| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| """ |
| Approximate personalized propagation of neural predictions (APPNP) |
| |
| References |
| ---------- |
| Paper: https://arxiv.org/abs/1810.05997 |
| Author's code: https://github.com/klicperajo/ppnp |
| DGL code: https://github.com/dmlc/dgl/tree/master/examples/pytorch/appnp |
| """ |
| |
| from torch import nn |
| |
| from dgl.nn.pytorch.conv import APPNPConv |
| |
| |
| class APPNP(nn.Module): |
| def __init__( |
| self, |
| in_feats, |
| hiddens, |
| n_classes, |
| activation, |
| feat_drop, |
| edge_drop, |
| alpha, |
| k, |
| ): |
| super(APPNP, self).__init__() |
| self.layers = nn.ModuleList() |
| # input layer |
| self.layers.append(nn.Linear(in_feats, hiddens[0])) |
| # hidden layers |
| for i in range(1, len(hiddens)): |
| self.layers.append(nn.Linear(hiddens[i - 1], hiddens[i])) |
| # output layer |
| self.layers.append(nn.Linear(hiddens[-1], n_classes)) |
| self.activation = activation |
| if feat_drop: |
| self.feat_drop = nn.Dropout(feat_drop) |
| else: |
| self.feat_drop = lambda x: x |
| self.propagate = APPNPConv(k, alpha, edge_drop) |
| self.reset_parameters() |
| |
| self.criterion = nn.CrossEntropyLoss() |
| |
| def reset_parameters(self): |
| for layer in self.layers: |
| layer.reset_parameters() |
| |
| def forward(self, graph, features): |
| # prediction step |
| h = features |
| h = self.feat_drop(h) |
| h = self.activation(self.layers[0](h)) |
| for layer in self.layers[1:-1]: |
| h = self.activation(layer(h)) |
| h = self.layers[-1](self.feat_drop(h)) |
| # propagation step |
| h = self.propagate(graph, h) |
| return h |
| |
| def loss(self, logits, labels): |
| return self.criterion(logits, labels) |
| |
| def inference(self, graph, feats): |
| return self.forward(graph, feats) |