blob: 066dc743fdc1ad58385158989d4015daa850fe6c [file] [log] [blame]
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.heron.streamlet.impl;
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import java.util.logging.Logger;
import org.apache.heron.api.topology.TopologyBuilder;
import org.apache.heron.streamlet.IStreamletOperator;
import org.apache.heron.streamlet.JoinType;
import org.apache.heron.streamlet.KeyValue;
import org.apache.heron.streamlet.KeyedWindow;
import org.apache.heron.streamlet.SerializableBiFunction;
import org.apache.heron.streamlet.SerializableBinaryOperator;
import org.apache.heron.streamlet.SerializableConsumer;
import org.apache.heron.streamlet.SerializableFunction;
import org.apache.heron.streamlet.SerializablePredicate;
import org.apache.heron.streamlet.SerializableSupplier;
import org.apache.heron.streamlet.SerializableTransformer;
import org.apache.heron.streamlet.Sink;
import org.apache.heron.streamlet.Source;
import org.apache.heron.streamlet.Streamlet;
import org.apache.heron.streamlet.WindowConfig;
import org.apache.heron.streamlet.impl.streamlets.ConsumerStreamlet;
import org.apache.heron.streamlet.impl.streamlets.CustomStreamlet;
import org.apache.heron.streamlet.impl.streamlets.FilterStreamlet;
import org.apache.heron.streamlet.impl.streamlets.FlatMapStreamlet;
import org.apache.heron.streamlet.impl.streamlets.GeneralReduceByKeyAndWindowStreamlet;
import org.apache.heron.streamlet.impl.streamlets.JoinStreamlet;
import org.apache.heron.streamlet.impl.streamlets.LogStreamlet;
import org.apache.heron.streamlet.impl.streamlets.MapStreamlet;
import org.apache.heron.streamlet.impl.streamlets.ReduceByKeyAndWindowStreamlet;
import org.apache.heron.streamlet.impl.streamlets.RemapStreamlet;
import org.apache.heron.streamlet.impl.streamlets.SinkStreamlet;
import org.apache.heron.streamlet.impl.streamlets.SourceStreamlet;
import org.apache.heron.streamlet.impl.streamlets.SupplierStreamlet;
import org.apache.heron.streamlet.impl.streamlets.TransformStreamlet;
import org.apache.heron.streamlet.impl.streamlets.UnionStreamlet;
import org.apache.heron.streamlet.impl.utils.StreamletUtils;
/**
* A Streamlet is a (potentially unbounded) ordered collection of tuples.
* Streamlets originate from pub/sub systems(such Pulsar/Kafka), or from
* static data(such as csv files, HDFS files), or for that matter any other
* source. They are also created by transforming existing Streamlets using
* operations such as map/flatMap, etc.
* Besides the tuples, a Streamlet has the following properties associated with it
* a) name. User assigned or system generated name to refer the streamlet
* b) nPartitions. Number of partitions that the streamlet is composed of. Thus the
* ordering of the tuples in a Streamlet is wrt the tuples within a partition.
* This allows the system to distribute each partition to different nodes across the cluster.
* A bunch of transformations can be done on Streamlets(like map/flatMap, etc.). Each
* of these transformations operate on every tuple of the Streamlet and produce a new
* Streamlet. One can think of a transformation attaching itself to the stream and processing
* each tuple as they go by. Thus the parallelism of any operator is implicitly determined
* by the number of partitions of the stream that it is operating on. If a particular
* transformation wants to operate at a different parallelism, one can repartition the
* Streamlet before doing the transformation.
*/
public abstract class StreamletImpl<R> implements Streamlet<R> {
private static final Logger LOG = Logger.getLogger(StreamletImpl.class.getName());
protected String name;
protected int nPartitions;
private List<StreamletImpl<?>> children;
private boolean built;
public boolean isBuilt() {
return built;
}
public boolean allBuilt() {
if (!built) {
return false;
}
for (StreamletImpl<?> child : children) {
if (!child.allBuilt()) {
return false;
}
}
return true;
}
protected enum StreamletNamePrefix {
CONSUMER("consumer"),
CUSTOM("custom"),
CUSTOM_BASIC("customBasic"),
CUSTOM_WINDOW("customWindow"),
FILTER("filter"),
FLATMAP("flatmap"),
REDUCE("reduceByKeyAndWindow"),
JOIN("join"),
LOGGER("logger"),
MAP("map"),
REMAP("remap"),
SINK("sink"),
SOURCE("generator"),
SUPPLIER("supplier"),
TRANSFORM("transform"),
UNION("union");
private final String prefix;
StreamletNamePrefix(final String prefix) {
this.prefix = prefix;
}
@Override
public String toString() {
return prefix;
}
}
/**
* Gets all the children of this streamlet.
* Children of a streamlet are streamlets that are resulting from transformations of elements of
* this and potentially other streamlets.
* @return The kid streamlets
*/
public List<StreamletImpl<?>> getChildren() {
return children;
}
/**
* Sets the name of the Streamlet.
* @param sName The name given by the user for this streamlet
* @return Returns back the Streamlet with changed name
*/
@Override
public Streamlet<R> setName(String sName) {
StreamletUtils.require(sName != null && !sName.trim().isEmpty(),
"Streamlet name cannot be null/blank");
this.name = sName;
return this;
}
/**
* Gets the name of the Streamlet.
* @return Returns the name of the Streamlet
*/
@Override
public String getName() {
return name;
}
/**
* Sets a default unique name to the Streamlet by type if it is not set.
* Otherwise, just checks its uniqueness.
* @param prefix The name prefix of this streamlet
* @param stageNames The collections of created streamlet/stage names
*/
protected void setDefaultNameIfNone(StreamletNamePrefix prefix, Set<String> stageNames) {
if (getName() == null) {
setName(defaultNameCalculator(prefix, stageNames));
}
if (stageNames.contains(getName())) {
throw new RuntimeException(String.format(
"The stage name %s is used multiple times in the same topology", getName()));
}
stageNames.add(getName());
}
/**
* Sets the number of partitions of the streamlet
* @param numPartitions The user assigned number of partitions
* @return Returns back the Streamlet with changed number of partitions
*/
@Override
public Streamlet<R> setNumPartitions(int numPartitions) {
StreamletUtils.require(numPartitions > 0,
"Streamlet's partitions number should be > 0");
this.nPartitions = numPartitions;
return this;
}
/**
* Gets the number of partitions of this Streamlet.
* @return the number of partitions of this Streamlet
*/
@Override
public int getNumPartitions() {
return nPartitions;
}
/**
* Only used by the implementors
*/
protected StreamletImpl() {
this.nPartitions = -1;
this.children = new LinkedList<>();
this.built = false;
}
public void build(TopologyBuilder bldr, Set<String> stageNames) {
if (built) {
throw new RuntimeException("Logic Error While building " + getName());
}
if (doBuild(bldr, stageNames)) {
built = true;
for (StreamletImpl<?> streamlet : children) {
streamlet.build(bldr, stageNames);
}
}
}
// This is the main interface that every Streamlet implementation should implement
// The main tasks are generally to make sure that appropriate names/partitions are
// computed and add a spout/bolt to the TopologyBuilder
protected abstract boolean doBuild(TopologyBuilder bldr, Set<String> stageNames);
public <T> void addChild(StreamletImpl<T> child) {
children.add(child);
}
private String defaultNameCalculator(StreamletNamePrefix prefix, Set<String> stageNames) {
int index = 1;
String calculatedName;
while (true) {
calculatedName = new StringBuilder(prefix.toString()).append(index).toString();
if (!stageNames.contains(calculatedName)) {
break;
}
index++;
}
LOG.info("Calculated stage Name as " + calculatedName);
return calculatedName;
}
/**
* Create a Streamlet based on the supplier function
* @param supplier The Supplier function to generate the elements
*/
static <T> StreamletImpl<T> createSupplierStreamlet(SerializableSupplier<T> supplier) {
return new SupplierStreamlet<T>(supplier);
}
/**
* Create a Streamlet based on the generator function
* @param generator The Generator function to generate the elements
*/
static <T> StreamletImpl<T> createGeneratorStreamlet(Source<T> generator) {
return new SourceStreamlet<T>(generator);
}
/**
* Return a new Streamlet by applying mapFn to each element of this Streamlet
* @param mapFn The Map Function that should be applied to each element
*/
@Override
public <T> Streamlet<T> map(SerializableFunction<R, ? extends T> mapFn) {
MapStreamlet<R, T> retval = new MapStreamlet<>(this, mapFn);
addChild(retval);
return retval;
}
/**
* Return a new Streamlet by applying flatMapFn to each element of this Streamlet and
* flattening the result
* @param flatMapFn The FlatMap Function that should be applied to each element
*/
@Override
public <T> Streamlet<T> flatMap(
SerializableFunction<R, ? extends Iterable<? extends T>> flatMapFn) {
FlatMapStreamlet<R, T> retval = new FlatMapStreamlet<>(this, flatMapFn);
addChild(retval);
return retval;
}
/**
* Return a new Streamlet by applying the filterFn on each element of this streamlet
* and including only those elements that satisfy the filterFn
* @param filterFn The filter Function that should be applied to each element
*/
@Override
public Streamlet<R> filter(SerializablePredicate<R> filterFn) {
FilterStreamlet<R> retval = new FilterStreamlet<>(this, filterFn);
addChild(retval);
return retval;
}
/**
* Same as filter(Identity).setNumPartitions(nPartitions)
*/
@Override
public Streamlet<R> repartition(int numPartitions) {
return this.map((a) -> a).setNumPartitions(numPartitions);
}
/**
* A more generalized version of repartition where a user can determine which partitions
* any particular tuple should go to
*/
@Override
public Streamlet<R> repartition(int numPartitions,
SerializableBiFunction<R, Integer, List<Integer>> partitionFn) {
RemapStreamlet<R> retval = new RemapStreamlet<>(this, partitionFn);
retval.setNumPartitions(numPartitions);
addChild(retval);
return retval;
}
/**
* Clones the current Streamlet. It returns an array of numClones Streamlets where each
* Streamlet contains all the tuples of the current Streamlet
* @param numClones The number of clones to clone
*/
@Override
public List<Streamlet<R>> clone(int numClones) {
StreamletUtils.require(numClones > 0,
"Streamlet's clone number should be > 0");
List<Streamlet<R>> retval = new ArrayList<>(numClones);
for (int i = 0; i < numClones; ++i) {
retval.add(repartition(getNumPartitions()));
}
return retval;
}
/**
* Return a new Streamlet by inner joining 'this streamlet with ‘other’ streamlet.
* The join is done over elements accumulated over a time window defined by windowCfg.
* The elements are compared using the thisKeyExtractor for this streamlet with the
* otherKeyExtractor for the other streamlet. On each matching pair, the joinFunction is applied.
* @param other The Streamlet that we are joining with.
* @param thisKeyExtractor The function applied to a tuple of this streamlet to get the key
* @param otherKeyExtractor The function applied to a tuple of the other streamlet to get the key
* @param windowCfg This is a specification of what kind of windowing strategy you like to
* have. Typical windowing strategies are sliding windows and tumbling windows
* @param joinFunction The join function that needs to be applied
*/
@Override
public <K, S, T> Streamlet<KeyValue<KeyedWindow<K>, T>>
join(Streamlet<S> other, SerializableFunction<R, K> thisKeyExtractor,
SerializableFunction<S, K> otherKeyExtractor, WindowConfig windowCfg,
SerializableBiFunction<R, S, ? extends T> joinFunction) {
return join(other, thisKeyExtractor, otherKeyExtractor,
windowCfg, JoinType.INNER, joinFunction);
}
/**
* Return a new KVStreamlet by joining 'this streamlet with ‘other’ streamlet. The type of joining
* is declared by the joinType parameter.
* The join is done over elements accumulated over a time window defined by windowCfg.
* The elements are compared using the thisKeyExtractor for this streamlet with the
* otherKeyExtractor for the other streamlet. On each matching pair, the joinFunction is applied.
* Types of joins {@link JoinType}
* @param other The Streamlet that we are joining with.
* @param thisKeyExtractor The function applied to a tuple of this streamlet to get the key
* @param otherKeyExtractor The function applied to a tuple of the other streamlet to get the key
* @param windowCfg This is a specification of what kind of windowing strategy you like to
* have. Typical windowing strategies are sliding windows and tumbling windows
* @param joinType Type of Join. Options {@link JoinType}
* @param joinFunction The join function that needs to be applied
*/
@Override
public <K, S, T> Streamlet<KeyValue<KeyedWindow<K>, T>>
join(Streamlet<S> other, SerializableFunction<R, K> thisKeyExtractor,
SerializableFunction<S, K> otherKeyExtractor, WindowConfig windowCfg,
JoinType joinType, SerializableBiFunction<R, S, ? extends T> joinFunction) {
StreamletImpl<S> joinee = (StreamletImpl<S>) other;
JoinStreamlet<K, R, S, T> retval = JoinStreamlet.createJoinStreamlet(
this, joinee, thisKeyExtractor, otherKeyExtractor, windowCfg, joinType, joinFunction);
addChild(retval);
joinee.addChild(retval);
return retval;
}
/**
* Return a new Streamlet accumulating tuples of this streamlet over a Window defined by
* windowCfg and applying reduceFn on those tuples.
* @param keyExtractor The function applied to a tuple of this streamlet to get the key
* @param valueExtractor The function applied to a tuple of this streamlet to extract the value
* to be reduced on
* @param windowCfg This is a specification of what kind of windowing strategy you like to have.
* Typical windowing strategies are sliding windows and tumbling windows
* @param reduceFn The reduce function that you want to apply to all the values of a key.
*/
@Override
public <K, V> Streamlet<KeyValue<KeyedWindow<K>, V>> reduceByKeyAndWindow(
SerializableFunction<R, K> keyExtractor, SerializableFunction<R, V> valueExtractor,
WindowConfig windowCfg, SerializableBinaryOperator<V> reduceFn) {
ReduceByKeyAndWindowStreamlet<K, V, R> retval =
new ReduceByKeyAndWindowStreamlet<>(this, keyExtractor, valueExtractor,
windowCfg, reduceFn);
addChild(retval);
return retval;
}
/**
* Return a new Streamlet accumulating tuples of this streamlet over a Window defined by
* windowCfg and applying reduceFn on those tuples. For each window, the value identity is used
* as a initial value. All the matching tuples are reduced using reduceFn starting from this
* initial value.
* @param keyExtractor The function applied to a tuple of this streamlet to get the key
* @param windowCfg This is a specification of what kind of windowing strategy you like to have.
* Typical windowing strategies are sliding windows and tumbling windows
* @param identity The identity element is both the initial value inside the reduction window
* and the default result if there are no elements in the window
* @param reduceFn The reduce function takes two parameters: a partial result of the reduction
* and the next element of the stream. It returns a new partial result.
*/
@Override
public <K, T> Streamlet<KeyValue<KeyedWindow<K>, T>> reduceByKeyAndWindow(
SerializableFunction<R, K> keyExtractor, WindowConfig windowCfg,
T identity, SerializableBiFunction<T, R, ? extends T> reduceFn) {
GeneralReduceByKeyAndWindowStreamlet<K, R, T> retval =
new GeneralReduceByKeyAndWindowStreamlet<>(this, keyExtractor, windowCfg,
identity, reduceFn);
addChild(retval);
return retval;
}
/**
* Returns a new Streamlet that is the union of this and the ‘other’ streamlet. Essentially
* the new streamlet will contain tuples belonging to both Streamlets
*/
@Override
public Streamlet<R> union(Streamlet<? extends R> other) {
StreamletImpl<? extends R> joinee = (StreamletImpl<? extends R>) other;
UnionStreamlet<R> retval = new UnionStreamlet<>(this, joinee);
addChild(retval);
joinee.addChild(retval);
return retval;
}
/**
* Logs every element of the streamlet using String.valueOf function
* Note that LogStreamlet is an empty streamlet. That is its a streamlet
* that does not contain any tuple. Thus this function returns void.
*/
@Override
public void log() {
LogStreamlet<R> logger = new LogStreamlet<>(this);
addChild(logger);
}
/**
* Applies the consumer function for every element of this streamlet
* @param consumer The user supplied consumer function that is invoked for each element
*/
@Override
public void consume(SerializableConsumer<R> consumer) {
ConsumerStreamlet<R> consumerStreamlet = new ConsumerStreamlet<>(this, consumer);
addChild(consumerStreamlet);
}
/**
* Uses the sink to consume every element of this streamlet
* @param sink The Sink that consumes
*/
@Override
public void toSink(Sink<R> sink) {
SinkStreamlet<R> sinkStreamlet = new SinkStreamlet<>(this, sink);
addChild(sinkStreamlet);
}
/**
* Returns a new Streamlet by applying the transformFunction on each element of this streamlet.
* Before starting to cycle the transformFunction over the Streamlet, the open function is called.
* This allows the transform Function to do any kind of initialization/loading, etc.
* @param serializableTransformer The transformation function to be applied
* @param <T> The return type of the transform
* @return Streamlet containing the output of the transformFunction
*/
@Override
public <T> Streamlet<T> transform(
SerializableTransformer<R, ? extends T> serializableTransformer) {
TransformStreamlet<R, T> transformStreamlet =
new TransformStreamlet<>(this, serializableTransformer);
addChild(transformStreamlet);
return transformStreamlet;
}
/**
* Returns a new Streamlet by applying the operator on each element of this streamlet.
* @param operator The operator to be applied
* @param <T> The return type of the transform
* @return Streamlet containing the output of the operation
*/
@Override
public <T> Streamlet<T> applyOperator(IStreamletOperator<R, T> operator) {
StreamletImpl<T> customStreamlet = new CustomStreamlet<>(this, operator);
addChild(customStreamlet);
return customStreamlet;
}
}