blob: ef52ec0e02d32d173f18d2dbb61fb96e1631b981 [file] [log] [blame]
// This file is derived from cache.cc in the LevelDB project:
//
// Some portions copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ------------------------------------------------------------
// This file implements a cache based on the NVML library (http://pmem.io),
// specifically its "libvmem" component. This library makes it easy to program
// against persistent memory hardware by exposing an API which parallels
// malloc/free, but allocates from persistent memory instead of DRAM.
//
// We use this API to implement a cache which treats persistent memory or
// non-volatile memory as if it were a larger cheaper bank of volatile memory. We
// currently make no use of its persistence properties.
//
// Currently, we only store key/value in NVM. All other data structures such as the
// ShardedLRUCache instances, hash table, etc are in DRAM. The assumption is that
// the ratio of data stored vs overhead is quite high.
#include "kudu/util/nvm_cache.h"
#include <cstdint>
#include <cstring>
#include <iostream>
#include <memory>
#include <mutex>
#include <string>
#include <vector>
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <libvmem.h>
#include "kudu/gutil/atomicops.h"
#include "kudu/gutil/atomic_refcount.h"
#include "kudu/gutil/dynamic_annotations.h"
#include "kudu/gutil/gscoped_ptr.h"
#include "kudu/gutil/hash/city.h"
#include "kudu/gutil/macros.h"
#include "kudu/gutil/port.h"
#include "kudu/gutil/ref_counted.h"
#include "kudu/gutil/stl_util.h"
#include "kudu/util/cache.h"
#include "kudu/util/cache_metrics.h"
#include "kudu/util/flag_tags.h"
#include "kudu/util/locks.h"
#include "kudu/util/metrics.h"
#include "kudu/util/slice.h"
DEFINE_string(nvm_cache_path, "/vmem",
"The path at which the NVM cache will try to allocate its memory. "
"This can be a tmpfs or ramfs for testing purposes.");
TAG_FLAG(nvm_cache_path, experimental);
DEFINE_int32(nvm_cache_allocation_retry_count, 10,
"The number of times that the NVM cache will retry attempts to allocate "
"memory for new entries. In between attempts, a cache entry will be "
"evicted.");
TAG_FLAG(nvm_cache_allocation_retry_count, advanced);
TAG_FLAG(nvm_cache_allocation_retry_count, experimental);
DEFINE_bool(nvm_cache_simulate_allocation_failure, false,
"If true, the NVM cache will inject failures in calls to vmem_malloc "
"for testing.");
TAG_FLAG(nvm_cache_simulate_allocation_failure, unsafe);
namespace kudu {
namespace {
using std::shared_ptr;
using std::string;
using std::vector;
typedef simple_spinlock MutexType;
// LRU cache implementation
// An entry is a variable length heap-allocated structure. Entries
// are kept in a circular doubly linked list ordered by access time.
struct LRUHandle {
Cache::EvictionCallback* eviction_callback;
LRUHandle* next_hash;
LRUHandle* next;
LRUHandle* prev;
size_t charge; // TODO(opt): Only allow uint32_t?
uint32_t key_length;
uint32_t val_length;
Atomic32 refs;
uint32_t hash; // Hash of key(); used for fast sharding and comparisons
uint8_t* kv_data;
Slice key() const {
return Slice(kv_data, key_length);
}
Slice value() const {
return Slice(&kv_data[key_length], val_length);
}
uint8_t* val_ptr() {
return &kv_data[key_length];
}
};
// We provide our own simple hash table since it removes a whole bunch
// of porting hacks and is also faster than some of the built-in hash
// table implementations in some of the compiler/runtime combinations
// we have tested. E.g., readrandom speeds up by ~5% over the g++
// 4.4.3's builtin hashtable.
class HandleTable {
public:
HandleTable() : length_(0), elems_(0), list_(NULL) { Resize(); }
~HandleTable() { delete[] list_; }
LRUHandle* Lookup(const Slice& key, uint32_t hash) {
return *FindPointer(key, hash);
}
LRUHandle* Insert(LRUHandle* h) {
LRUHandle** ptr = FindPointer(h->key(), h->hash);
LRUHandle* old = *ptr;
h->next_hash = (old == NULL ? NULL : old->next_hash);
*ptr = h;
if (old == NULL) {
++elems_;
if (elems_ > length_) {
// Since each cache entry is fairly large, we aim for a small
// average linked list length (<= 1).
Resize();
}
}
return old;
}
LRUHandle* Remove(const Slice& key, uint32_t hash) {
LRUHandle** ptr = FindPointer(key, hash);
LRUHandle* result = *ptr;
if (result != NULL) {
*ptr = result->next_hash;
--elems_;
}
return result;
}
private:
// The table consists of an array of buckets where each bucket is
// a linked list of cache entries that hash into the bucket.
uint32_t length_;
uint32_t elems_;
LRUHandle** list_;
// Return a pointer to slot that points to a cache entry that
// matches key/hash. If there is no such cache entry, return a
// pointer to the trailing slot in the corresponding linked list.
LRUHandle** FindPointer(const Slice& key, uint32_t hash) {
LRUHandle** ptr = &list_[hash & (length_ - 1)];
while (*ptr != NULL &&
((*ptr)->hash != hash || key != (*ptr)->key())) {
ptr = &(*ptr)->next_hash;
}
return ptr;
}
void Resize() {
uint32_t new_length = 16;
while (new_length < elems_ * 1.5) {
new_length *= 2;
}
LRUHandle** new_list = new LRUHandle*[new_length];
memset(new_list, 0, sizeof(new_list[0]) * new_length);
uint32_t count = 0;
for (uint32_t i = 0; i < length_; i++) {
LRUHandle* h = list_[i];
while (h != NULL) {
LRUHandle* next = h->next_hash;
uint32_t hash = h->hash;
LRUHandle** ptr = &new_list[hash & (new_length - 1)];
h->next_hash = *ptr;
*ptr = h;
h = next;
count++;
}
}
DCHECK_EQ(elems_, count);
delete[] list_;
list_ = new_list;
length_ = new_length;
}
};
// A single shard of sharded cache.
class NvmLRUCache {
public:
explicit NvmLRUCache(VMEM *vmp);
~NvmLRUCache();
// Separate from constructor so caller can easily make an array of LRUCache
void SetCapacity(size_t capacity) { capacity_ = capacity; }
void SetMetrics(CacheMetrics* metrics) { metrics_ = metrics; }
Cache::Handle* Insert(LRUHandle* h, Cache::EvictionCallback* eviction_callback);
// Like Cache::Lookup, but with an extra "hash" parameter.
Cache::Handle* Lookup(const Slice& key, uint32_t hash, bool caching);
void Release(Cache::Handle* handle);
void Erase(const Slice& key, uint32_t hash);
void* AllocateAndRetry(size_t size);
private:
void NvmLRU_Remove(LRUHandle* e);
void NvmLRU_Append(LRUHandle* e);
// Just reduce the reference count by 1.
// Return true if last reference
bool Unref(LRUHandle* e);
void FreeEntry(LRUHandle* e);
// Evict the LRU item in the cache, adding it to the linked list
// pointed to by 'to_remove_head'.
void EvictOldestUnlocked(LRUHandle** to_remove_head);
// Free all of the entries in the linked list that has to_free_head
// as its head.
void FreeLRUEntries(LRUHandle* to_free_head);
// Wrapper around vmem_malloc which injects failures based on a flag.
void* VmemMalloc(size_t size);
// Initialized before use.
size_t capacity_;
// mutex_ protects the following state.
MutexType mutex_;
size_t usage_;
// Dummy head of LRU list.
// lru.prev is newest entry, lru.next is oldest entry.
LRUHandle lru_;
HandleTable table_;
VMEM* vmp_;
CacheMetrics* metrics_;
};
NvmLRUCache::NvmLRUCache(VMEM* vmp)
: usage_(0),
vmp_(vmp),
metrics_(NULL) {
// Make empty circular linked list
lru_.next = &lru_;
lru_.prev = &lru_;
}
NvmLRUCache::~NvmLRUCache() {
for (LRUHandle* e = lru_.next; e != &lru_; ) {
LRUHandle* next = e->next;
DCHECK_EQ(e->refs, 1); // Error if caller has an unreleased handle
if (Unref(e)) {
FreeEntry(e);
}
e = next;
}
}
void* NvmLRUCache::VmemMalloc(size_t size) {
if (PREDICT_FALSE(FLAGS_nvm_cache_simulate_allocation_failure)) {
return NULL;
}
return vmem_malloc(vmp_, size);
}
bool NvmLRUCache::Unref(LRUHandle* e) {
DCHECK_GT(ANNOTATE_UNPROTECTED_READ(e->refs), 0);
return !base::RefCountDec(&e->refs);
}
void NvmLRUCache::FreeEntry(LRUHandle* e) {
DCHECK_EQ(ANNOTATE_UNPROTECTED_READ(e->refs), 0);
if (e->eviction_callback) {
e->eviction_callback->EvictedEntry(e->key(), e->value());
}
if (PREDICT_TRUE(metrics_)) {
metrics_->cache_usage->DecrementBy(e->charge);
metrics_->evictions->Increment();
}
vmem_free(vmp_, e);
}
// Allocate nvm memory. Try until successful or FLAGS_nvm_cache_allocation_retry_count
// has been exceeded.
void *NvmLRUCache::AllocateAndRetry(size_t size) {
void *tmp;
// There may be times that an allocation fails. With NVM we have
// a fixed size to allocate from. If we cannot allocate the size
// that was asked for, we will remove entries from the cache and
// retry up to the configured number of retries. If this fails, we
// return NULL, which will cause the caller to not insert anything
// into the cache.
LRUHandle *to_remove_head = NULL;
tmp = VmemMalloc(size);
if (tmp == NULL) {
std::unique_lock<MutexType> l(mutex_);
int retries_remaining = FLAGS_nvm_cache_allocation_retry_count;
while (tmp == NULL && retries_remaining-- > 0 && lru_.next != &lru_) {
EvictOldestUnlocked(&to_remove_head);
// Unlock while allocating memory.
l.unlock();
tmp = VmemMalloc(size);
l.lock();
}
}
// we free the entries here outside of mutex for
// performance reasons
FreeLRUEntries(to_remove_head);
return tmp;
}
void NvmLRUCache::NvmLRU_Remove(LRUHandle* e) {
e->next->prev = e->prev;
e->prev->next = e->next;
usage_ -= e->charge;
}
void NvmLRUCache::NvmLRU_Append(LRUHandle* e) {
// Make "e" newest entry by inserting just before lru_
e->next = &lru_;
e->prev = lru_.prev;
e->prev->next = e;
e->next->prev = e;
usage_ += e->charge;
}
Cache::Handle* NvmLRUCache::Lookup(const Slice& key, uint32_t hash, bool caching) {
LRUHandle* e;
{
std::lock_guard<MutexType> l(mutex_);
e = table_.Lookup(key, hash);
if (e != NULL) {
// If an entry exists, remove the old entry from the cache
// and re-add to the end of the linked list.
base::RefCountInc(&e->refs);
NvmLRU_Remove(e);
NvmLRU_Append(e);
}
}
// Do the metrics outside of the lock.
if (metrics_) {
metrics_->lookups->Increment();
bool was_hit = (e != NULL);
if (was_hit) {
if (caching) {
metrics_->cache_hits_caching->Increment();
} else {
metrics_->cache_hits->Increment();
}
} else {
if (caching) {
metrics_->cache_misses_caching->Increment();
} else {
metrics_->cache_misses->Increment();
}
}
}
return reinterpret_cast<Cache::Handle*>(e);
}
void NvmLRUCache::Release(Cache::Handle* handle) {
LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
bool last_reference = Unref(e);
if (last_reference) {
FreeEntry(e);
}
}
void NvmLRUCache::EvictOldestUnlocked(LRUHandle** to_remove_head) {
LRUHandle* old = lru_.next;
NvmLRU_Remove(old);
table_.Remove(old->key(), old->hash);
if (Unref(old)) {
old->next = *to_remove_head;
*to_remove_head = old;
}
}
void NvmLRUCache::FreeLRUEntries(LRUHandle* to_free_head) {
while (to_free_head != NULL) {
LRUHandle* next = to_free_head->next;
FreeEntry(to_free_head);
to_free_head = next;
}
}
Cache::Handle* NvmLRUCache::Insert(LRUHandle* e,
Cache::EvictionCallback* eviction_callback) {
DCHECK(e);
LRUHandle* to_remove_head = NULL;
e->refs = 2; // One from LRUCache, one for the returned handle
e->eviction_callback = eviction_callback;
if (PREDICT_TRUE(metrics_)) {
metrics_->cache_usage->IncrementBy(e->charge);
metrics_->inserts->Increment();
}
{
std::lock_guard<MutexType> l(mutex_);
NvmLRU_Append(e);
LRUHandle* old = table_.Insert(e);
if (old != NULL) {
NvmLRU_Remove(old);
if (Unref(old)) {
old->next = to_remove_head;
to_remove_head = old;
}
}
while (usage_ > capacity_ && lru_.next != &lru_) {
EvictOldestUnlocked(&to_remove_head);
}
}
// we free the entries here outside of mutex for
// performance reasons
FreeLRUEntries(to_remove_head);
return reinterpret_cast<Cache::Handle*>(e);
}
void NvmLRUCache::Erase(const Slice& key, uint32_t hash) {
LRUHandle* e;
bool last_reference = false;
{
std::lock_guard<MutexType> l(mutex_);
e = table_.Remove(key, hash);
if (e != NULL) {
NvmLRU_Remove(e);
last_reference = Unref(e);
}
}
// mutex not held here
// last_reference will only be true if e != NULL
if (last_reference) {
FreeEntry(e);
}
}
static const int kNumShardBits = 4;
static const int kNumShards = 1 << kNumShardBits;
class ShardedLRUCache : public Cache {
private:
gscoped_ptr<CacheMetrics> metrics_;
vector<NvmLRUCache*> shards_;
VMEM* vmp_;
static inline uint32_t HashSlice(const Slice& s) {
return util_hash::CityHash64(
reinterpret_cast<const char *>(s.data()), s.size());
}
static uint32_t Shard(uint32_t hash) {
return hash >> (32 - kNumShardBits);
}
public:
explicit ShardedLRUCache(size_t capacity, const string& /*id*/, VMEM* vmp)
: vmp_(vmp) {
const size_t per_shard = (capacity + (kNumShards - 1)) / kNumShards;
for (int s = 0; s < kNumShards; s++) {
gscoped_ptr<NvmLRUCache> shard(new NvmLRUCache(vmp_));
shard->SetCapacity(per_shard);
shards_.push_back(shard.release());
}
}
virtual ~ShardedLRUCache() {
STLDeleteElements(&shards_);
// Per the note at the top of this file, our cache is entirely volatile.
// Hence, when the cache is destructed, we delete the underlying
// VMEM pool.
vmem_delete(vmp_);
}
virtual Handle* Insert(PendingHandle* handle,
Cache::EvictionCallback* eviction_callback) OVERRIDE {
LRUHandle* h = reinterpret_cast<LRUHandle*>(DCHECK_NOTNULL(handle));
return shards_[Shard(h->hash)]->Insert(h, eviction_callback);
}
virtual Handle* Lookup(const Slice& key, CacheBehavior caching) OVERRIDE {
const uint32_t hash = HashSlice(key);
return shards_[Shard(hash)]->Lookup(key, hash, caching == EXPECT_IN_CACHE);
}
virtual void Release(Handle* handle) OVERRIDE {
LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
shards_[Shard(h->hash)]->Release(handle);
}
virtual void Erase(const Slice& key) OVERRIDE {
const uint32_t hash = HashSlice(key);
shards_[Shard(hash)]->Erase(key, hash);
}
virtual Slice Value(Handle* handle) OVERRIDE {
return reinterpret_cast<LRUHandle*>(handle)->value();
}
virtual uint8_t* MutableValue(PendingHandle* handle) OVERRIDE {
return reinterpret_cast<LRUHandle*>(handle)->val_ptr();
}
virtual void SetMetrics(const scoped_refptr<MetricEntity>& entity) OVERRIDE {
metrics_.reset(new CacheMetrics(entity));
for (NvmLRUCache* cache : shards_) {
cache->SetMetrics(metrics_.get());
}
}
virtual PendingHandle* Allocate(Slice key, int val_len, int charge) OVERRIDE {
int key_len = key.size();
DCHECK_GE(key_len, 0);
DCHECK_GE(val_len, 0);
LRUHandle* handle = nullptr;
// Try allocating from each of the shards -- if vmem is tight,
// this can cause eviction, so we might have better luck in different
// shards.
for (NvmLRUCache* cache : shards_) {
uint8_t* buf = static_cast<uint8_t*>(cache->AllocateAndRetry(
sizeof(LRUHandle) + key_len + val_len));
if (buf) {
handle = reinterpret_cast<LRUHandle*>(buf);
handle->kv_data = &buf[sizeof(LRUHandle)];
handle->val_length = val_len;
handle->key_length = key_len;
handle->charge = (charge == kAutomaticCharge) ?
vmem_malloc_usable_size(vmp_, buf) : charge;
handle->hash = HashSlice(key);
memcpy(handle->kv_data, key.data(), key.size());
return reinterpret_cast<PendingHandle*>(handle);
}
}
// TODO: increment a metric here on allocation failure.
return nullptr;
}
virtual void Free(PendingHandle* ph) OVERRIDE {
vmem_free(vmp_, ph);
}
};
} // end anonymous namespace
Cache* NewLRUNvmCache(size_t capacity, const std::string& id) {
// vmem_create() will fail if the capacity is too small, but with
// an inscrutable error. So, we'll check ourselves.
CHECK_GE(capacity, VMEM_MIN_POOL)
<< "configured capacity " << capacity << " bytes is less than "
<< "the minimum capacity for an NVM cache: " << VMEM_MIN_POOL;
VMEM* vmp = vmem_create(FLAGS_nvm_cache_path.c_str(), capacity);
// If we cannot create the cache pool we should not retry.
PLOG_IF(FATAL, vmp == NULL) << "Could not initialize NVM cache library in path "
<< FLAGS_nvm_cache_path.c_str();
return new ShardedLRUCache(capacity, id, vmp);
}
} // namespace kudu