blob: aaae9bf980c85701e0de38fc9ca58b6e57de5a96 [file] [log] [blame]
// Copyright 2008 Google Inc. All Rights Reserved.
// Authors: Numerous. See the .h for contact people.
#include "gutil/strings/escaping.h"
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <limits>
using std::numeric_limits;
#include <vector>
using std::vector;
#include "gutil/integral_types.h"
#include "gutil/port.h"
#include "gutil/gscoped_ptr.h"
#include "gutil/strings/join.h"
#include "gutil/utf/utf.h" // for runetochar
#include "gutil/charmap.h"
#include "gutil/stl_util.h"
namespace strings {
// These are used for the leave_nulls_escaped argument to CUnescapeInternal().
static bool kUnescapeNulls = false;
static bool kLeaveNullsEscaped = true;
// ----------------------------------------------------------------------
// EscapeStrForCSV()
// Escapes the quotes in 'src' by doubling them. This is necessary
// for generating CSV files (see SplitCSVLine).
// Returns the number of characters written into dest (not counting
// the \0) or -1 if there was insufficient space. Dest could end up
// twice as long as src.
//
// Example: [some "string" to test] --> [some ""string"" to test]
// ----------------------------------------------------------------------
int EscapeStrForCSV(const char* src, char* dest, int dest_len) {
int used = 0;
while (true) {
if (*src == '\0' && used < dest_len) {
dest[used] = '\0';
return used;
}
if (used + 1 >= dest_len) // +1 because we might require two characters
return -1;
if (*src == '"')
dest[used++] = '"';
dest[used++] = *src++;
}
}
// ----------------------------------------------------------------------
// UnescapeCEscapeSequences()
// This does all the unescaping that C does: \ooo, \r, \n, etc
// Returns length of resulting string.
// The implementation of \x parses any positive number of hex digits,
// but it is an error if the value requires more than 8 bits, and the
// result is truncated to 8 bits. The same is true for octals.
//
// The second call stores its errors in a supplied string vector.
// If the string vector pointer is NULL, it reports the errors with LOG().
//
// *** DEPRECATED: Use CUnescape() in new code ***
//
// NOTE: any changes to this function must also be reflected in the newer
// CUnescape().
// ----------------------------------------------------------------------
#define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
int UnescapeCEscapeSequences(const char* source, char* dest) {
return UnescapeCEscapeSequences(source, dest, nullptr);
}
int UnescapeCEscapeSequences(const char* source, char* dest,
vector<string> *errors) {
char* d = dest;
const char* p = source;
// Small optimization for case where source = dest and there's no escaping
while ( p == d && *p != '\0' && *p != '\\' )
p++, d++;
while (*p != '\0') {
if (*p != '\\') {
*d++ = *p++;
} else {
switch ( *++p ) { // skip past the '\\'
case '\0':
LOG_STRING(ERROR, errors) << "String cannot end with \\";
*d = '\0';
return d - dest; // we're done with p
case 'a': *d++ = '\a'; break;
case 'b': *d++ = '\b'; break;
case 'f': *d++ = '\f'; break;
case 'n': *d++ = '\n'; break;
case 'r': *d++ = '\r'; break;
case 't': *d++ = '\t'; break;
case 'v': *d++ = '\v'; break;
case '\\': *d++ = '\\'; break;
case '?': *d++ = '\?'; break; // \? Who knew?
case '\'': *d++ = '\''; break;
case '"': *d++ = '\"'; break;
case '0': case '1': case '2': case '3': // octal digit: 1 to 3 digits
case '4': case '5': case '6': case '7': {
const char *octal_start = p;
unsigned int ch = *p - '0';
if ( IS_OCTAL_DIGIT(p[1]) )
ch = ch * 8 + *++p - '0';
if ( IS_OCTAL_DIGIT(p[1]) ) // safe (and easy) to do this twice
ch = ch * 8 + *++p - '0'; // now points at last digit
if (ch > 0xFF)
LOG_STRING(ERROR, errors) << "Value of " <<
"\\" << string(octal_start, p+1-octal_start) <<
" exceeds 8 bits";
*d++ = ch;
break;
}
case 'x': case 'X': {
if (!ascii_isxdigit(p[1])) {
if (p[1] == '\0') {
LOG_STRING(ERROR, errors) << "String cannot end with \\x";
} else {
LOG_STRING(ERROR, errors) <<
"\\x cannot be followed by a non-hex digit: \\" << *p << p[1];
}
break;
}
unsigned int ch = 0;
const char *hex_start = p;
while (ascii_isxdigit(p[1])) // arbitrarily many hex digits
ch = (ch << 4) + hex_digit_to_int(*++p);
if (ch > 0xFF)
LOG_STRING(ERROR, errors) << "Value of " <<
"\\" << string(hex_start, p+1-hex_start) << " exceeds 8 bits";
*d++ = ch;
break;
}
case 'u': {
// \uhhhh => convert 4 hex digits to UTF-8
char32 rune = 0;
const char *hex_start = p;
for (int i = 0; i < 4; ++i) {
if (ascii_isxdigit(p[1])) { // Look one char ahead.
rune = (rune << 4) + hex_digit_to_int(*++p); // Advance p.
} else {
LOG_STRING(ERROR, errors)
<< "\\u must be followed by 4 hex digits: \\"
<< string(hex_start, p+1-hex_start);
break;
}
}
d += runetochar(d, &rune);
break;
}
case 'U': {
// \Uhhhhhhhh => convert 8 hex digits to UTF-8
char32 rune = 0;
const char *hex_start = p;
for (int i = 0; i < 8; ++i) {
if (ascii_isxdigit(p[1])) { // Look one char ahead.
// Don't change rune until we're sure this
// is within the Unicode limit, but do advance p.
char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
if (newrune > 0x10FFFF) {
LOG_STRING(ERROR, errors)
<< "Value of \\"
<< string(hex_start, p + 1 - hex_start)
<< " exceeds Unicode limit (0x10FFFF)";
break;
} else {
rune = newrune;
}
} else {
LOG_STRING(ERROR, errors)
<< "\\U must be followed by 8 hex digits: \\"
<< string(hex_start, p+1-hex_start);
break;
}
}
d += runetochar(d, &rune);
break;
}
default:
LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
}
p++; // read past letter we escaped
}
}
*d = '\0';
return d - dest;
}
// ----------------------------------------------------------------------
// UnescapeCEscapeString()
// This does the same thing as UnescapeCEscapeSequences, but creates
// a new string. The caller does not need to worry about allocating
// a dest buffer. This should be used for non performance critical
// tasks such as printing debug messages. It is safe for src and dest
// to be the same.
//
// The second call stores its errors in a supplied string vector.
// If the string vector pointer is NULL, it reports the errors with LOG().
//
// In the first and second calls, the length of dest is returned. In the
// the third call, the new string is returned.
//
// *** DEPRECATED: Use CUnescape() in new code ***
//
// ----------------------------------------------------------------------
int UnescapeCEscapeString(const string& src, string* dest) {
return UnescapeCEscapeString(src, dest, nullptr);
}
int UnescapeCEscapeString(const string& src, string* dest,
vector<string> *errors) {
CHECK(dest);
dest->resize(src.size() + 1);
int len = UnescapeCEscapeSequences(src.c_str(),
const_cast<char*>(dest->data()), errors);
dest->resize(len);
return len;
}
string UnescapeCEscapeString(const string& src) {
gscoped_array<char> unescaped(new char[src.size() + 1]);
int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), nullptr);
return string(unescaped.get(), len);
}
// ----------------------------------------------------------------------
// CUnescapeInternal()
// Implements both CUnescape() and CUnescapeForNullTerminatedString().
//
// Unescapes C escape sequences and is the reverse of CEscape().
//
// If 'source' is valid, stores the unescaped string and its size in
// 'dest' and 'dest_len' respectively, and returns true. Otherwise
// returns false and optionally stores the error description in
// 'error'. Set 'error' to NULL to disable error reporting.
//
// 'dest' should point to a buffer that is at least as big as 'source'.
// 'source' and 'dest' may be the same.
//
// NOTE: any changes to this function must also be reflected in the older
// UnescapeCEscapeSequences().
// ----------------------------------------------------------------------
static bool CUnescapeInternal(const StringPiece& source,
bool leave_nulls_escaped,
char* dest,
int* dest_len,
string* error) {
char* d = dest;
const char* p = source.data();
const char* end = source.end();
const char* last_byte = end - 1;
// Small optimization for case where source = dest and there's no escaping
while (p == d && p < end && *p != '\\')
p++, d++;
while (p < end) {
if (*p != '\\') {
*d++ = *p++;
} else {
if (++p > last_byte) { // skip past the '\\'
if (error) *error = "String cannot end with \\";
return false;
}
switch (*p) {
case 'a': *d++ = '\a'; break;
case 'b': *d++ = '\b'; break;
case 'f': *d++ = '\f'; break;
case 'n': *d++ = '\n'; break;
case 'r': *d++ = '\r'; break;
case 't': *d++ = '\t'; break;
case 'v': *d++ = '\v'; break;
case '\\': *d++ = '\\'; break;
case '?': *d++ = '\?'; break; // \? Who knew?
case '\'': *d++ = '\''; break;
case '"': *d++ = '\"'; break;
case '0': case '1': case '2': case '3': // octal digit: 1 to 3 digits
case '4': case '5': case '6': case '7': {
const char *octal_start = p;
unsigned int ch = *p - '0';
if (p < last_byte && IS_OCTAL_DIGIT(p[1]))
ch = ch * 8 + *++p - '0';
if (p < last_byte && IS_OCTAL_DIGIT(p[1]))
ch = ch * 8 + *++p - '0'; // now points at last digit
if (ch > 0xff) {
if (error) {
*error = "Value of \\" +
string(octal_start, p + 1 - octal_start) +
" exceeds 0xff";
}
return false;
}
if ((ch == 0) && leave_nulls_escaped) {
// Copy the escape sequence for the null character
const int octal_size = p + 1 - octal_start;
*d++ = '\\';
memcpy(d, octal_start, octal_size);
d += octal_size;
break;
}
*d++ = ch;
break;
}
case 'x': case 'X': {
if (p >= last_byte) {
if (error) *error = "String cannot end with \\x";
return false;
} else if (!ascii_isxdigit(p[1])) {
if (error) *error = "\\x cannot be followed by a non-hex digit";
return false;
}
unsigned int ch = 0;
const char *hex_start = p;
while (p < last_byte && ascii_isxdigit(p[1]))
// Arbitrarily many hex digits
ch = (ch << 4) + hex_digit_to_int(*++p);
if (ch > 0xFF) {
if (error) {
*error = "Value of \\" + string(hex_start, p + 1 - hex_start) +
" exceeds 0xff";
}
return false;
}
if ((ch == 0) && leave_nulls_escaped) {
// Copy the escape sequence for the null character
const int hex_size = p + 1 - hex_start;
*d++ = '\\';
memcpy(d, hex_start, hex_size);
d += hex_size;
break;
}
*d++ = ch;
break;
}
case 'u': {
// \uhhhh => convert 4 hex digits to UTF-8
char32 rune = 0;
const char *hex_start = p;
if (p + 4 >= end) {
if (error) {
*error = "\\u must be followed by 4 hex digits: \\" +
string(hex_start, p + 1 - hex_start);
}
return false;
}
for (int i = 0; i < 4; ++i) {
// Look one char ahead.
if (ascii_isxdigit(p[1])) {
rune = (rune << 4) + hex_digit_to_int(*++p); // Advance p.
} else {
if (error) {
*error = "\\u must be followed by 4 hex digits: \\" +
string(hex_start, p + 1 - hex_start);
}
return false;
}
}
if ((rune == 0) && leave_nulls_escaped) {
// Copy the escape sequence for the null character
*d++ = '\\';
memcpy(d, hex_start, 5); // u0000
d += 5;
break;
}
d += runetochar(d, &rune);
break;
}
case 'U': {
// \Uhhhhhhhh => convert 8 hex digits to UTF-8
char32 rune = 0;
const char *hex_start = p;
if (p + 8 >= end) {
if (error) {
*error = "\\U must be followed by 8 hex digits: \\" +
string(hex_start, p + 1 - hex_start);
}
return false;
}
for (int i = 0; i < 8; ++i) {
// Look one char ahead.
if (ascii_isxdigit(p[1])) {
// Don't change rune until we're sure this
// is within the Unicode limit, but do advance p.
char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
if (newrune > 0x10FFFF) {
if (error) {
*error = "Value of \\" +
string(hex_start, p + 1 - hex_start) +
" exceeds Unicode limit (0x10FFFF)";
}
return false;
} else {
rune = newrune;
}
} else {
if (error) {
*error = "\\U must be followed by 8 hex digits: \\" +
string(hex_start, p + 1 - hex_start);
}
return false;
}
}
if ((rune == 0) && leave_nulls_escaped) {
// Copy the escape sequence for the null character
*d++ = '\\';
memcpy(d, hex_start, 9); // U00000000
d += 9;
break;
}
d += runetochar(d, &rune);
break;
}
default: {
if (error) *error = string("Unknown escape sequence: \\") + *p;
return false;
}
}
p++; // read past letter we escaped
}
}
*dest_len = d - dest;
return true;
}
// ----------------------------------------------------------------------
// CUnescapeInternal()
//
// Same as above but uses a C++ string for output. 'source' and 'dest'
// may be the same.
// ----------------------------------------------------------------------
bool CUnescapeInternal(const StringPiece& source,
bool leave_nulls_escaped,
string* dest,
string* error) {
dest->resize(source.size());
int dest_size;
if (!CUnescapeInternal(source,
leave_nulls_escaped,
const_cast<char*>(dest->data()),
&dest_size,
error)) {
return false;
}
dest->resize(dest_size);
return true;
}
// ----------------------------------------------------------------------
// CUnescape()
//
// See CUnescapeInternal() for implementation details.
// ----------------------------------------------------------------------
bool CUnescape(const StringPiece& source, char* dest, int* dest_len,
string* error) {
return CUnescapeInternal(source, kUnescapeNulls, dest, dest_len, error);
}
bool CUnescape(const StringPiece& source, string* dest, string* error) {
return CUnescapeInternal(source, kUnescapeNulls, dest, error);
}
// ----------------------------------------------------------------------
// CUnescapeForNullTerminatedString()
//
// See CUnescapeInternal() for implementation details.
// ----------------------------------------------------------------------
bool CUnescapeForNullTerminatedString(const StringPiece& source,
char* dest,
int* dest_len,
string* error) {
return CUnescapeInternal(source, kLeaveNullsEscaped, dest, dest_len, error);
}
bool CUnescapeForNullTerminatedString(const StringPiece& source,
string* dest,
string* error) {
return CUnescapeInternal(source, kLeaveNullsEscaped, dest, error);
}
// ----------------------------------------------------------------------
// CEscapeString()
// CHexEscapeString()
// Utf8SafeCEscapeString()
// Utf8SafeCHexEscapeString()
// Copies 'src' to 'dest', escaping dangerous characters using
// C-style escape sequences. This is very useful for preparing query
// flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
// hexadecimal rather than octal sequences. The 'Utf8Safe' version doesn't
// touch UTF-8 bytes.
// Returns the number of bytes written to 'dest' (not including the \0)
// or -1 if there was insufficient space.
//
// Currently only \n, \r, \t, ", ', \ and !ascii_isprint() chars are escaped.
// ----------------------------------------------------------------------
int CEscapeInternal(const char* src, int src_len, char* dest,
int dest_len, bool use_hex, bool utf8_safe) {
const char* src_end = src + src_len;
int used = 0;
bool last_hex_escape = false; // true if last output char was \xNN
for (; src < src_end; src++) {
if (dest_len - used < 2) // Need space for two letter escape
return -1;
bool is_hex_escape = false;
switch (*src) {
case '\n': dest[used++] = '\\'; dest[used++] = 'n'; break;
case '\r': dest[used++] = '\\'; dest[used++] = 'r'; break;
case '\t': dest[used++] = '\\'; dest[used++] = 't'; break;
case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
default:
// Note that if we emit \xNN and the src character after that is a hex
// digit then that digit must be escaped too to prevent it being
// interpreted as part of the character code by C.
if ((!utf8_safe || *src < 0x80) &&
(!ascii_isprint(*src) ||
(last_hex_escape && ascii_isxdigit(*src)))) {
if (dest_len - used < 4) // need space for 4 letter escape
return -1;
sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"), *src);
is_hex_escape = use_hex;
used += 4;
} else {
dest[used++] = *src;
break;
}
}
last_hex_escape = is_hex_escape;
}
if (dest_len - used < 1) // make sure that there is room for \0
return -1;
dest[used] = '\0'; // doesn't count towards return value though
return used;
}
int CEscapeString(const char* src, int src_len, char* dest, int dest_len) {
return CEscapeInternal(src, src_len, dest, dest_len, false, false);
}
int CHexEscapeString(const char* src, int src_len, char* dest, int dest_len) {
return CEscapeInternal(src, src_len, dest, dest_len, true, false);
}
int Utf8SafeCEscapeString(const char* src, int src_len, char* dest,
int dest_len) {
return CEscapeInternal(src, src_len, dest, dest_len, false, true);
}
int Utf8SafeCHexEscapeString(const char* src, int src_len, char* dest,
int dest_len) {
return CEscapeInternal(src, src_len, dest, dest_len, true, true);
}
// ----------------------------------------------------------------------
// CEscape()
// CHexEscape()
// Utf8SafeCEscape()
// Utf8SafeCHexEscape()
// Copies 'src' to result, escaping dangerous characters using
// C-style escape sequences. This is very useful for preparing query
// flags. 'src' and 'dest' should not overlap. The 'Hex' version
// hexadecimal rather than octal sequences. The 'Utf8Safe' version
// doesn't touch UTF-8 bytes.
//
// Currently only \n, \r, \t, ", ', \ and !ascii_isprint() chars are escaped.
// ----------------------------------------------------------------------
string CEscape(const StringPiece& src) {
const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
gscoped_array<char> dest(new char[dest_length]);
const int len = CEscapeInternal(src.data(), src.size(),
dest.get(), dest_length, false, false);
DCHECK_GE(len, 0);
return string(dest.get(), len);
}
string CHexEscape(const StringPiece& src) {
const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
gscoped_array<char> dest(new char[dest_length]);
const int len = CEscapeInternal(src.data(), src.size(),
dest.get(), dest_length, true, false);
DCHECK_GE(len, 0);
return string(dest.get(), len);
}
string Utf8SafeCEscape(const StringPiece& src) {
const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
gscoped_array<char> dest(new char[dest_length]);
const int len = CEscapeInternal(src.data(), src.size(),
dest.get(), dest_length, false, true);
DCHECK_GE(len, 0);
return string(dest.get(), len);
}
string Utf8SafeCHexEscape(const StringPiece& src) {
const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
gscoped_array<char> dest(new char[dest_length]);
const int len = CEscapeInternal(src.data(), src.size(),
dest.get(), dest_length, true, true);
DCHECK_GE(len, 0);
return string(dest.get(), len);
}
// ----------------------------------------------------------------------
// BackslashEscape and BackslashUnescape
// ----------------------------------------------------------------------
void BackslashEscape(const StringPiece& src,
const strings::CharSet& to_escape,
string* dest) {
dest->reserve(dest->size() + src.size());
for (const char *p = src.data(), *end = src.data() + src.size();
p != end; ) {
// Advance to next character we need to escape, or to end of source
const char* next = p;
while (next < end && !to_escape.Test(*next)) {
next++;
}
// Append the whole run of non-escaped chars
dest->append(p, next - p);
if (next == end) break;
// Char at *next needs to be escaped. Append backslash followed by *next
char c[2];
c[0] = '\\';
c[1] = *next;
dest->append(c, 2);
p = next + 1;
}
}
void BackslashUnescape(const StringPiece& src,
const strings::CharSet& to_unescape,
string* dest) {
dest->reserve(dest->size() + src.size());
bool escaped = false;
for (const char* p = src.data(), *end = src.data() + src.size();
p != end; ++p) {
if (escaped) {
if (!to_unescape.Test(*p)) {
// Keep the backslash
dest->push_back('\\');
}
dest->push_back(*p);
escaped = false;
} else if (*p == '\\') {
escaped = true;
} else {
dest->push_back(*p);
}
}
}
// ----------------------------------------------------------------------
// int QuotedPrintableUnescape()
//
// Check out http://www.cis.ohio-state.edu/htbin/rfc/rfc2045.html for
// more details, only briefly implemented. But from the web...
// Quoted-printable is an encoding method defined in the MIME
// standard. It is used primarily to encode 8-bit text (such as text
// that includes foreign characters) into 7-bit US ASCII, creating a
// document that is mostly readable by humans, even in its encoded
// form. All MIME compliant applications can decode quoted-printable
// text, though they may not necessarily be able to properly display the
// document as it was originally intended. As quoted-printable encoding
// is implemented most commonly, printable ASCII characters (values 33
// through 126, excluding 61), tabs and spaces that do not appear at the
// end of lines, and end-of-line characters are not encoded. Other
// characters are represented by an equal sign (=) immediately followed
// by that character's hexadecimal value. Lines that are longer than 76
// characters are shortened by line breaks, with the equal sign marking
// where the breaks occurred.
//
// Note that QuotedPrintableUnescape is different from 'Q'-encoding as
// defined in rfc2047. In particular, This does not treat '_'s as spaces.
// See QEncodingUnescape().
// ----------------------------------------------------------------------
int QuotedPrintableUnescape(const char *source, int slen,
char *dest, int szdest) {
char* d = dest;
const char* p = source;
while ( p < source+slen && *p != '\0' && d < dest+szdest ) {
switch (*p) {
case '=':
// If it's valid, convert to hex and insert or remove line-wrap.
// In the case of line-wrap removal, we allow LF as well as CRLF.
if ( p < source + slen - 1 ) {
if ( p[1] == '\n' ) {
p++;
} else if ( p < source + slen - 2 ) {
if ( ascii_isxdigit(p[1]) && ascii_isxdigit(p[2]) ) {
*d++ = hex_digit_to_int(p[1])*16 + hex_digit_to_int(p[2]);
p += 2;
} else if ( p[1] == '\r' && p[2] == '\n' ) {
p += 2;
}
}
}
p++;
break;
default:
*d++ = *p++;
break;
}
}
return (d-dest);
}
// ----------------------------------------------------------------------
// int QEncodingUnescape()
//
// This is very similar to QuotedPrintableUnescape except that we convert
// '_'s into spaces. (See RFC 2047)
// ----------------------------------------------------------------------
int QEncodingUnescape(const char *source, int slen,
char *dest, int szdest) {
char* d = dest;
const char* p = source;
while ( p < source+slen && *p != '\0' && d < dest+szdest ) {
switch (*p) {
case '=':
// If it's valid, convert to hex and insert or remove line-wrap.
// In the case of line-wrap removal, the assumption is that this
// is an RFC-compliant message with lines terminated by CRLF.
if (p < source+slen-2) {
if ( ascii_isxdigit(p[1]) && ascii_isxdigit(p[2]) ) {
*d++ = hex_digit_to_int(p[1])*16 + hex_digit_to_int(p[2]);
p += 2;
} else if ( p[1] == '\r' && p[2] == '\n' ) {
p += 2;
}
}
p++;
break;
case '_': // According to rfc2047, _'s are to be treated as spaces
*d++ = ' ';
p++;
break;
default:
*d++ = *p++;
break;
}
}
return (d-dest);
}
int CalculateBase64EscapedLen(int input_len, bool do_padding) {
// Base64 encodes three bytes of input at a time. If the input is not
// divisible by three, we pad as appropriate.
//
// (from http://www.ietf.org/rfc/rfc3548.txt)
// Special processing is performed if fewer than 24 bits are available
// at the end of the data being encoded. A full encoding quantum is
// always completed at the end of a quantity. When fewer than 24 input
// bits are available in an input group, zero bits are added (on the
// right) to form an integral number of 6-bit groups. Padding at the
// end of the data is performed using the '=' character. Since all base
// 64 input is an integral number of octets, only the following cases
// can arise:
// Base64 encodes each three bytes of input into four bytes of output.
int len = (input_len / 3) * 4;
if (input_len % 3 == 0) {
// (from http://www.ietf.org/rfc/rfc3548.txt)
// (1) the final quantum of encoding input is an integral multiple of 24
// bits; here, the final unit of encoded output will be an integral
// multiple of 4 characters with no "=" padding,
} else if (input_len % 3 == 1) {
// (from http://www.ietf.org/rfc/rfc3548.txt)
// (2) the final quantum of encoding input is exactly 8 bits; here, the
// final unit of encoded output will be two characters followed by two
// "=" padding characters, or
len += 2;
if (do_padding) {
len += 2;
}
} else { // (input_len % 3 == 2)
// (from http://www.ietf.org/rfc/rfc3548.txt)
// (3) the final quantum of encoding input is exactly 16 bits; here, the
// final unit of encoded output will be three characters followed by one
// "=" padding character.
len += 3;
if (do_padding) {
len += 1;
}
}
assert(len >= input_len); // make sure we didn't overflow
return len;
}
// Base64Escape does padding, so this calculation includes padding.
int CalculateBase64EscapedLen(int input_len) {
return CalculateBase64EscapedLen(input_len, true);
}
// ----------------------------------------------------------------------
// int Base64Unescape() - base64 decoder
// int Base64Escape() - base64 encoder
// int WebSafeBase64Unescape() - Google's variation of base64 decoder
// int WebSafeBase64Escape() - Google's variation of base64 encoder
//
// Check out
// http://www.cis.ohio-state.edu/htbin/rfc/rfc2045.html for formal
// description, but what we care about is that...
// Take the encoded stuff in groups of 4 characters and turn each
// character into a code 0 to 63 thus:
// A-Z map to 0 to 25
// a-z map to 26 to 51
// 0-9 map to 52 to 61
// +(- for WebSafe) maps to 62
// /(_ for WebSafe) maps to 63
// There will be four numbers, all less than 64 which can be represented
// by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively).
// Arrange the 6 digit binary numbers into three bytes as such:
// aaaaaabb bbbbcccc ccdddddd
// Equals signs (one or two) are used at the end of the encoded block to
// indicate that the text was not an integer multiple of three bytes long.
// In the sorted variation, we instead use the mapping
// . maps to 0
// 0-9 map to 1-10
// A-Z map to 11-37
// _ maps to 38
// a-z map to 39-63
// This mapping has the property that the output will be sorted in the same
// order as the input, i.e. a < b iff map(a) < map(b). It is web-safe and
// filename-safe.
// ----------------------------------------------------------------------
int Base64UnescapeInternal(const char *src, int szsrc,
char *dest, int szdest,
const signed char* unbase64) {
static const char kPad64 = '=';
int decode = 0;
int destidx = 0;
int state = 0;
unsigned int ch = 0;
unsigned int temp = 0;
// The GET_INPUT macro gets the next input character, skipping
// over any whitespace, and stopping when we reach the end of the
// string or when we read any non-data character. The arguments are
// an arbitrary identifier (used as a label for goto) and the number
// of data bytes that must remain in the input to avoid aborting the
// loop.
#define GET_INPUT(label, remain) \
label: \
--szsrc; \
ch = *src++; \
decode = unbase64[ch]; \
if (decode < 0) { \
if (ascii_isspace(ch) && szsrc >= remain) \
goto label; \
state = 4 - remain; \
break; \
}
// if dest is null, we're just checking to see if it's legal input
// rather than producing output. (I suspect this could just be done
// with a regexp...). We duplicate the loop so this test can be
// outside it instead of in every iteration.
if (dest) {
// This loop consumes 4 input bytes and produces 3 output bytes
// per iteration. We can't know at the start that there is enough
// data left in the string for a full iteration, so the loop may
// break out in the middle; if so 'state' will be set to the
// number of input bytes read.
while (szsrc >= 4) {
// We'll start by optimistically assuming that the next four
// bytes of the string (src[0..3]) are four good data bytes
// (that is, no nulls, whitespace, padding chars, or illegal
// chars). We need to test src[0..2] for nulls individually
// before constructing temp to preserve the property that we
// never read past a null in the string (no matter how long
// szsrc claims the string is).
if (!src[0] || !src[1] || !src[2] ||
(temp = ((unsigned(unbase64[src[0]]) << 18) |
(unsigned(unbase64[src[1]]) << 12) |
(unsigned(unbase64[src[2]]) << 6) |
(unsigned(unbase64[src[3]])))) & 0x80000000) {
// Iff any of those four characters was bad (null, illegal,
// whitespace, padding), then temp's high bit will be set
// (because unbase64[] is -1 for all bad characters).
//
// We'll back up and resort to the slower decoder, which knows
// how to handle those cases.
GET_INPUT(first, 4);
temp = decode;
GET_INPUT(second, 3);
temp = (temp << 6) | decode;
GET_INPUT(third, 2);
temp = (temp << 6) | decode;
GET_INPUT(fourth, 1);
temp = (temp << 6) | decode;
} else {
// We really did have four good data bytes, so advance four
// characters in the string.
szsrc -= 4;
src += 4;
decode = -1;
ch = '\0';
}
// temp has 24 bits of input, so write that out as three bytes.
if (destidx+3 > szdest) return -1;
dest[destidx+2] = temp;
temp >>= 8;
dest[destidx+1] = temp;
temp >>= 8;
dest[destidx] = temp;
destidx += 3;
}
} else {
while (szsrc >= 4) {
if (!src[0] || !src[1] || !src[2] ||
(temp = ((unbase64[src[0]] << 18) |
(unbase64[src[1]] << 12) |
(unbase64[src[2]] << 6) |
(unbase64[src[3]]))) & 0x80000000) {
GET_INPUT(first_no_dest, 4);
GET_INPUT(second_no_dest, 3);
GET_INPUT(third_no_dest, 2);
GET_INPUT(fourth_no_dest, 1);
} else {
szsrc -= 4;
src += 4;
decode = -1;
ch = '\0';
}
destidx += 3;
}
}
#undef GET_INPUT
// if the loop terminated because we read a bad character, return
// now.
if (decode < 0 && ch != '\0' && ch != kPad64 && !ascii_isspace(ch))
return -1;
if (ch == kPad64) {
// if we stopped by hitting an '=', un-read that character -- we'll
// look at it again when we count to check for the proper number of
// equals signs at the end.
++szsrc;
--src;
} else {
// This loop consumes 1 input byte per iteration. It's used to
// clean up the 0-3 input bytes remaining when the first, faster
// loop finishes. 'temp' contains the data from 'state' input
// characters read by the first loop.
while (szsrc > 0) {
--szsrc;
ch = *src++;
decode = unbase64[ch];
if (decode < 0) {
if (ascii_isspace(ch)) {
continue;
} else if (ch == '\0') {
break;
} else if (ch == kPad64) {
// back up one character; we'll read it again when we check
// for the correct number of equals signs at the end.
++szsrc;
--src;
break;
} else {
return -1;
}
}
// Each input character gives us six bits of output.
temp = (temp << 6) | decode;
++state;
if (state == 4) {
// If we've accumulated 24 bits of output, write that out as
// three bytes.
if (dest) {
if (destidx+3 > szdest) return -1;
dest[destidx+2] = temp;
temp >>= 8;
dest[destidx+1] = temp;
temp >>= 8;
dest[destidx] = temp;
}
destidx += 3;
state = 0;
temp = 0;
}
}
}
// Process the leftover data contained in 'temp' at the end of the input.
int expected_equals = 0;
switch (state) {
case 0:
// Nothing left over; output is a multiple of 3 bytes.
break;
case 1:
// Bad input; we have 6 bits left over.
return -1;
case 2:
// Produce one more output byte from the 12 input bits we have left.
if (dest) {
if (destidx+1 > szdest) return -1;
temp >>= 4;
dest[destidx] = temp;
}
++destidx;
expected_equals = 2;
break;
case 3:
// Produce two more output bytes from the 18 input bits we have left.
if (dest) {
if (destidx+2 > szdest) return -1;
temp >>= 2;
dest[destidx+1] = temp;
temp >>= 8;
dest[destidx] = temp;
}
destidx += 2;
expected_equals = 1;
break;
default:
// state should have no other values at this point.
LOG(FATAL) << "This can't happen; base64 decoder state = " << state;
}
// The remainder of the string should be all whitespace, mixed with
// exactly 0 equals signs, or exactly 'expected_equals' equals
// signs. (Always accepting 0 equals signs is a google extension
// not covered in the RFC.)
int equals = 0;
while (szsrc > 0 && *src) {
if (*src == kPad64)
++equals;
else if (!ascii_isspace(*src))
return -1;
--szsrc;
++src;
}
return (equals == 0 || equals == expected_equals) ? destidx : -1;
}
// The arrays below were generated by the following code
// #include <sys/time.h>
// #include <stdlib.h>
// #include <string.h>
// main()
// {
// static const char Base64[] =
// "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
// char *pos;
// int idx, i, j;
// printf(" ");
// for (i = 0; i < 255; i += 8) {
// for (j = i; j < i + 8; j++) {
// pos = strchr(Base64, j);
// if ((pos == NULL) || (j == 0))
// idx = -1;
// else
// idx = pos - Base64;
// if (idx == -1)
// printf(" %2d, ", idx);
// else
// printf(" %2d/*%c*/,", idx, j);
// }
// printf("\n ");
// }
// }
//
// where the value of "Base64[]" was replaced by one of the base-64 conversion
// tables from the functions below.
static const signed char kUnBase64[] = {
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */,
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1,
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1
};
static const signed char kUnWebSafeBase64[] = {
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, 62/*-*/, -1, -1,
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, 63/*_*/,
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1
};
int Base64Unescape(const char *src, int szsrc, char *dest, int szdest) {
return Base64UnescapeInternal(src, szsrc, dest, szdest, kUnBase64);
}
int WebSafeBase64Unescape(const char *src, int szsrc, char *dest, int szdest) {
return Base64UnescapeInternal(src, szsrc, dest, szdest, kUnWebSafeBase64);
}
static bool Base64UnescapeInternal(const char* src, int slen, string* dest,
const signed char* unbase64) {
// Determine the size of the output string. Base64 encodes every 3 bytes into
// 4 characters. any leftover chars are added directly for good measure.
// This is documented in the base64 RFC: http://www.ietf.org/rfc/rfc3548.txt
const int dest_len = 3 * (slen / 4) + (slen % 4);
dest->clear();
dest->resize(dest_len);
// We are getting the destination buffer by getting the beginning of the
// string and converting it into a char *.
const int len = Base64UnescapeInternal(src, slen, string_as_array(dest),
dest->size(), unbase64);
if (len < 0) {
dest->clear();
return false;
}
// could be shorter if there was padding
DCHECK_LE(len, dest_len);
dest->resize(len);
return true;
}
bool Base64Unescape(const char *src, int slen, string* dest) {
return Base64UnescapeInternal(src, slen, dest, kUnBase64);
}
bool WebSafeBase64Unescape(const char *src, int slen, string* dest) {
return Base64UnescapeInternal(src, slen, dest, kUnWebSafeBase64);
}
int Base64EscapeInternal(const unsigned char *src, int szsrc,
char *dest, int szdest, const char *base64,
bool do_padding) {
static const char kPad64 = '=';
if (szsrc <= 0) return 0;
char *cur_dest = dest;
const unsigned char *cur_src = src;
// Three bytes of data encodes to four characters of cyphertext.
// So we can pump through three-byte chunks atomically.
while (szsrc > 2) { /* keep going until we have less than 24 bits */
if ((szdest -= 4) < 0) return 0;
cur_dest[0] = base64[cur_src[0] >> 2];
cur_dest[1] = base64[((cur_src[0] & 0x03) << 4) + (cur_src[1] >> 4)];
cur_dest[2] = base64[((cur_src[1] & 0x0f) << 2) + (cur_src[2] >> 6)];
cur_dest[3] = base64[cur_src[2] & 0x3f];
cur_dest += 4;
cur_src += 3;
szsrc -= 3;
}
/* now deal with the tail (<=2 bytes) */
switch (szsrc) {
case 0:
// Nothing left; nothing more to do.
break;
case 1:
// One byte left: this encodes to two characters, and (optionally)
// two pad characters to round out the four-character cypherblock.
if ((szdest -= 2) < 0) return 0;
cur_dest[0] = base64[cur_src[0] >> 2];
cur_dest[1] = base64[(cur_src[0] & 0x03) << 4];
cur_dest += 2;
if (do_padding) {
if ((szdest -= 2) < 0) return 0;
cur_dest[0] = kPad64;
cur_dest[1] = kPad64;
cur_dest += 2;
}
break;
case 2:
// Two bytes left: this encodes to three characters, and (optionally)
// one pad character to round out the four-character cypherblock.
if ((szdest -= 3) < 0) return 0;
cur_dest[0] = base64[cur_src[0] >> 2];
cur_dest[1] = base64[((cur_src[0] & 0x03) << 4) + (cur_src[1] >> 4)];
cur_dest[2] = base64[(cur_src[1] & 0x0f) << 2];
cur_dest += 3;
if (do_padding) {
if ((szdest -= 1) < 0) return 0;
cur_dest[0] = kPad64;
cur_dest += 1;
}
break;
default:
// Should not be reached: blocks of 3 bytes are handled
// in the while loop before this switch statement.
LOG_ASSERT(false) << "Logic problem? szsrc = " << szsrc;
break;
}
return (cur_dest - dest);
}
static const char kBase64Chars[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static const char kWebSafeBase64Chars[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
int Base64Escape(const unsigned char *src, int szsrc, char *dest, int szdest) {
return Base64EscapeInternal(src, szsrc, dest, szdest, kBase64Chars, true);
}
int WebSafeBase64Escape(const unsigned char *src, int szsrc, char *dest,
int szdest, bool do_padding) {
return Base64EscapeInternal(src, szsrc, dest, szdest,
kWebSafeBase64Chars, do_padding);
}
void Base64EscapeInternal(const unsigned char* src, int szsrc,
string* dest, bool do_padding,
const char* base64_chars) {
const int calc_escaped_size =
CalculateBase64EscapedLen(szsrc, do_padding);
dest->clear();
dest->resize(calc_escaped_size, '\0');
const int escaped_len = Base64EscapeInternal(src, szsrc,
string_as_array(dest),
dest->size(),
base64_chars,
do_padding);
DCHECK_EQ(calc_escaped_size, escaped_len);
}
void Base64Escape(const unsigned char *src, int szsrc,
string* dest, bool do_padding) {
Base64EscapeInternal(src, szsrc, dest, do_padding, kBase64Chars);
}
void WebSafeBase64Escape(const unsigned char *src, int szsrc,
string *dest, bool do_padding) {
Base64EscapeInternal(src, szsrc, dest, do_padding, kWebSafeBase64Chars);
}
void Base64Escape(const string& src, string* dest) {
Base64Escape(reinterpret_cast<const unsigned char*>(src.data()),
src.size(), dest, true);
}
void WebSafeBase64Escape(const string& src, string* dest) {
WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
src.size(), dest, false);
}
void WebSafeBase64EscapeWithPadding(const string& src, string* dest) {
WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
src.size(), dest, true);
}
// Returns true iff c is in the Base 32 alphabet.
bool ValidBase32Byte(char c) {
return (c >= 'A' && c <= 'Z') || (c >= '2' && c <= '7') || c == '=';
}
// Mapping from number of Base32 escaped characters (0 through 8) to number of
// unescaped bytes. 8 Base32 escaped characters represent 5 unescaped bytes.
// For N < 8, then number of unescaped bytes is less than 5. Note that in
// valid input, N can only be 0, 2, 4, 5, 7, or 8 (corresponding to 0, 1, 2,
// 3, 4, or 5 unescaped bytes).
//
// We use 5 for invalid values of N to be safe, since this is used to compute
// the length of the buffer to hold unescaped data.
//
// See http://tools.ietf.org/html/rfc4648#section-6 for details.
static const int kBase32NumUnescapedBytes[] = {
0, 5, 1, 5, 2, 3, 5, 4, 5
};
int Base32Unescape(const char* src, int slen, char* dest, int szdest) {
int destidx = 0;
char escaped_bytes[8];
unsigned char unescaped_bytes[5];
while (slen > 0) {
// Collect the next 8 escaped bytes and convert to upper case. If there
// are less than 8 bytes left, pad with '=', but keep track of the number
// of non-padded bytes for later.
int non_padded_len = 8;
for (int i = 0; i < 8; ++i) {
escaped_bytes[i] = (i < slen) ? ascii_toupper(src[i]) : '=';
if (!ValidBase32Byte(escaped_bytes[i])) {
return -1;
}
// Stop counting escaped bytes at first '='.
if (escaped_bytes[i] == '=' && non_padded_len == 8) {
non_padded_len = i;
}
}
// Convert the 8 escaped bytes to 5 unescaped bytes and copy to dest.
EightBase32DigitsToFiveBytes(escaped_bytes, unescaped_bytes);
const int num_unescaped = kBase32NumUnescapedBytes[non_padded_len];
for (int i = 0; i < num_unescaped; ++i) {
if (destidx == szdest) {
// No more room in dest, so terminate early.
return -1;
}
dest[destidx] = unescaped_bytes[i];
++destidx;
}
src += 8;
slen -= 8;
}
return destidx;
}
bool Base32Unescape(const char* src, int slen, string* dest) {
// Determine the size of the output string.
const int dest_len = 5 * (slen / 8) + kBase32NumUnescapedBytes[slen % 8];
dest->clear();
dest->resize(dest_len);
// We are getting the destination buffer by getting the beginning of the
// string and converting it into a char *.
const int len = Base32Unescape(src, slen,
string_as_array(dest), dest->size());
if (len < 0) {
dest->clear();
return false;
}
// Could be shorter if there was padding.
DCHECK_LE(len, dest_len);
dest->resize(len);
return true;
}
void GeneralFiveBytesToEightBase32Digits(const unsigned char *in_bytes,
char *out, const char *alphabet) {
// It's easier to just hard code this.
// The conversion isbased on the following picture of the division of a
// 40-bit block into 8 5-byte words:
//
// 5 3 2 5 1 4 4 1 5 2 3 5
// |:::::::|:::::::|:::::::|:::::::|:::::::
// +----+----+----+----+----+----+----+----
//
out[0] = alphabet[in_bytes[0] >> 3];
out[1] = alphabet[(in_bytes[0] & 0x07) << 2 | in_bytes[1] >> 6];
out[2] = alphabet[(in_bytes[1] & 0x3E) >> 1];
out[3] = alphabet[(in_bytes[1] & 0x01) << 4 | in_bytes[2] >> 4];
out[4] = alphabet[(in_bytes[2] & 0x0F) << 1 | in_bytes[3] >> 7];
out[5] = alphabet[(in_bytes[3] & 0x7C) >> 2];
out[6] = alphabet[(in_bytes[3] & 0x03) << 3 | in_bytes[4] >> 5];
out[7] = alphabet[(in_bytes[4] & 0x1F)];
}
static int GeneralBase32Escape(const unsigned char *src, size_t szsrc,
char *dest, size_t szdest,
const char *alphabet) {
static const char kPad32 = '=';
if (szsrc == 0) return 0;
char *cur_dest = dest;
const unsigned char *cur_src = src;
// Five bytes of data encodes to eight characters of cyphertext.
// So we can pump through three-byte chunks atomically.
while (szsrc > 4) { // keep going until we have less than 40 bits
if ( szdest < 8) return 0;
szdest -= 8;
GeneralFiveBytesToEightBase32Digits(cur_src, cur_dest, alphabet);
cur_dest += 8;
cur_src += 5;
szsrc -= 5;
}
// Now deal with the tail (<=4 bytes).
if (szsrc > 0) {
if ( szdest < 8) return 0;
szdest -= 8;
unsigned char last_chunk[5];
memcpy(last_chunk, cur_src, szsrc);
for (size_t i = szsrc; i < 5; ++i) {
last_chunk[i] = '\0';
}
GeneralFiveBytesToEightBase32Digits(last_chunk, cur_dest, alphabet);
int filled = (szsrc * 8) / 5 + 1;
cur_dest += filled;
// Add on the padding.
for (int i = 0; i < (8 - filled); ++i) {
*(cur_dest++) = kPad32;
}
}
return cur_dest - dest;
}
static bool GeneralBase32Escape(const string& src, string* dest,
const char *alphabet) {
const int max_escaped_size = CalculateBase32EscapedLen(src.length());
dest->clear();
dest->resize(max_escaped_size + 1, '\0');
const int escaped_len =
GeneralBase32Escape(reinterpret_cast<const unsigned char *>(src.c_str()),
src.length(), &*dest->begin(), dest->size(),
alphabet);
DCHECK_LE(max_escaped_size, escaped_len);
if (escaped_len < 0) {
dest->clear();
return false;
}
dest->resize(escaped_len);
return true;
}
static const char Base32Alphabet[] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', '2', '3', '4', '5', '6', '7'
};
int Base32Escape(const unsigned char* src, size_t szsrc,
char* dest, size_t szdest) {
return GeneralBase32Escape(src, szsrc, dest, szdest, Base32Alphabet);
}
bool Base32Escape(const string& src, string* dest) {
return GeneralBase32Escape(src, dest, Base32Alphabet);
}
void FiveBytesToEightBase32Digits(const unsigned char *in_bytes, char *out) {
GeneralFiveBytesToEightBase32Digits(in_bytes, out, Base32Alphabet);
}
static const char Base32HexAlphabet[] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F',
'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N',
'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
};
int Base32HexEscape(const unsigned char* src, size_t szsrc,
char* dest, size_t szdest) {
return GeneralBase32Escape(src, szsrc, dest, szdest, Base32HexAlphabet);
}
bool Base32HexEscape(const string& src, string* dest) {
return GeneralBase32Escape(src, dest, Base32HexAlphabet);
}
int CalculateBase32EscapedLen(size_t input_len) {
DCHECK_LE(input_len, numeric_limits<size_t>::max() / 8);
size_t intermediate_result = 8 * input_len + 4;
size_t len = intermediate_result / 5;
len = (len + 7) & ~7;
return len;
}
// ----------------------------------------------------------------------
// EightBase32DigitsToTenHexDigits()
// Converts an 8-digit base32 string to a 10-digit hex string.
//
// *in must point to 8 base32 digits.
// *out must point to 10 bytes.
//
// Base32 uses A-Z,2-7 to represent the numbers 0-31.
// See RFC3548 at http://www.ietf.org/rfc/rfc3548.txt
// for details on base32.
// ----------------------------------------------------------------------
void EightBase32DigitsToTenHexDigits(const char *in, char *out) {
unsigned char bytes[5];
EightBase32DigitsToFiveBytes(in, bytes);
b2a_hex(bytes, out, 5);
}
void EightBase32DigitsToFiveBytes(const char *in, unsigned char *bytes_out) {
static const char Base32InverseAlphabet[] = {
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 26/*2*/, 27/*3*/, 28/*4*/, 29/*5*/, 30/*6*/, 31/*7*/,
99, 99, 99, 99, 99, 00/*=*/, 99, 99,
99, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
23/*X*/, 24/*Y*/, 25/*Z*/, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
};
// Convert to raw bytes. It's easier to just hard code this.
bytes_out[0] = Base32InverseAlphabet[in[0]] << 3 |
Base32InverseAlphabet[in[1]] >> 2;
bytes_out[1] = Base32InverseAlphabet[in[1]] << 6 |
Base32InverseAlphabet[in[2]] << 1 |
Base32InverseAlphabet[in[3]] >> 4;
bytes_out[2] = Base32InverseAlphabet[in[3]] << 4 |
Base32InverseAlphabet[in[4]] >> 1;
bytes_out[3] = Base32InverseAlphabet[in[4]] << 7 |
Base32InverseAlphabet[in[5]] << 2 |
Base32InverseAlphabet[in[6]] >> 3;
bytes_out[4] = Base32InverseAlphabet[in[6]] << 5 |
Base32InverseAlphabet[in[7]];
}
// ----------------------------------------------------------------------
// TenHexDigitsToEightBase32Digits()
// Converts a 10-digit hex string to an 8-digit base32 string.
//
// *in must point to 10 hex digits.
// *out must point to 8 bytes.
//
// See RFC3548 at http://www.ietf.org/rfc/rfc3548.txt
// for details on base32.
// ----------------------------------------------------------------------
void TenHexDigitsToEightBase32Digits(const char *in, char *out) {
unsigned char bytes[5];
// Convert hex to raw bytes.
a2b_hex(in, bytes, 5);
FiveBytesToEightBase32Digits(bytes, out);
}
// ----------------------------------------------------------------------
// EscapeFileName / UnescapeFileName
// ----------------------------------------------------------------------
static const Charmap escape_file_name_exceptions(
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" // letters
"0123456789" // digits
"-_.");
void EscapeFileName(const StringPiece& src, string* dst) {
// Reserve at least src.size() chars
dst->reserve(dst->size() + src.size());
for (char c : src) {
// We do not use "isalpha" because we want the behavior to be
// independent of the current locale settings.
if (escape_file_name_exceptions.contains(c)) {
dst->push_back(c);
} else if (c == '/') {
dst->push_back('~');
} else {
char tmp[2];
b2a_hex(reinterpret_cast<const unsigned char*>(&c), tmp, 1);
dst->push_back('%');
dst->append(tmp, 2);
}
}
}
void UnescapeFileName(const StringPiece& src_piece, string* dst) {
const char* src = src_piece.data();
const int len = src_piece.size();
for (int i = 0; i < len; ++i) {
const char c = src[i];
if (c == '~') {
dst->push_back('/');
} else if ((c == '%') && (i + 2 < len)) {
unsigned char tmp[1];
a2b_hex(src + i + 1, &tmp[0], 1);
dst->push_back(tmp[0]);
i += 2;
} else {
dst->push_back(c);
}
}
}
static char hex_value[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, // '0'..'9'
0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'A'..'F'
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 10, 11, 12, 13, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 'a'..'f'
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
static char hex_char[] = "0123456789abcdef";
// This is a templated function so that T can be either a char*
// or a string. This works because we use the [] operator to access
// individual characters at a time.
template <typename T>
static void a2b_hex_t(const char* a, T b, int num) {
for (int i = 0; i < num; i++) {
b[i] = (hex_value[a[i * 2] & 0xFF] << 4)
+ (hex_value[a[i * 2 + 1] & 0xFF]);
}
}
string a2b_bin(const string& a, bool byte_order_msb) {
string result;
const char *data = a.c_str();
int num_bytes = (a.size()+7)/8;
for (int byte_offset = 0; byte_offset < num_bytes; ++byte_offset) {
unsigned char c = 0;
for (int bit_offset = 0; bit_offset < 8; ++bit_offset) {
if (*data == '\0')
break;
if (*data++ != '0') {
int bits_to_shift = (byte_order_msb) ? 7-bit_offset : bit_offset;
c |= (1 << bits_to_shift);
}
}
result.append(1, c);
}
return result;
}
// This is a templated function so that T can be either a char*
// or a string. This works because we use the [] operator to access
// individual characters at a time.
template <typename T>
static void b2a_hex_t(const unsigned char* b, T a, int num) {
for (int i = 0; i < num; i++) {
a[i * 2 + 0] = hex_char[b[i] >> 4];
a[i * 2 + 1] = hex_char[b[i] & 0xf];
}
}
string b2a_bin(const string& b, bool byte_order_msb) {
string result;
for (char c : b) {
for (int bit_offset = 0; bit_offset < 8; ++bit_offset) {
int x = (byte_order_msb) ? 7-bit_offset : bit_offset;
result.append(1, (c & (1 << x)) ? '1' : '0');
}
}
return result;
}
void b2a_hex(const unsigned char* b, char* a, int num) {
b2a_hex_t<char*>(b, a, num);
}
void a2b_hex(const char* a, unsigned char* b, int num) {
a2b_hex_t<unsigned char*>(a, b, num);
}
void a2b_hex(const char* a, char* b, int num) {
a2b_hex_t<char*>(a, b, num);
}
string b2a_hex(const char* b, int len) {
string result;
result.resize(len << 1);
b2a_hex_t<string&>(reinterpret_cast<const unsigned char*>(b), result, len);
return result;
}
string b2a_hex(const StringPiece& b) {
return b2a_hex(b.data(), b.size());
}
string a2b_hex(const string& a) {
string result;
a2b_hex(a.c_str(), &result, a.size()/2);
return result;
}
void b2a_hex(const unsigned char* from, string* to, int num) {
to->resize(num << 1);
b2a_hex_t<string&>(from, *to, num);
}
void a2b_hex(const char* from, string* to, int num) {
to->resize(num);
a2b_hex_t<string&>(from, *to, num);
}
const char* kDontNeedShellEscapeChars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_.=/:,@";
string ShellEscape(StringPiece src) {
if (!src.empty() && // empty string needs quotes
src.find_first_not_of(kDontNeedShellEscapeChars) == StringPiece::npos) {
// only contains chars that don't need quotes; it's fine
return src.ToString();
} else if (src.find('\'') == StringPiece::npos) {
// no single quotes; just wrap it in single quotes
return StrCat("'", src, "'");
} else {
// needs double quote escaping
string result = "\"";
for (char c : src) {
switch (c) {
case '\\':
case '$':
case '"':
case '`':
result.push_back('\\');
};
result.push_back(c);
}
result.push_back('"');
return result;
}
}
static const char kHexTable[513]=
"000102030405060708090a0b0c0d0e0f"
"101112131415161718191a1b1c1d1e1f"
"202122232425262728292a2b2c2d2e2f"
"303132333435363738393a3b3c3d3e3f"
"404142434445464748494a4b4c4d4e4f"
"505152535455565758595a5b5c5d5e5f"
"606162636465666768696a6b6c6d6e6f"
"707172737475767778797a7b7c7d7e7f"
"808182838485868788898a8b8c8d8e8f"
"909192939495969798999a9b9c9d9e9f"
"a0a1a2a3a4a5a6a7a8a9aaabacadaeaf"
"b0b1b2b3b4b5b6b7b8b9babbbcbdbebf"
"c0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
"d0d1d2d3d4d5d6d7d8d9dadbdcdddedf"
"e0e1e2e3e4e5e6e7e8e9eaebecedeeef"
"f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
//------------------------------------------------------------------------
// ByteStringToAscii
// Reads at most bytes_to_read from binary_string and prints it to
// ascii_string in downcased hex.
//------------------------------------------------------------------------
void ByteStringToAscii(string const &binary_string, int bytes_to_read,
string * ascii_string ) {
if (binary_string.size() < bytes_to_read) {
bytes_to_read = binary_string.size();
}
CHECK_GE(bytes_to_read, 0);
ascii_string->resize(bytes_to_read*2);
string::const_iterator in = binary_string.begin();
string::iterator out = ascii_string->begin();
for (int i = 0; i < bytes_to_read; i++) {
*out++ = kHexTable[(*in)*2];
*out++ = kHexTable[(*in)*2 + 1];
++in;
}
}
//------------------------------------------------------------------------
// ByteStringFromAscii
// Converts the hex from ascii_string into binary data and
// writes the binary data into binary_string.
// Empty input successfully converts to empty output.
// Returns false and may modify output if it is
// unable to parse the hex string.
//------------------------------------------------------------------------
bool ByteStringFromAscii(string const & hex_string, string * binary_string) {
binary_string->clear();
if ((hex_string.size()%2) != 0) {
return false;
}
int value = 0;
for (int i = 0; i < hex_string.size(); i++) {
char c = hex_string[i];
if (!ascii_isxdigit(c)) {
return false;
}
if (ascii_isdigit(c)) {
value += c - '0';
} else if (ascii_islower(c)) {
value += 10 + c - 'a';
} else {
value += 10 + c - 'A';
}
if (i & 1) {
binary_string->push_back(value);
value = 0;
} else {
value <<= 4;
}
}
return true;
}
// ----------------------------------------------------------------------
// CleanStringLineEndings()
// Clean up a multi-line string to conform to Unix line endings.
// Reads from src and appends to dst, so usually dst should be empty.
//
// If there is no line ending at the end of a non-empty string, it can
// be added automatically.
//
// Four different types of input are correctly handled:
//
// - Unix/Linux files: line ending is LF, pass through unchanged
//
// - DOS/Windows files: line ending is CRLF: convert to LF
//
// - Legacy Mac files: line ending is CR: convert to LF
//
// - Garbled files: random line endings, covert gracefully
// lonely CR, lonely LF, CRLF: convert to LF
//
// @param src The multi-line string to convert
// @param dst The converted string is appended to this string
// @param auto_end_last_line Automatically terminate the last line
//
// Limitations:
//
// This does not do the right thing for CRCRLF files created by
// broken programs that do another Unix->DOS conversion on files
// that are already in CRLF format. For this, a two-pass approach
// brute-force would be needed that
//
// (1) determines the presence of LF (first one is ok)
// (2) if yes, removes any CR, else convert every CR to LF
void CleanStringLineEndings(const string& src, string* dst,
bool auto_end_last_line) {
if (dst->empty()) {
dst->append(src);
CleanStringLineEndings(dst, auto_end_last_line);
} else {
string tmp = src;
CleanStringLineEndings(&tmp, auto_end_last_line);
dst->append(tmp);
}
}
void CleanStringLineEndings(string* str, bool auto_end_last_line) {
int output_pos = 0;
bool r_seen = false;
int len = str->size();
char* p = string_as_array(str);
for (int input_pos = 0; input_pos < len;) {
if (!r_seen && input_pos + 8 < len) {
uint64 v = UNALIGNED_LOAD64(p + input_pos);
// Loop over groups of 8 bytes at a time until we come across
// a word that has a byte whose value is less than or equal to
// '\r' (i.e. could contain a \n (0x0a) or a \r (0x0d) ).
//
// We use a has_less macro that quickly tests a whole 64-bit
// word to see if any of the bytes has a value < N.
//
// For more details, see:
// http://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
#define has_less(x, n) (((x)-~0ULL/255*(n))&~(x)&~0ULL/255*128)
if (!has_less(v, '\r' + 1)) {
#undef has_less
// No byte in this word has a value that could be a \r or a \n
if (output_pos != input_pos)
UNALIGNED_STORE64(p + output_pos, v);
input_pos += 8;
output_pos += 8;
continue;
}
}
string::const_reference in = p[input_pos];
if (in == '\r') {
if (r_seen)
p[output_pos++] = '\n';
r_seen = true;
} else if (in == '\n') {
if (input_pos != output_pos)
p[output_pos++] = '\n';
else
output_pos++;
r_seen = false;
} else {
if (r_seen)
p[output_pos++] = '\n';
r_seen = false;
if (input_pos != output_pos)
p[output_pos++] = in;
else
output_pos++;
}
input_pos++;
}
if (r_seen || (auto_end_last_line
&& output_pos > 0
&& p[output_pos - 1] != '\n')) {
str->resize(output_pos + 1);
str->operator[](output_pos) = '\n';
} else if (output_pos < len) {
str->resize(output_pos);
}
}
} // namespace strings