blob: e9898a0e3ae75ea994e2e3b405bb4925cab2e972 [file] [log] [blame]
// Copyright 2010 Google Inc. All Rights Reserved.
// Authors: gpike@google.com (Geoff Pike), jyrki@google.com (Jyrki Alakuijala)
//
// This file provides CityHash64() and related functions.
//
// The externally visible functions follow the naming conventions of
// hash.h, where the size of the output is part of the name. For
// example, CityHash64 returns a 64-bit hash. The internal helpers do
// not have the return type in their name, but instead have names like
// HashLenXX or HashLenXXtoYY, where XX and YY are input string lengths.
//
// Most of the constants and tricks here were copied from murmur.cc or
// hash.h, or discovered by trial and error. It's probably possible to further
// optimize the code here by writing a program that systematically explores
// more of the space of possible hash functions, or by using SIMD instructions.
#include "gutil/hash/city.h"
#include <sys/types.h>
#include <algorithm>
using std::copy;
using std::max;
using std::min;
using std::reverse;
using std::sort;
using std::swap;
#include <utility>
using std::make_pair;
using std::pair;
#include "gutil/int128.h"
#include "gutil/integral_types.h"
#include <common/logging.h>
#include "gutil/logging-inl.h"
#include "gutil/hash/hash128to64.h"
#include "gutil/endian.h"
namespace util_hash {
// Some primes between 2^63 and 2^64 for various uses.
static const uint64 k0 = 0xa5b85c5e198ed849ULL;
static const uint64 k1 = 0x8d58ac26afe12e47ULL;
static const uint64 k2 = 0xc47b6e9e3a970ed3ULL;
static const uint64 k3 = 0xc70f6907e782aa0bULL;
// Bitwise right rotate. Normally this will compile to a single
// instruction, especially if the shift is a manifest constant.
static uint64 Rotate(uint64 val, int shift) {
DCHECK_GE(shift, 0);
DCHECK_LE(shift, 63);
// Avoid shifting by 64: doing so yields an undefined result.
return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
}
// Equivalent to Rotate(), but requires the second arg to be non-zero.
// On x86-64, and probably others, it's possible for this to compile
// to a single instruction if both args are already in registers.
static uint64 RotateByAtLeast1(uint64 val, int shift) {
DCHECK_GE(shift, 1);
DCHECK_LE(shift, 63);
return (val >> shift) | (val << (64 - shift));
}
static uint64 ShiftMix(uint64 val) {
return val ^ (val >> 47);
}
static uint64 HashLen16(uint64 u, uint64 v) {
return Hash128to64(uint128(u, v));
}
static uint64 HashLen0to16(const char *s, size_t len) {
DCHECK_GE(len, 0);
DCHECK_LE(len, 16);
if (len > 8) {
uint64 a = LittleEndian::Load64(s);
uint64 b = LittleEndian::Load64(s + len - 8);
return HashLen16(a, RotateByAtLeast1(b + len, len)) ^ b;
}
if (len >= 4) {
uint64 a = LittleEndian::Load32(s);
return HashLen16(len + (a << 3), LittleEndian::Load32(s + len - 4));
}
if (len > 0) {
uint8 a = s[0];
uint8 b = s[len >> 1];
uint8 c = s[len - 1];
uint32 y = static_cast<uint32>(a) + (static_cast<uint32>(b) << 8);
uint32 z = len + (static_cast<uint32>(c) << 2);
return ShiftMix(y * k2 ^ z * k3) * k2;
}
return k2;
}
// This probably works well for 16-byte strings as well, but it may be overkill
// in that case.
static uint64 HashLen17to32(const char *s, size_t len) {
DCHECK_GE(len, 17);
DCHECK_LE(len, 32);
uint64 a = LittleEndian::Load64(s) * k1;
uint64 b = LittleEndian::Load64(s + 8);
uint64 c = LittleEndian::Load64(s + len - 8) * k2;
uint64 d = LittleEndian::Load64(s + len - 16) * k0;
return HashLen16(Rotate(a - b, 43) + Rotate(c, 30) + d,
a + Rotate(b ^ k3, 20) - c + len);
}
// Return a 16-byte hash for 48 bytes. Quick and dirty.
// Callers do best to use "random-looking" values for a and b.
// (For more, see the code review discussion of CL 18799087.)
static pair<uint64, uint64> WeakHashLen32WithSeeds(
uint64 w, uint64 x, uint64 y, uint64 z, uint64 a, uint64 b) {
a += w;
b = Rotate(b + a + z, 51);
uint64 c = a;
a += x;
a += y;
b += Rotate(a, 23);
return make_pair(a + z, b + c);
}
// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
static pair<uint64, uint64> WeakHashLen32WithSeeds(
const char* s, uint64 a, uint64 b) {
return WeakHashLen32WithSeeds(LittleEndian::Load64(s),
LittleEndian::Load64(s + 8),
LittleEndian::Load64(s + 16),
LittleEndian::Load64(s + 24),
a,
b);
}
// Return an 8-byte hash for 33 to 64 bytes.
static uint64 HashLen33to64(const char *s, size_t len) {
uint64 z = LittleEndian::Load64(s + 24);
uint64 a = LittleEndian::Load64(s) +
(len + LittleEndian::Load64(s + len - 16)) * k0;
uint64 b = Rotate(a + z, 52);
uint64 c = Rotate(a, 37);
a += LittleEndian::Load64(s + 8);
c += Rotate(a, 7);
a += LittleEndian::Load64(s + 16);
uint64 vf = a + z;
uint64 vs = b + Rotate(a, 31) + c;
a = LittleEndian::Load64(s + 16) + LittleEndian::Load64(s + len - 32);
z += LittleEndian::Load64(s + len - 8);
b = Rotate(a + z, 52);
c = Rotate(a, 37);
a += LittleEndian::Load64(s + len - 24);
c += Rotate(a, 7);
a += LittleEndian::Load64(s + len - 16);
uint64 wf = a + z;
uint64 ws = b + Rotate(a, 31) + c;
uint64 r = ShiftMix((vf + ws) * k2 + (wf + vs) * k0);
return ShiftMix(r * k0 + vs) * k2;
}
uint64 CityHash64(const char *s, size_t len) {
if (len <= 32) {
if (len <= 16) {
return HashLen0to16(s, len);
} else {
return HashLen17to32(s, len);
}
} else if (len <= 64) {
return HashLen33to64(s, len);
}
// For strings over 64 bytes we hash the end first, and then as we
// loop we keep 56 bytes of state: v, w, x, y, and z.
uint64 x = LittleEndian::Load64(s + len - 40);
uint64 y = LittleEndian::Load64(s + len - 16) +
LittleEndian::Load64(s + len - 56);
uint64 z = HashLen16(LittleEndian::Load64(s + len - 48) + len,
LittleEndian::Load64(s + len - 24));
pair<uint64, uint64> v = WeakHashLen32WithSeeds(s + len - 64, len, z);
pair<uint64, uint64> w = WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
x = x * k1 + LittleEndian::Load64(s);
// Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
len = (len - 1) & ~static_cast<size_t>(63);
DCHECK_GT(len, 0);
DCHECK_EQ(len, len / 64 * 64);
do {
x = Rotate(x + y + v.first + LittleEndian::Load64(s + 8), 37) * k1;
y = Rotate(y + v.second + LittleEndian::Load64(s + 48), 42) * k1;
x ^= w.second;
y += v.first + LittleEndian::Load64(s + 40);
z = Rotate(z + w.first, 33) * k1;
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
w = WeakHashLen32WithSeeds(s + 32, z + w.second,
y + LittleEndian::Load64(s + 16));
std::swap(z, x);
s += 64;
len -= 64;
} while (len != 0);
return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z,
HashLen16(v.second, w.second) + x);
}
uint64 CityHash64WithSeed(const char *s, size_t len, uint64 seed) {
return CityHash64WithSeeds(s, len, k2, seed);
}
uint64 CityHash64WithSeeds(const char *s, size_t len,
uint64 seed0, uint64 seed1) {
return HashLen16(CityHash64(s, len) - seed0, seed1);
}
// A subroutine for CityHash128(). Returns a decent 128-bit hash for strings
// of any length representable in ssize_t. Based on City and Murmur128.
static uint128 CityMurmur(const char *s, size_t len, uint128 seed) {
uint64 a = Uint128Low64(seed);
uint64 b = Uint128High64(seed);
uint64 c = 0;
uint64 d = 0;
ssize_t l = len - 16;
if (l <= 0) { // len <= 16
c = b * k1 + HashLen0to16(s, len);
d = Rotate(a + (len >= 8 ? LittleEndian::Load64(s) : c), 32);
} else { // len > 16
c = HashLen16(LittleEndian::Load64(s + len - 8) + k1, a);
d = HashLen16(b + len, c + LittleEndian::Load64(s + len - 16));
a += d;
do {
a ^= ShiftMix(LittleEndian::Load64(s) * k1) * k1;
a *= k1;
b ^= a;
c ^= ShiftMix(LittleEndian::Load64(s + 8) * k1) * k1;
c *= k1;
d ^= c;
s += 16;
l -= 16;
} while (l > 0);
}
a = HashLen16(a, c);
b = HashLen16(d, b);
return uint128(a ^ b, HashLen16(b, a));
}
uint128 CityHash128WithSeed(const char *s, size_t len, uint128 seed) {
// TODO(user): As of February 2011, there's a beta of Murmur3 that would
// most likely be useful here. E.g., if (len < 900) return Murmur3(...)
if (len < 128) {
return CityMurmur(s, len, seed);
}
// We expect len >= 128 to be the common case. Keep 56 bytes of state:
// v, w, x, y, and z.
pair<uint64, uint64> v, w;
uint64 x = Uint128Low64(seed);
uint64 y = Uint128High64(seed);
uint64 z = len * k1;
v.first = Rotate(y ^ k1, 49) * k1 + LittleEndian::Load64(s);
v.second = Rotate(v.first, 42) * k1 + LittleEndian::Load64(s + 8);
w.first = Rotate(y + z, 35) * k1 + x;
w.second = Rotate(x + LittleEndian::Load64(s + 88), 53) * k1;
// This is similar to the inner loop of CityHash64(), manually unrolled.
do {
x = Rotate(x + y + v.first + LittleEndian::Load64(s + 16), 37) * k1;
y = Rotate(y + v.second + LittleEndian::Load64(s + 48), 42) * k1;
x ^= w.second;
y ^= v.first;
z = Rotate(z ^ w.first, 33);
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y);
std::swap(z, x);
s += 64;
x = Rotate(x + y + v.first + LittleEndian::Load64(s + 16), 37) * k1;
y = Rotate(y + v.second + LittleEndian::Load64(s + 48), 42) * k1;
x ^= w.second;
y ^= v.first;
z = Rotate(z ^ w.first, 33);
v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
w = WeakHashLen32WithSeeds(s + 32, z + w.second, y);
std::swap(z, x);
s += 64;
len -= 128;
} while (PREDICT_TRUE(len >= 128));
y += Rotate(w.first, 37) * k0 + z;
x += Rotate(v.first + z, 49) * k0;
// If 0 < len < 128, hash up to 4 chunks of 32 bytes each from the end of s.
for (size_t tail_done = 0; tail_done < len; ) {
tail_done += 32;
y = Rotate(y - x, 42) * k0 + v.second;
w.first += LittleEndian::Load64(s + len - tail_done + 16);
x = Rotate(x, 49) * k0 + w.first;
w.first += v.first;
v = WeakHashLen32WithSeeds(s + len - tail_done, v.first, v.second);
}
// At this point our 48 bytes of state should contain more than
// enough information for a strong 128-bit hash. We use two
// different 48-byte-to-8-byte hashes to get a 16-byte final result.
x = HashLen16(x, v.first);
y = HashLen16(y, w.first);
return uint128(HashLen16(x + v.second, w.second) + y,
HashLen16(x + w.second, y + v.second));
}
uint128 CityHash128(const char *s, size_t len) {
if (len >= 16) {
return CityHash128WithSeed(s + 16,
len - 16,
uint128(LittleEndian::Load64(s) ^ k3,
LittleEndian::Load64(s + 8)));
} else if (len >= 8) {
return CityHash128WithSeed(nullptr,
0,
uint128(LittleEndian::Load64(s) ^ (len * k0),
LittleEndian::Load64(s + len - 8) ^ k1));
} else {
return CityHash128WithSeed(s, len, uint128(k0, k1));
}
}
} // namespace util_hash