| /* |
| Licensed to the Apache Software Foundation (ASF) under one |
| or more contributor license agreements. See the NOTICE file |
| distributed with this work for additional information |
| regarding copyright ownership. The ASF licenses this file |
| to you under the Apache License, Version 2.0 (the |
| "License"); you may not use this file except in compliance |
| with the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, |
| software distributed under the License is distributed on an |
| "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| KIND, either express or implied. See the License for the |
| specific language governing permissions and limitations |
| under the License. |
| */ |
| |
| /* AMCL Weierstrass elliptic curve functions over FP2 */ |
| |
| public sealed class ECP2 |
| { |
| private FP2 x; |
| private FP2 y; |
| private FP2 z; |
| private bool INF; |
| |
| /* Constructor - set this=O */ |
| public ECP2() |
| { |
| INF = true; |
| x = new FP2(0); |
| y = new FP2(1); |
| z = new FP2(1); |
| } |
| |
| /* Test this=O? */ |
| public bool is_infinity() |
| { |
| return INF; |
| } |
| /* copy this=P */ |
| public void copy(ECP2 P) |
| { |
| x.copy(P.x); |
| y.copy(P.y); |
| z.copy(P.z); |
| INF = P.INF; |
| } |
| /* set this=O */ |
| public void inf() |
| { |
| INF = true; |
| x.zero(); |
| y.zero(); |
| z.zero(); |
| } |
| |
| /* Conditional move of Q to P dependant on d */ |
| public void cmove(ECP2 Q, int d) |
| { |
| x.cmove(Q.x,d); |
| y.cmove(Q.y,d); |
| z.cmove(Q.z,d); |
| |
| bool bd; |
| if (d == 0) |
| { |
| bd = false; |
| } |
| else |
| { |
| bd = true; |
| } |
| INF ^= (INF ^ Q.INF) & bd; |
| } |
| |
| /* return 1 if b==c, no branching */ |
| public static int teq(int b, int c) |
| { |
| int x = b ^ c; |
| x -= 1; // if x=0, x now -1 |
| return ((x >> 31) & 1); |
| } |
| |
| /* Constant time select from pre-computed table */ |
| public void select(ECP2[] W, int b) |
| { |
| ECP2 MP = new ECP2(); |
| int m = b >> 31; |
| int babs = (b ^ m) - m; |
| |
| babs = (babs - 1) / 2; |
| |
| cmove(W[0],teq(babs,0)); // conditional move |
| cmove(W[1],teq(babs,1)); |
| cmove(W[2],teq(babs,2)); |
| cmove(W[3],teq(babs,3)); |
| cmove(W[4],teq(babs,4)); |
| cmove(W[5],teq(babs,5)); |
| cmove(W[6],teq(babs,6)); |
| cmove(W[7],teq(babs,7)); |
| |
| MP.copy(this); |
| MP.neg(); |
| cmove(MP,(int)(m & 1)); |
| } |
| |
| |
| /* Test if P == Q */ |
| public bool Equals(ECP2 Q) |
| { |
| if (is_infinity() && Q.is_infinity()) |
| { |
| return true; |
| } |
| if (is_infinity() || Q.is_infinity()) |
| { |
| return false; |
| } |
| |
| FP2 zs2 = new FP2(z); |
| zs2.sqr(); |
| FP2 zo2 = new FP2(Q.z); |
| zo2.sqr(); |
| FP2 zs3 = new FP2(zs2); |
| zs3.mul(z); |
| FP2 zo3 = new FP2(zo2); |
| zo3.mul(Q.z); |
| zs2.mul(Q.x); |
| zo2.mul(x); |
| if (!zs2.Equals(zo2)) |
| { |
| return false; |
| } |
| zs3.mul(Q.y); |
| zo3.mul(y); |
| if (!zs3.Equals(zo3)) |
| { |
| return false; |
| } |
| |
| return true; |
| } |
| /* set this=-this */ |
| public void neg() |
| { |
| if (is_infinity()) |
| { |
| return; |
| } |
| y.neg(); |
| y.reduce(); |
| return; |
| } |
| /* set to Affine - (x,y,z) to (x,y) */ |
| public void affine() |
| { |
| if (is_infinity()) |
| { |
| return; |
| } |
| FP2 one = new FP2(1); |
| if (z.Equals(one)) |
| { |
| return; |
| } |
| z.inverse(); |
| |
| FP2 z2 = new FP2(z); |
| z2.sqr(); |
| x.mul(z2); |
| x.reduce(); |
| y.mul(z2); |
| y.mul(z); |
| y.reduce(); |
| z.copy(one); |
| } |
| /* extract affine x as FP2 */ |
| public FP2 X |
| { |
| get |
| { |
| affine(); |
| return x; |
| } |
| } |
| /* extract affine y as FP2 */ |
| public FP2 Y |
| { |
| get |
| { |
| affine(); |
| return y; |
| } |
| } |
| /* extract projective x */ |
| public FP2 getx() |
| { |
| return x; |
| } |
| /* extract projective y */ |
| public FP2 gety() |
| { |
| return y; |
| } |
| /* extract projective z */ |
| public FP2 getz() |
| { |
| return z; |
| } |
| /* convert to byte array */ |
| public void toBytes(sbyte[] b) |
| { |
| sbyte[] t = new sbyte[ROM.MODBYTES]; |
| affine(); |
| x.A.toBytes(t); |
| for (int i = 0;i < ROM.MODBYTES;i++) |
| { |
| b[i] = t[i]; |
| } |
| x.B.toBytes(t); |
| for (int i = 0;i < ROM.MODBYTES;i++) |
| { |
| b[i + ROM.MODBYTES] = t[i]; |
| } |
| |
| y.A.toBytes(t); |
| for (int i = 0;i < ROM.MODBYTES;i++) |
| { |
| b[i + 2 * ROM.MODBYTES] = t[i]; |
| } |
| y.B.toBytes(t); |
| for (int i = 0;i < ROM.MODBYTES;i++) |
| { |
| b[i + 3 * ROM.MODBYTES] = t[i]; |
| } |
| } |
| /* convert from byte array to point */ |
| public static ECP2 fromBytes(sbyte[] b) |
| { |
| sbyte[] t = new sbyte[ROM.MODBYTES]; |
| BIG ra; |
| BIG rb; |
| |
| for (int i = 0;i < ROM.MODBYTES;i++) |
| { |
| t[i] = b[i]; |
| } |
| ra = BIG.fromBytes(t); |
| for (int i = 0;i < ROM.MODBYTES;i++) |
| { |
| t[i] = b[i + ROM.MODBYTES]; |
| } |
| rb = BIG.fromBytes(t); |
| FP2 rx = new FP2(ra,rb); |
| |
| for (int i = 0;i < ROM.MODBYTES;i++) |
| { |
| t[i] = b[i + 2 * ROM.MODBYTES]; |
| } |
| ra = BIG.fromBytes(t); |
| for (int i = 0;i < ROM.MODBYTES;i++) |
| { |
| t[i] = b[i + 3 * ROM.MODBYTES]; |
| } |
| rb = BIG.fromBytes(t); |
| FP2 ry = new FP2(ra,rb); |
| |
| return new ECP2(rx,ry); |
| } |
| /* convert this to hex string */ |
| public override string ToString() |
| { |
| if (is_infinity()) |
| { |
| return "infinity"; |
| } |
| affine(); |
| return "(" + x.ToString() + "," + y.ToString() + ")"; |
| } |
| |
| /* Calculate RHS of twisted curve equation x^3+B/i */ |
| public static FP2 RHS(FP2 x) |
| { |
| x.norm(); |
| FP2 r = new FP2(x); |
| r.sqr(); |
| FP2 b = new FP2(new BIG(ROM.CURVE_B)); |
| b.div_ip(); |
| r.mul(x); |
| r.add(b); |
| |
| r.reduce(); |
| return r; |
| } |
| /* construct this from (x,y) - but set to O if not on curve */ |
| public ECP2(FP2 ix, FP2 iy) |
| { |
| x = new FP2(ix); |
| y = new FP2(iy); |
| z = new FP2(1); |
| FP2 rhs = RHS(x); |
| FP2 y2 = new FP2(y); |
| y2.sqr(); |
| if (y2.Equals(rhs)) |
| { |
| INF = false; |
| } |
| else |
| { |
| x.zero(); |
| INF = true; |
| } |
| } |
| |
| /* construct this from x - but set to O if not on curve */ |
| public ECP2(FP2 ix) |
| { |
| x = new FP2(ix); |
| y = new FP2(1); |
| z = new FP2(1); |
| FP2 rhs = RHS(x); |
| if (rhs.sqrt()) |
| { |
| y.copy(rhs); |
| INF = false; |
| } |
| else |
| { |
| x.zero(); |
| INF = true; |
| } |
| } |
| |
| /* this+=this */ |
| public int dbl() |
| { |
| if (INF) |
| { |
| return -1; |
| } |
| if (y.iszilch()) |
| { |
| inf(); |
| return -1; |
| } |
| |
| FP2 w1 = new FP2(x); |
| FP2 w2 = new FP2(0); |
| FP2 w3 = new FP2(x); |
| FP2 w8 = new FP2(x); |
| |
| w1.sqr(); |
| w8.copy(w1); |
| w8.imul(3); |
| |
| w2.copy(y); |
| w2.sqr(); |
| w3.copy(x); |
| w3.mul(w2); |
| w3.imul(4); |
| w1.copy(w3); |
| w1.neg(); |
| // w1.norm(); |
| |
| x.copy(w8); |
| x.sqr(); |
| x.add(w1); |
| x.add(w1); |
| x.norm(); |
| |
| z.mul(y); |
| z.add(z); |
| |
| w2.add(w2); |
| w2.sqr(); |
| w2.add(w2); |
| w3.sub(x); |
| y.copy(w8); |
| y.mul(w3); |
| // w2.norm(); |
| y.sub(w2); |
| |
| y.norm(); |
| z.norm(); |
| |
| return 1; |
| } |
| /* this+=Q - return 0 for add, 1 for double, -1 for O */ |
| public int add(ECP2 Q) |
| { |
| if (INF) |
| { |
| copy(Q); |
| return -1; |
| } |
| if (Q.INF) |
| { |
| return -1; |
| } |
| |
| bool aff = false; |
| |
| if (Q.z.isunity()) |
| { |
| aff = true; |
| } |
| |
| FP2 A, C; |
| FP2 B = new FP2(z); |
| FP2 D = new FP2(z); |
| if (!aff) |
| { |
| A = new FP2(Q.z); |
| C = new FP2(Q.z); |
| |
| A.sqr(); |
| B.sqr(); |
| C.mul(A); |
| D.mul(B); |
| |
| A.mul(x); |
| C.mul(y); |
| } |
| else |
| { |
| A = new FP2(x); |
| C = new FP2(y); |
| |
| B.sqr(); |
| D.mul(B); |
| } |
| |
| B.mul(Q.x); |
| B.sub(A); |
| D.mul(Q.y); |
| D.sub(C); |
| |
| if (B.iszilch()) |
| { |
| if (D.iszilch()) |
| { |
| dbl(); |
| return 1; |
| } |
| else |
| { |
| INF = true; |
| return -1; |
| } |
| } |
| |
| if (!aff) |
| { |
| z.mul(Q.z); |
| } |
| z.mul(B); |
| |
| FP2 e = new FP2(B); |
| e.sqr(); |
| B.mul(e); |
| A.mul(e); |
| |
| e.copy(A); |
| e.add(A); |
| e.add(B); |
| x.copy(D); |
| x.sqr(); |
| x.sub(e); |
| |
| A.sub(x); |
| y.copy(A); |
| y.mul(D); |
| C.mul(B); |
| y.sub(C); |
| |
| x.norm(); |
| y.norm(); |
| z.norm(); |
| |
| return 0; |
| } |
| |
| /* set this-=Q */ |
| public int sub(ECP2 Q) |
| { |
| Q.neg(); |
| int D = add(Q); |
| Q.neg(); |
| return D; |
| } |
| /* set this*=q, where q is Modulus, using Frobenius */ |
| public void frob(FP2 X) |
| { |
| if (INF) |
| { |
| return; |
| } |
| FP2 X2 = new FP2(X); |
| X2.sqr(); |
| x.conj(); |
| y.conj(); |
| z.conj(); |
| z.reduce(); |
| x.mul(X2); |
| y.mul(X2); |
| y.mul(X); |
| } |
| |
| /* normalises m-array of ECP2 points. Requires work vector of m FP2s */ |
| |
| public static void multiaffine(int m, ECP2[] P) |
| { |
| int i; |
| FP2 t1 = new FP2(0); |
| FP2 t2 = new FP2(0); |
| |
| FP2[] work = new FP2[m]; |
| work[0] = new FP2(1); |
| work[1] = new FP2(P[0].z); |
| for (i = 2;i < m;i++) |
| { |
| work[i] = new FP2(work[i - 1]); |
| work[i].mul(P[i - 1].z); |
| } |
| |
| t1.copy(work[m - 1]); |
| t1.mul(P[m - 1].z); |
| |
| t1.inverse(); |
| |
| t2.copy(P[m - 1].z); |
| work[m - 1].mul(t1); |
| |
| for (i = m - 2;;i--) |
| { |
| if (i == 0) |
| { |
| work[0].copy(t1); |
| work[0].mul(t2); |
| break; |
| } |
| work[i].mul(t2); |
| work[i].mul(t1); |
| t2.mul(P[i].z); |
| } |
| /* now work[] contains inverses of all Z coordinates */ |
| |
| for (i = 0;i < m;i++) |
| { |
| P[i].z.one(); |
| t1.copy(work[i]); |
| t1.sqr(); |
| P[i].x.mul(t1); |
| t1.mul(work[i]); |
| P[i].y.mul(t1); |
| } |
| } |
| |
| /* P*=e */ |
| public ECP2 mul(BIG e) |
| { |
| /* fixed size windows */ |
| int i, b, nb, m, s, ns; |
| BIG mt = new BIG(); |
| BIG t = new BIG(); |
| ECP2 P = new ECP2(); |
| ECP2 Q = new ECP2(); |
| ECP2 C = new ECP2(); |
| ECP2[] W = new ECP2[8]; |
| sbyte[] w = new sbyte[1 + (ROM.NLEN * ROM.BASEBITS + 3) / 4]; |
| |
| if (is_infinity()) |
| { |
| return new ECP2(); |
| } |
| |
| affine(); |
| |
| /* precompute table */ |
| Q.copy(this); |
| Q.dbl(); |
| W[0] = new ECP2(); |
| W[0].copy(this); |
| |
| for (i = 1;i < 8;i++) |
| { |
| W[i] = new ECP2(); |
| W[i].copy(W[i - 1]); |
| W[i].add(Q); |
| } |
| |
| /* convert the table to affine */ |
| |
| multiaffine(8,W); |
| |
| /* make exponent odd - add 2P if even, P if odd */ |
| t.copy(e); |
| s = t.parity(); |
| t.inc(1); |
| t.norm(); |
| ns = t.parity(); |
| mt.copy(t); |
| mt.inc(1); |
| mt.norm(); |
| t.cmove(mt,s); |
| Q.cmove(this,ns); |
| C.copy(Q); |
| |
| nb = 1 + (t.nbits() + 3) / 4; |
| /* convert exponent to signed 4-bit window */ |
| for (i = 0;i < nb;i++) |
| { |
| w[i] = (sbyte)(t.lastbits(5) - 16); |
| t.dec(w[i]); |
| t.norm(); |
| t.fshr(4); |
| } |
| w[nb] = (sbyte)t.lastbits(5); |
| |
| P.copy(W[(w[nb] - 1) / 2]); |
| for (i = nb - 1;i >= 0;i--) |
| { |
| Q.select(W,w[i]); |
| P.dbl(); |
| P.dbl(); |
| P.dbl(); |
| P.dbl(); |
| P.add(Q); |
| } |
| P.sub(C); |
| P.affine(); |
| return P; |
| } |
| |
| /* P=u0.Q0+u1*Q1+u2*Q2+u3*Q3 */ |
| public static ECP2 mul4(ECP2[] Q, BIG[] u) |
| { |
| int i, j, nb; |
| int[] a = new int[4]; |
| ECP2 T = new ECP2(); |
| ECP2 C = new ECP2(); |
| ECP2 P = new ECP2(); |
| ECP2[] W = new ECP2[8]; |
| |
| BIG mt = new BIG(); |
| BIG[] t = new BIG[4]; |
| |
| sbyte[] w = new sbyte[ROM.NLEN * ROM.BASEBITS + 1]; |
| |
| for (i = 0;i < 4;i++) |
| { |
| t[i] = new BIG(u[i]); |
| Q[i].affine(); |
| } |
| |
| /* precompute table */ |
| |
| W[0] = new ECP2(); |
| W[0].copy(Q[0]); |
| W[0].sub(Q[1]); |
| W[1] = new ECP2(); |
| W[1].copy(W[0]); |
| W[2] = new ECP2(); |
| W[2].copy(W[0]); |
| W[3] = new ECP2(); |
| W[3].copy(W[0]); |
| W[4] = new ECP2(); |
| W[4].copy(Q[0]); |
| W[4].add(Q[1]); |
| W[5] = new ECP2(); |
| W[5].copy(W[4]); |
| W[6] = new ECP2(); |
| W[6].copy(W[4]); |
| W[7] = new ECP2(); |
| W[7].copy(W[4]); |
| T.copy(Q[2]); |
| T.sub(Q[3]); |
| W[1].sub(T); |
| W[2].add(T); |
| W[5].sub(T); |
| W[6].add(T); |
| T.copy(Q[2]); |
| T.add(Q[3]); |
| W[0].sub(T); |
| W[3].add(T); |
| W[4].sub(T); |
| W[7].add(T); |
| |
| multiaffine(8,W); |
| |
| /* if multiplier is even add 1 to multiplier, and add P to correction */ |
| mt.zero(); |
| C.inf(); |
| for (i = 0;i < 4;i++) |
| { |
| if (t[i].parity() == 0) |
| { |
| t[i].inc(1); |
| t[i].norm(); |
| C.add(Q[i]); |
| } |
| mt.add(t[i]); |
| mt.norm(); |
| } |
| |
| nb = 1 + mt.nbits(); |
| |
| /* convert exponent to signed 1-bit window */ |
| for (j = 0;j < nb;j++) |
| { |
| for (i = 0;i < 4;i++) |
| { |
| a[i] = (sbyte)(t[i].lastbits(2) - 2); |
| t[i].dec(a[i]); |
| t[i].norm(); |
| t[i].fshr(1); |
| } |
| w[j] = (sbyte)(8 * a[0] + 4 * a[1] + 2 * a[2] + a[3]); |
| } |
| w[nb] = (sbyte)(8 * t[0].lastbits(2) + 4 * t[1].lastbits(2) + 2 * t[2].lastbits(2) + t[3].lastbits(2)); |
| |
| P.copy(W[(w[nb] - 1) / 2]); |
| for (i = nb - 1;i >= 0;i--) |
| { |
| T.select(W,w[i]); |
| P.dbl(); |
| P.add(T); |
| } |
| P.sub(C); // apply correction |
| |
| P.affine(); |
| return P; |
| } |
| |
| |
| /* |
| public static void main(String[] args) { |
| BIG r=new BIG(ROM.Modulus); |
| |
| BIG Pxa=new BIG(ROM.CURVE_Pxa); |
| BIG Pxb=new BIG(ROM.CURVE_Pxb); |
| BIG Pya=new BIG(ROM.CURVE_Pya); |
| BIG Pyb=new BIG(ROM.CURVE_Pyb); |
| |
| BIG Fra=new BIG(ROM.CURVE_Fra); |
| BIG Frb=new BIG(ROM.CURVE_Frb); |
| |
| FP2 f=new FP2(Fra,Frb); |
| |
| FP2 Px=new FP2(Pxa,Pxb); |
| FP2 Py=new FP2(Pya,Pyb); |
| |
| ECP2 P=new ECP2(Px,Py); |
| |
| System.out.println("P= "+P.toString()); |
| |
| P=P.mul(r); |
| System.out.println("P= "+P.toString()); |
| |
| ECP2 Q=new ECP2(Px,Py); |
| Q.frob(f); |
| System.out.println("Q= "+Q.toString()); |
| |
| |
| } */ |
| |
| |
| } |