| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| |
| from hugegraph_ml.data.hugegraph2dgl import HugeGraph2DGL |
| from hugegraph_ml.models.dgi import DGI |
| from hugegraph_ml.models.mlp import MLPClassifier |
| from hugegraph_ml.tasks.node_classify import NodeClassify |
| from hugegraph_ml.tasks.node_embed import NodeEmbed |
| |
| |
| def dgi_example(n_epochs_embed=300, n_epochs_clf=400): |
| hg2d = HugeGraph2DGL() |
| graph = hg2d.convert_graph(vertex_label="CORA_vertex", edge_label="CORA_edge") |
| model = DGI(n_in_feats=graph.ndata["feat"].shape[1]) |
| node_embed_task = NodeEmbed(graph=graph, model=model) |
| embedded_graph = node_embed_task.train_and_embed(add_self_loop=True, n_epochs=n_epochs_embed, patience=30) |
| model = MLPClassifier( |
| n_in_feat=embedded_graph.ndata["feat"].shape[1], n_out_feat=embedded_graph.ndata["label"].unique().shape[0] |
| ) |
| node_clf_task = NodeClassify(graph=embedded_graph, model=model) |
| node_clf_task.train(lr=1e-3, n_epochs=n_epochs_clf, patience=40) |
| print(node_clf_task.evaluate()) |
| |
| |
| if __name__ == "__main__": |
| dgi_example() |