blob: 3fd1d5fa74d290c5bcf0d124ea3977bc0845e5b8 [file] [log] [blame]
// Some portions Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cassert>
#include <cstring>
#include <memory>
#include <string>
#include <vector>
#include <glog/logging.h>
#include <gflags/gflags.h>
#include <gflags/gflags_declare.h>
#include <gtest/gtest.h>
#include "kudu/gutil/gscoped_ptr.h"
#include "kudu/gutil/port.h"
#include "kudu/gutil/ref_counted.h"
#include "kudu/util/cache.h"
#include "kudu/util/coding.h"
#include "kudu/util/env.h"
#include "kudu/util/faststring.h"
#include "kudu/util/mem_tracker.h"
#include "kudu/util/metrics.h"
#include "kudu/util/slice.h"
#include "kudu/util/test_macros.h"
#include "kudu/util/test_util.h"
#if defined(__linux__)
DECLARE_string(nvm_cache_path);
#endif // defined(__linux__)
DECLARE_double(cache_memtracker_approximation_ratio);
namespace kudu {
// Conversions between numeric keys/values and the types expected by Cache.
static std::string EncodeInt(int k) {
faststring result;
PutFixed32(&result, k);
return result.ToString();
}
static int DecodeInt(const Slice& k) {
assert(k.size() == 4);
return DecodeFixed32(k.data());
}
class CacheTest : public KuduTest,
public ::testing::WithParamInterface<CacheType>,
public Cache::EvictionCallback {
public:
// Implementation of the EvictionCallback interface
void EvictedEntry(Slice key, Slice val) override {
evicted_keys_.push_back(DecodeInt(key));
evicted_values_.push_back(DecodeInt(val));
}
std::vector<int> evicted_keys_;
std::vector<int> evicted_values_;
std::shared_ptr<MemTracker> mem_tracker_;
gscoped_ptr<Cache> cache_;
MetricRegistry metric_registry_;
static const int kCacheSize = 14*1024*1024;
virtual void SetUp() OVERRIDE {
#if defined(HAVE_LIB_VMEM)
if (google::GetCommandLineFlagInfoOrDie("nvm_cache_path").is_default) {
FLAGS_nvm_cache_path = GetTestPath("nvm-cache");
ASSERT_OK(Env::Default()->CreateDir(FLAGS_nvm_cache_path));
}
#endif // defined(HAVE_LIB_VMEM)
// Disable approximate tracking of cache memory since we make specific
// assertions on the MemTracker in this test.
FLAGS_cache_memtracker_approximation_ratio = 0;
cache_.reset(NewLRUCache(GetParam(), kCacheSize, "cache_test"));
MemTracker::FindTracker("cache_test-sharded_lru_cache", &mem_tracker_);
// Since nvm cache does not have memtracker due to the use of
// tcmalloc for this we only check for it in the DRAM case.
if (GetParam() == DRAM_CACHE) {
ASSERT_TRUE(mem_tracker_.get());
}
scoped_refptr<MetricEntity> entity = METRIC_ENTITY_server.Instantiate(
&metric_registry_, "test");
cache_->SetMetrics(entity);
}
int Lookup(int key) {
Cache::Handle* handle = cache_->Lookup(EncodeInt(key), Cache::EXPECT_IN_CACHE);
const int r = (handle == nullptr) ? -1 : DecodeInt(cache_->Value(handle));
if (handle != nullptr) {
cache_->Release(handle);
}
return r;
}
void Insert(int key, int value, int charge = 1) {
std::string key_str = EncodeInt(key);
std::string val_str = EncodeInt(value);
Cache::PendingHandle* handle = CHECK_NOTNULL(cache_->Allocate(key_str, val_str.size(), charge));
memcpy(cache_->MutableValue(handle), val_str.data(), val_str.size());
cache_->Release(cache_->Insert(handle, this));
}
void Erase(int key) {
cache_->Erase(EncodeInt(key));
}
};
#if defined(__linux__)
INSTANTIATE_TEST_CASE_P(CacheTypes, CacheTest, ::testing::Values(DRAM_CACHE, NVM_CACHE));
#else
INSTANTIATE_TEST_CASE_P(CacheTypes, CacheTest, ::testing::Values(DRAM_CACHE));
#endif // defined(__linux__)
TEST_P(CacheTest, TrackMemory) {
if (mem_tracker_) {
Insert(100, 100, 1);
ASSERT_EQ(1, mem_tracker_->consumption());
Erase(100);
ASSERT_EQ(0, mem_tracker_->consumption());
ASSERT_EQ(1, mem_tracker_->peak_consumption());
}
}
TEST_P(CacheTest, HitAndMiss) {
ASSERT_EQ(-1, Lookup(100));
Insert(100, 101);
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(-1, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
Insert(200, 201);
ASSERT_EQ(101, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
Insert(100, 102);
ASSERT_EQ(102, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(-1, Lookup(300));
ASSERT_EQ(1, evicted_keys_.size());
ASSERT_EQ(100, evicted_keys_[0]);
ASSERT_EQ(101, evicted_values_[0]);
}
TEST_P(CacheTest, Erase) {
Erase(200);
ASSERT_EQ(0, evicted_keys_.size());
Insert(100, 101);
Insert(200, 201);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(1, evicted_keys_.size());
ASSERT_EQ(100, evicted_keys_[0]);
ASSERT_EQ(101, evicted_values_[0]);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(201, Lookup(200));
ASSERT_EQ(1, evicted_keys_.size());
}
TEST_P(CacheTest, EntriesArePinned) {
Insert(100, 101);
Cache::Handle* h1 = cache_->Lookup(EncodeInt(100), Cache::EXPECT_IN_CACHE);
ASSERT_EQ(101, DecodeInt(cache_->Value(h1)));
Insert(100, 102);
Cache::Handle* h2 = cache_->Lookup(EncodeInt(100), Cache::EXPECT_IN_CACHE);
ASSERT_EQ(102, DecodeInt(cache_->Value(h2)));
ASSERT_EQ(0, evicted_keys_.size());
cache_->Release(h1);
ASSERT_EQ(1, evicted_keys_.size());
ASSERT_EQ(100, evicted_keys_[0]);
ASSERT_EQ(101, evicted_values_[0]);
Erase(100);
ASSERT_EQ(-1, Lookup(100));
ASSERT_EQ(1, evicted_keys_.size());
cache_->Release(h2);
ASSERT_EQ(2, evicted_keys_.size());
ASSERT_EQ(100, evicted_keys_[1]);
ASSERT_EQ(102, evicted_values_[1]);
}
TEST_P(CacheTest, EvictionPolicy) {
Insert(100, 101);
Insert(200, 201);
const int kNumElems = 1000;
const int kSizePerElem = kCacheSize / kNumElems;
// Loop adding and looking up new entries, but repeatedly accessing key 101. This
// frequently-used entry should not be evicted.
for (int i = 0; i < kNumElems + 1000; i++) {
Insert(1000+i, 2000+i, kSizePerElem);
ASSERT_EQ(2000+i, Lookup(1000+i));
ASSERT_EQ(101, Lookup(100));
}
ASSERT_EQ(101, Lookup(100));
// Since '200' wasn't accessed in the loop above, it should have
// been evicted.
ASSERT_EQ(-1, Lookup(200));
}
TEST_P(CacheTest, HeavyEntries) {
// Add a bunch of light and heavy entries and then count the combined
// size of items still in the cache, which must be approximately the
// same as the total capacity.
const int kLight = kCacheSize/1000;
const int kHeavy = kCacheSize/100;
int added = 0;
int index = 0;
while (added < 2*kCacheSize) {
const int weight = (index & 1) ? kLight : kHeavy;
Insert(index, 1000+index, weight);
added += weight;
index++;
}
int cached_weight = 0;
for (int i = 0; i < index; i++) {
const int weight = (i & 1 ? kLight : kHeavy);
int r = Lookup(i);
if (r >= 0) {
cached_weight += weight;
ASSERT_EQ(1000+i, r);
}
}
ASSERT_LE(cached_weight, kCacheSize + kCacheSize/10);
}
} // namespace kudu