file;
ctx->cert_path = cert_path;
p12 = d2i_PKCS12_bio(bio, NULL);
apr_file_close(cert_file);
i = PKCS12_parse(p12, NULL, pkey, cert, NULL);
if (i == 1) {
PKCS12_free(p12);
ctx->cached_cert = *cert;
ctx->cached_cert_pw = *pkey;
if (!retrying_success && ctx->cert_cache_pool) {
const char *c;
c = apr_pstrdup(ctx->cert_cache_pool, ctx->cert_path);
apr_pool_userdata_setn(c, "serf:ssl:cert",
apr_pool_cleanup_null,
ctx->cert_cache_pool);
}
return 1;
}
else {
int err = ERR_get_error();
ERR_clear_error();
if (ERR_GET_LIB(err) == ERR_LIB_PKCS12 &&
ERR_GET_REASON(err) == PKCS12_R_MAC_VERIFY_FAILURE) {
if (ctx->cert_pw_callback) {
const char *password;
if (ctx->cert_pw_success) {
status = APR_SUCCESS;
password = ctx->cert_pw_success;
ctx->cert_pw_success = NULL;
} else {
status = ctx->cert_pw_callback(ctx->cert_pw_userdata,
ctx->cert_path,
&password);
}
if (!status && password) {
i = PKCS12_parse(p12, password, pkey, cert, NULL);
if (i == 1) {
PKCS12_free(p12);
ctx->cached_cert = *cert;
ctx->cached_cert_pw = *pkey;
if (!retrying_success && ctx->cert_cache_pool) {
const char *c;
c = apr_pstrdup(ctx->cert_cache_pool,
ctx->cert_path);
apr_pool_userdata_setn(c, "serf:ssl:cert",
apr_pool_cleanup_null,
ctx->cert_cache_pool);
}
if (!retrying_success && ctx->cert_pw_cache_pool) {
const char *c;
c = apr_pstrdup(ctx->cert_pw_cache_pool,
password);
apr_pool_userdata_setn(c, "serf:ssl:certpw",
apr_pool_cleanup_null,
ctx->cert_pw_cache_pool);
}
return 1;
}
}
}
PKCS12_free(p12);
return 0;
}
else {
printf("OpenSSL cert error: %d %d %d\n", ERR_GET_LIB(err),
ERR_GET_FUNC(err),
ERR_GET_REASON(err));
PKCS12_free(p12);
}
}
}
return 0;
}
void serf_ssl_client_cert_provider_set(
serf_ssl_context_t *context,
serf_ssl_need_client_cert_t callback,
void *data,
void *cache_pool)
{
context->cert_callback = callback;
context->cert_userdata = data;
context->cert_cache_pool = cache_pool;
if (context->cert_cache_pool) {
apr_pool_userdata_get((void**)&context->cert_file_success,
"serf:ssl:cert", cache_pool);
}
}
void serf_ssl_client_cert_password_set(
serf_ssl_context_t *context,
serf_ssl_need_cert_password_t callback,
void *data,
void *cache_pool)
{
context->cert_pw_callback = callback;
context->cert_pw_userdata = data;
context->cert_pw_cache_pool = cache_pool;
if (context->cert_pw_cache_pool) {
apr_pool_userdata_get((void**)&context->cert_pw_success,
"serf:ssl:certpw", cache_pool);
}
}
void serf_ssl_server_cert_callback_set(
serf_ssl_context_t *context,
serf_ssl_need_server_cert_t callback,
void *data)
{
context->server_cert_callback = callback;
context->server_cert_userdata = data;
}
void serf_ssl_server_cert_chain_callback_set(
serf_ssl_context_t *context,
serf_ssl_need_server_cert_t cert_callback,
serf_ssl_server_cert_chain_cb_t cert_chain_callback,
void *data)
{
context->server_cert_callback = cert_callback;
context->server_cert_chain_callback = cert_chain_callback;
context->server_cert_userdata = data;
}
static serf_ssl_context_t *ssl_init_context(serf_bucket_alloc_t *allocator)
{
serf_ssl_context_t *ssl_ctx;
init_ssl_libraries();
ssl_ctx = serf_bucket_mem_alloc(allocator, sizeof(*ssl_ctx));
ssl_ctx->refcount = 0;
ssl_ctx->pool = serf_bucket_allocator_get_pool(allocator);
ssl_ctx->allocator = allocator;
/* Use the best possible protocol version, but disable the broken SSLv2/3 */
ssl_ctx->ctx = SSL_CTX_new(SSLv23_client_method());
SSL_CTX_set_options(ssl_ctx->ctx, SSL_OP_NO_SSLv2 | SSL_OP_NO_SSLv3);
SSL_CTX_set_client_cert_cb(ssl_ctx->ctx, ssl_need_client_cert);
ssl_ctx->cached_cert = 0;
ssl_ctx->cached_cert_pw = 0;
ssl_ctx->pending_err = APR_SUCCESS;
ssl_ctx->fatal_err = APR_SUCCESS;
ssl_ctx->cert_callback = NULL;
ssl_ctx->cert_pw_callback = NULL;
ssl_ctx->server_cert_callback = NULL;
ssl_ctx->server_cert_chain_callback = NULL;
SSL_CTX_set_verify(ssl_ctx->ctx, SSL_VERIFY_PEER,
validate_server_certificate);
SSL_CTX_set_options(ssl_ctx->ctx, SSL_OP_ALL);
/* Disable SSL compression by default. */
disable_compression(ssl_ctx);
ssl_ctx->ssl = SSL_new(ssl_ctx->ctx);
ssl_ctx->bio = BIO_new(&bio_bucket_method);
ssl_ctx->bio->ptr = ssl_ctx;
SSL_set_bio(ssl_ctx->ssl, ssl_ctx->bio, ssl_ctx->bio);
SSL_set_connect_state(ssl_ctx->ssl);
SSL_set_app_data(ssl_ctx->ssl, ssl_ctx);
#if SSL_VERBOSE
SSL_CTX_set_info_callback(ssl_ctx->ctx, apps_ssl_info_callback);
#endif
ssl_ctx->encrypt.stream = NULL;
ssl_ctx->encrypt.stream_next = NULL;
ssl_ctx->encrypt.pending = serf_bucket_aggregate_create(allocator);
ssl_ctx->encrypt.status = APR_SUCCESS;
serf_databuf_init(&ssl_ctx->encrypt.databuf);
ssl_ctx->encrypt.databuf.read = ssl_encrypt;
ssl_ctx->encrypt.databuf.read_baton = ssl_ctx;
ssl_ctx->decrypt.stream = NULL;
ssl_ctx->decrypt.pending = serf_bucket_aggregate_create(allocator);
ssl_ctx->decrypt.status = APR_SUCCESS;
serf_databuf_init(&ssl_ctx->decrypt.databuf);
ssl_ctx->decrypt.databuf.read = ssl_decrypt;
ssl_ctx->decrypt.databuf.read_baton = ssl_ctx;
return ssl_ctx;
}
static apr_status_t ssl_free_context(
serf_ssl_context_t *ssl_ctx)
{
/* If never had the pending buckets, don't try to free them. */
if (ssl_ctx->decrypt.pending != NULL) {
serf_bucket_destroy(ssl_ctx->decrypt.pending);
}
if (ssl_ctx->encrypt.pending != NULL) {
serf_bucket_destroy(ssl_ctx->encrypt.pending);
}
/* SSL_free implicitly frees the underlying BIO. */
SSL_free(ssl_ctx->ssl);
SSL_CTX_free(ssl_ctx->ctx);
serf_bucket_mem_free(ssl_ctx->allocator, ssl_ctx);
return APR_SUCCESS;
}
static serf_bucket_t * serf_bucket_ssl_create(
serf_ssl_context_t *ssl_ctx,
serf_bucket_alloc_t *allocator,
const serf_bucket_type_t *type)
{
ssl_context_t *ctx;
ctx = serf_bucket_mem_alloc(allocator, sizeof(*ctx));
if (!ssl_ctx) {
ctx->ssl_ctx = ssl_init_context(allocator);
}
else {
ctx->ssl_ctx = ssl_ctx;
}
ctx->ssl_ctx->refcount++;
return serf_bucket_create(type, allocator, ctx);
}
apr_status_t serf_ssl_set_hostname(serf_ssl_context_t *context,
const char * hostname)
{
#ifdef SSL_set_tlsext_host_name
if (SSL_set_tlsext_host_name(context->ssl, hostname) != 1) {
ERR_clear_error();
}
#endif
return APR_SUCCESS;
}
apr_status_t serf_ssl_use_default_certificates(serf_ssl_context_t *ssl_ctx)
{
X509_STORE *store = SSL_CTX_get_cert_store(ssl_ctx->ctx);
int result = X509_STORE_set_default_paths(store);
return result ? APR_SUCCESS : SERF_ERROR_SSL_CERT_FAILED;
}
apr_status_t serf_ssl_load_cert_file(
serf_ssl_certificate_t **cert,
const char *file_path,
apr_pool_t *pool)
{
FILE *fp = fopen(file_path, "r");
if (fp) {
X509 *ssl_cert = PEM_read_X509(fp, NULL, NULL, NULL);
fclose(fp);
if (ssl_cert) {
*cert = apr_palloc(pool, sizeof(serf_ssl_certificate_t));
(*cert)->ssl_cert = ssl_cert;
return APR_SUCCESS;
}
}
return SERF_ERROR_SSL_CERT_FAILED;
}
apr_status_t serf_ssl_trust_cert(
serf_ssl_context_t *ssl_ctx,
serf_ssl_certificate_t *cert)
{
X509_STORE *store = SSL_CTX_get_cert_store(ssl_ctx->ctx);
int result = X509_STORE_add_cert(store, cert->ssl_cert);
return result ? APR_SUCCESS : SERF_ERROR_SSL_CERT_FAILED;
}
serf_bucket_t *serf_bucket_ssl_decrypt_create(
serf_bucket_t *stream,
serf_ssl_context_t *ssl_ctx,
serf_bucket_alloc_t *allocator)
{
serf_bucket_t *bkt;
ssl_context_t *ctx;
bkt = serf_bucket_ssl_create(ssl_ctx, allocator,
&serf_bucket_type_ssl_decrypt);
ctx = bkt->data;
ctx->databuf = &ctx->ssl_ctx->decrypt.databuf;
if (ctx->ssl_ctx->decrypt.stream != NULL) {
return NULL;
}
ctx->ssl_ctx->decrypt.stream = stream;
ctx->our_stream = &ctx->ssl_ctx->decrypt.stream;
return bkt;
}
serf_ssl_context_t *serf_bucket_ssl_decrypt_context_get(
serf_bucket_t *bucket)
{
ssl_context_t *ctx = bucket->data;
return ctx->ssl_ctx;
}
serf_bucket_t *serf_bucket_ssl_encrypt_create(
serf_bucket_t *stream,
serf_ssl_context_t *ssl_ctx,
serf_bucket_alloc_t *allocator)
{
serf_bucket_t *bkt;
ssl_context_t *ctx;
bkt = serf_bucket_ssl_create(ssl_ctx, allocator,
&serf_bucket_type_ssl_encrypt);
ctx = bkt->data;
ctx->databuf = &ctx->ssl_ctx->encrypt.databuf;
ctx->our_stream = &ctx->ssl_ctx->encrypt.stream;
if (ctx->ssl_ctx->encrypt.stream == NULL) {
serf_bucket_t *tmp = serf_bucket_aggregate_create(stream->allocator);
serf_bucket_aggregate_append(tmp, stream);
ctx->ssl_ctx->encrypt.stream = tmp;
}
else {
bucket_list_t *new_list;
new_list = serf_bucket_mem_alloc(ctx->ssl_ctx->allocator,
sizeof(*new_list));
new_list->bucket = stream;
new_list->next = NULL;
if (ctx->ssl_ctx->encrypt.stream_next == NULL) {
ctx->ssl_ctx->encrypt.stream_next = new_list;
}
else {
bucket_list_t *scan = ctx->ssl_ctx->encrypt.stream_next;
while (scan->next != NULL)
scan = scan->next;
scan->next = new_list;
}
}
return bkt;
}
serf_ssl_context_t *serf_bucket_ssl_encrypt_context_get(
serf_bucket_t *bucket)
{
ssl_context_t *ctx = bucket->data;
return ctx->ssl_ctx;
}
/* Functions to read a serf_ssl_certificate structure. */
/* Takes a counted length string and escapes any NUL bytes so that
* it can be used as a C string. NUL bytes are escaped as 3 characters
* "\00" (that's a literal backslash).
* The returned string is allocated in POOL.
*/
static char *
pstrdup_escape_nul_bytes(const char *buf, int len, apr_pool_t *pool)
{
int i, nul_count = 0;
char *ret;
/* First determine if there are any nul bytes in the string. */
for (i = 0; i < len; i++) {
if (buf[i] == '\0')
nul_count++;
}
if (nul_count == 0) {
/* There aren't so easy case to just copy the string */
ret = apr_pstrdup(pool, buf);
} else {
/* There are so we have to replace nul bytes with escape codes
* Proper length is the length of the original string, plus
* 2 times the number of nulls (for two digit hex code for
* the value) + the trailing null. */
char *pos;
ret = pos = apr_palloc(pool, len + 2 * nul_count + 1);
for (i = 0; i < len; i++) {
if (buf[i] != '\0') {
*(pos++) = buf[i];
} else {
*(pos++) = '\\';
*(pos++) = '0';
*(pos++) = '0';
}
}
*pos = '\0';
}
return ret;
}
/* Creates a hash_table with keys (E, CN, OU, O, L, ST and C). Any NUL bytes in
these fields in the certificate will be escaped as \00. */
static apr_hash_t *
convert_X509_NAME_to_table(X509_NAME *org, apr_pool_t *pool)
{
char buf[1024];
int ret;
apr_hash_t *tgt = apr_hash_make(pool);
ret = X509_NAME_get_text_by_NID(org,
NID_commonName,
buf, 1024);
if (ret != -1)
apr_hash_set(tgt, "CN", APR_HASH_KEY_STRING,
pstrdup_escape_nul_bytes(buf, ret, pool));
ret = X509_NAME_get_text_by_NID(org,
NID_pkcs9_emailAddress,
buf, 1024);
if (ret != -1)
apr_hash_set(tgt, "E", APR_HASH_KEY_STRING,
pstrdup_escape_nul_bytes(buf, ret, pool));
ret = X509_NAME_get_text_by_NID(org,
NID_organizationalUnitName,
buf, 1024);
if (ret != -1)
apr_hash_set(tgt, "OU", APR_HASH_KEY_STRING,
pstrdup_escape_nul_bytes(buf, ret, pool));
ret = X509_NAME_get_text_by_NID(org,
NID_organizationName,
buf, 1024);
if (ret != -1)
apr_hash_set(tgt, "O", APR_HASH_KEY_STRING,
pstrdup_escape_nul_bytes(buf, ret, pool));
ret = X509_NAME_get_text_by_NID(org,
NID_localityName,
buf, 1024);
if (ret != -1)
apr_hash_set(tgt, "L", APR_HASH_KEY_STRING,
pstrdup_escape_nul_bytes(buf, ret, pool));
ret = X509_NAME_get_text_by_NID(org,
NID_stateOrProvinceName,
buf, 1024);
if (ret != -1)
apr_hash_set(tgt, "ST", APR_HASH_KEY_STRING,
pstrdup_escape_nul_bytes(buf, ret, pool));
ret = X509_NAME_get_text_by_NID(org,
NID_countryName,
buf, 1024);
if (ret != -1)
apr_hash_set(tgt, "C", APR_HASH_KEY_STRING,
pstrdup_escape_nul_bytes(buf, ret, pool));
return tgt;
}
int serf_ssl_cert_depth(const serf_ssl_certificate_t *cert)
{
return cert->depth;
}
apr_hash_t *serf_ssl_cert_issuer(
const serf_ssl_certificate_t *cert,
apr_pool_t *pool)
{
X509_NAME *issuer = X509_get_issuer_name(cert->ssl_cert);
if (!issuer)
return NULL;
return convert_X509_NAME_to_table(issuer, pool);
}
apr_hash_t *serf_ssl_cert_subject(
const serf_ssl_certificate_t *cert,
apr_pool_t *pool)
{
X509_NAME *subject = X509_get_subject_name(cert->ssl_cert);
if (!subject)
return NULL;
return convert_X509_NAME_to_table(subject, pool);
}
apr_hash_t *serf_ssl_cert_certificate(
const serf_ssl_certificate_t *cert,
apr_pool_t *pool)
{
apr_hash_t *tgt = apr_hash_make(pool);
unsigned int md_size, i;
unsigned char md[EVP_MAX_MD_SIZE];
BIO *bio;
apr_array_header_t *san_arr;
/* sha1 fingerprint */
if (X509_digest(cert->ssl_cert, EVP_sha1(), md, &md_size)) {
const char hex[] = "0123456789ABCDEF";
char fingerprint[EVP_MAX_MD_SIZE * 3];
for (i=0; i<md_size; i++) {
fingerprint[3*i] = hex[(md[i] & 0xf0) >> 4];
fingerprint[(3*i)+1] = hex[(md[i] & 0x0f)];
fingerprint[(3*i)+2] = ':';
}
if (md_size > 0)
fingerprint[(3*(md_size-1))+2] = '\0';
else
fingerprint[0] = '\0';
apr_hash_set(tgt, "sha1", APR_HASH_KEY_STRING,
apr_pstrdup(pool, fingerprint));
}
/* set expiry dates */
bio = BIO_new(BIO_s_mem());
if (bio) {
ASN1_TIME *notBefore, *notAfter;
char buf[256];
memset (buf, 0, sizeof (buf));
notBefore = X509_get_notBefore(cert->ssl_cert);
if (ASN1_TIME_print(bio, notBefore)) {
BIO_read(bio, buf, 255);
apr_hash_set(tgt, "notBefore", APR_HASH_KEY_STRING,
apr_pstrdup(pool, buf));
}
memset (buf, 0, sizeof (buf));
notAfter = X509_get_notAfter(cert->ssl_cert);
if (ASN1_TIME_print(bio, notAfter)) {
BIO_read(bio, buf, 255);
apr_hash_set(tgt, "notAfter", APR_HASH_KEY_STRING,
apr_pstrdup(pool, buf));
}
}
BIO_free(bio);
/* Get subjectAltNames */
if (!get_subject_alt_names(&san_arr, cert->ssl_cert, EscapeNulAndCopy, pool))
apr_hash_set(tgt, "subjectAltName", APR_HASH_KEY_STRING, san_arr);
return tgt;
}
const char *serf_ssl_cert_export(
const serf_ssl_certificate_t *cert,
apr_pool_t *pool)
{
char *binary_cert;
char *encoded_cert;
int len;
unsigned char *unused;
/* find the length of the DER encoding. */
len = i2d_X509(cert->ssl_cert, NULL);
if (len < 0) {
return NULL;
}
binary_cert = apr_palloc(pool, len);
unused = (unsigned char *)binary_cert;
len = i2d_X509(cert->ssl_cert, &unused); /* unused is incremented */
if (len < 0) {
return NULL;
}
encoded_cert = apr_palloc(pool, apr_base64_encode_len(len));
apr_base64_encode(encoded_cert, binary_cert, len);
return encoded_cert;
}
/* Disables compression for all SSL sessions. */
static void disable_compression(serf_ssl_context_t *ssl_ctx)
{
#ifdef SSL_OP_NO_COMPRESSION
SSL_CTX_set_options(ssl_ctx->ctx, SSL_OP_NO_COMPRESSION);
#endif
}
apr_status_t serf_ssl_use_compression(serf_ssl_context_t *ssl_ctx, int enabled)
{
if (enabled) {
#ifdef SSL_OP_NO_COMPRESSION
SSL_clear_options(ssl_ctx->ssl, SSL_OP_NO_COMPRESSION);
return APR_SUCCESS;
#endif
} else {
#ifdef SSL_OP_NO_COMPRESSION
SSL_set_options(ssl_ctx->ssl, SSL_OP_NO_COMPRESSION);
return APR_SUCCESS;
#endif
}
return APR_EGENERAL;
}
static void serf_ssl_destroy_and_data(serf_bucket_t *bucket)
{
ssl_context_t *ctx = bucket->data;
if (!--ctx->ssl_ctx->refcount) {
ssl_free_context(ctx->ssl_ctx);
}
serf_default_destroy_and_data(bucket);
}
static void serf_ssl_decrypt_destroy_and_data(serf_bucket_t *bucket)
{
ssl_context_t *ctx = bucket->data;
serf_bucket_destroy(*ctx->our_stream);
serf_ssl_destroy_and_data(bucket);
}
static void serf_ssl_encrypt_destroy_and_data(serf_bucket_t *bucket)
{
ssl_context_t *ctx = bucket->data;
serf_ssl_context_t *ssl_ctx = ctx->ssl_ctx;
if (ssl_ctx->encrypt.stream == *ctx->our_stream) {
serf_bucket_destroy(*ctx->our_stream);
serf_bucket_destroy(ssl_ctx->encrypt.pending);
/* Reset our encrypted status and databuf. */
ssl_ctx->encrypt.status = APR_SUCCESS;
ssl_ctx->encrypt.databuf.status = APR_SUCCESS;
/* Advance to the next stream - if we have one. */
if (ssl_ctx->encrypt.stream_next == NULL) {
ssl_ctx->encrypt.stream = NULL;
ssl_ctx->encrypt.pending = NULL;
}
else {
bucket_list_t *cur;
cur = ssl_ctx->encrypt.stream_next;
ssl_ctx->encrypt.stream = cur->bucket;
ssl_ctx->encrypt.pending =
serf_bucket_aggregate_create(cur->bucket->allocator);
ssl_ctx->encrypt.stream_next = cur->next;
serf_bucket_mem_free(ssl_ctx->allocator, cur);
}
}
else {
/* Ah, darn. We haven't sent this one along yet. */
return;
}
serf_ssl_destroy_and_data(bucket);
}
static apr_status_t serf_ssl_read(serf_bucket_t *bucket,
apr_size_t requested,
const char **data, apr_size_t *len)
{
ssl_context_t *ctx = bucket->data;
return serf_databuf_read(ctx->databuf, requested, data, len);
}
static apr_status_t serf_ssl_readline(serf_bucket_t *bucket,
int acceptable, int *found,
const char **data,
apr_size_t *len)
{
ssl_context_t *ctx = bucket->data;
return serf_databuf_readline(ctx->databuf, acceptable, found, data, len);
}
static apr_status_t serf_ssl_peek(serf_bucket_t *bucket,
const char **data,
apr_size_t *len)
{
ssl_context_t *ctx = bucket->data;
return serf_databuf_peek(ctx->databuf, data, len);
}
const serf_bucket_type_t serf_bucket_type_ssl_encrypt = {
"SSLENCRYPT",
serf_ssl_read,
serf_ssl_readline,
serf_default_read_iovec,
serf_default_read_for_sendfile,
serf_default_read_bucket,
serf_ssl_peek,
serf_ssl_encrypt_destroy_and_data,
};
const serf_bucket_type_t serf_bucket_type_ssl_decrypt = {
"SSLDECRYPT",
serf_ssl_read,
serf_ssl_readline,
serf_default_read_iovec,
serf_default_read_for_sendfile,
serf_default_read_bucket,
serf_ssl_peek,
serf_ssl_decrypt_destroy_and_data,
};