blob: f63fb29b9da944ce99a318ebcb07eaa2199000bc [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Approximate personalized propagation of neural predictions (APPNP)
References
----------
Paper: https://arxiv.org/abs/1810.05997
Author's code: https://github.com/klicperajo/ppnp
DGL code: https://github.com/dmlc/dgl/tree/master/examples/pytorch/appnp
"""
from torch import nn
from dgl.nn.pytorch.conv import APPNPConv
class APPNP(nn.Module):
def __init__(
self,
in_feats,
hiddens,
n_classes,
activation,
feat_drop,
edge_drop,
alpha,
k,
):
super(APPNP, self).__init__()
self.layers = nn.ModuleList()
# input layer
self.layers.append(nn.Linear(in_feats, hiddens[0]))
# hidden layers
for i in range(1, len(hiddens)):
self.layers.append(nn.Linear(hiddens[i - 1], hiddens[i]))
# output layer
self.layers.append(nn.Linear(hiddens[-1], n_classes))
self.activation = activation
if feat_drop:
self.feat_drop = nn.Dropout(feat_drop)
else:
self.feat_drop = lambda x: x
self.propagate = APPNPConv(k, alpha, edge_drop)
self.reset_parameters()
self.criterion = nn.CrossEntropyLoss()
def reset_parameters(self):
for layer in self.layers:
layer.reset_parameters()
def forward(self, graph, features):
# prediction step
h = features
h = self.feat_drop(h)
h = self.activation(self.layers[0](h))
for layer in self.layers[1:-1]:
h = self.activation(layer(h))
h = self.layers[-1](self.feat_drop(h))
# propagation step
h = self.propagate(graph, h)
return h
def loss(self, logits, labels):
return self.criterion(logits, labels)
def inference(self, graph, feats):
return self.forward(graph, feats)