blob: a2e63cb1bf66f023d937757f206082414b1227db [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.ignite.internal.processors.cache.transactions;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.atomic.AtomicReference;
import org.apache.ignite.IgniteDataStreamer;
import org.apache.ignite.cache.affinity.rendezvous.RendezvousAffinityFunction;
import org.apache.ignite.cluster.ClusterNode;
import org.apache.ignite.configuration.CacheConfiguration;
import org.apache.ignite.configuration.DataRegionConfiguration;
import org.apache.ignite.configuration.DataStorageConfiguration;
import org.apache.ignite.configuration.IgniteConfiguration;
import org.apache.ignite.internal.IgniteEx;
import org.apache.ignite.internal.IgniteFutureTimeoutCheckedException;
import org.apache.ignite.internal.IgniteInternalFuture;
import org.apache.ignite.internal.TestRecordingCommunicationSpi;
import org.apache.ignite.internal.processors.affinity.AffinityAssignment;
import org.apache.ignite.internal.processors.affinity.AffinityTopologyVersion;
import org.apache.ignite.internal.processors.cache.GridCacheUtils;
import org.apache.ignite.internal.processors.cache.distributed.dht.preloader.GridDhtPartitionExchangeId;
import org.apache.ignite.internal.processors.cache.distributed.dht.preloader.GridDhtPartitionSupplyMessage;
import org.apache.ignite.internal.processors.cache.distributed.dht.preloader.GridDhtPartitionsFullMessage;
import org.apache.ignite.internal.processors.cache.distributed.dht.topology.GridDhtPartitionTopology;
import org.apache.ignite.internal.processors.cache.distributed.near.GridNearLockRequest;
import org.apache.ignite.internal.processors.cache.distributed.near.GridNearTxPrepareRequest;
import org.apache.ignite.internal.util.GridConcurrentSkipListSet;
import org.apache.ignite.internal.util.typedef.internal.CU;
import org.apache.ignite.internal.util.typedef.internal.U;
import org.apache.ignite.lang.IgniteBiPredicate;
import org.apache.ignite.plugin.extensions.communication.Message;
import org.apache.ignite.testframework.GridTestUtils;
import org.apache.ignite.testframework.junits.common.GridCommonAbstractTest;
import org.apache.ignite.transactions.Transaction;
import org.apache.ignite.transactions.TransactionConcurrency;
import org.apache.ignite.transactions.TransactionIsolation;
import org.junit.Test;
import static org.apache.ignite.cache.CacheAtomicityMode.TRANSACTIONAL;
import static org.apache.ignite.cache.CacheWriteSynchronizationMode.FULL_SYNC;
import static org.apache.ignite.internal.processors.cache.distributed.dht.topology.GridDhtPartitionState.OWNING;
import static org.apache.ignite.transactions.TransactionConcurrency.OPTIMISTIC;
import static org.apache.ignite.transactions.TransactionConcurrency.PESSIMISTIC;
import static org.apache.ignite.transactions.TransactionIsolation.REPEATABLE_READ;
import static org.apache.ignite.transactions.TransactionIsolation.SERIALIZABLE;
/**
*/
public class TxCrossCacheMapOnInvalidTopologyTest extends GridCommonAbstractTest {
/** Partitions count. */
private static final int PARTS_CNT = 32;
/** Cache 1. */
private static final String CACHE1 = DEFAULT_CACHE_NAME;
/** Cache 2. */
private static final String CACHE2 = DEFAULT_CACHE_NAME + "2";
/** */
private static final int MB = 1024 * 1024;
/** {@inheritDoc} */
@Override protected IgniteConfiguration getConfiguration(String igniteInstanceName) throws Exception {
IgniteConfiguration cfg = super.getConfiguration(igniteInstanceName);
cfg.setCommunicationSpi(new TestRecordingCommunicationSpi());
cfg.setCacheConfiguration(cacheConfiguration(CACHE1), cacheConfiguration(CACHE2).setRebalanceOrder(10));
cfg.setDataStorageConfiguration(new DataStorageConfiguration().setPageSize(1024).
setDefaultDataRegionConfiguration(new DataRegionConfiguration().
setInitialSize(100 * MB).setMaxSize(100 * MB)));
return cfg;
}
/**
* @param name Name.
*/
protected CacheConfiguration<Object, Object> cacheConfiguration(String name) {
CacheConfiguration<Object, Object> ccfg = new CacheConfiguration<>(name);
ccfg.setAtomicityMode(TRANSACTIONAL);
ccfg.setBackups(2);
ccfg.setWriteSynchronizationMode(FULL_SYNC);
ccfg.setAffinity(new RendezvousAffinityFunction(false, PARTS_CNT));
return ccfg;
}
/**
*
*/
@Test
public void testCrossCacheTxMapOnInvalidTopologyPessimistic() throws Exception {
doTestCrossCacheTxMapOnInvalidTopology(PESSIMISTIC, REPEATABLE_READ);
}
/**
*
*/
@Test
public void testCrossCacheTxMapOnInvalidTopologyOptimistic() throws Exception {
doTestCrossCacheTxMapOnInvalidTopology(OPTIMISTIC, REPEATABLE_READ);
}
/**
*
*/
@Test
public void testCrossCacheTxMapOnInvalidTopologyOptimisticSerializable() throws Exception {
doTestCrossCacheTxMapOnInvalidTopology(OPTIMISTIC, SERIALIZABLE);
}
/**
* Test scenario: cross-cache tx is started when node is left in the middle of rebalance, first cache is rebalanced
* and second is partially rebalanced.
*
* First cache map request will trigger client compatible remap for pessimistic txs,
* second cache map request should use new topology version.
*
* For optimistic tx remap is enforced if more than one mapping in transaction or all enlisted caches have compatible
* assignments.
*
* Success: tx is finished on ideal topology version over all mapped nodes.
*
* @param concurrency Concurrency.
* @param isolation Isolation.
*/
private void doTestCrossCacheTxMapOnInvalidTopology(TransactionConcurrency concurrency, TransactionIsolation isolation) throws Exception {
try {
IgniteEx crd = startGrid(0);
IgniteEx g1 = startGrid(1);
awaitPartitionMapExchange();
IgniteEx client = startClientGrid("client");
assertNotNull(client.cache(CACHE1));
assertNotNull(client.cache(CACHE2));
try (IgniteDataStreamer<Object, Object> streamer = crd.dataStreamer(CACHE1)) {
// Put 500 keys per partition.
for (int k = 0; k < PARTS_CNT * 500; k++)
streamer.addData(k, new byte[10]);
}
try (IgniteDataStreamer<Object, Object> streamer = crd.dataStreamer(CACHE2)) {
// Put 500 keys per partition.
for (int k = 0; k < PARTS_CNT * 500; k++)
streamer.addData(k, new byte[10]);
}
TestRecordingCommunicationSpi crdSpi = TestRecordingCommunicationSpi.spi(crd);
final AffinityTopologyVersion joinVer = new AffinityTopologyVersion(4, 0);
AffinityTopologyVersion leftVer = new AffinityTopologyVersion(5, 0);
AffinityTopologyVersion idealVer = new AffinityTopologyVersion(5, 1);
AtomicReference<Set<Integer>> full = new AtomicReference<>();
GridConcurrentSkipListSet<Integer> leftVerParts = new GridConcurrentSkipListSet<>();
crdSpi.blockMessages((node, m) -> {
if (m instanceof GridDhtPartitionSupplyMessage) {
GridDhtPartitionSupplyMessage msg = (GridDhtPartitionSupplyMessage)m;
// Allow full rebalance for cache 1 and system cache.
if (msg.groupId() == CU.cacheId(CACHE1) || msg.groupId() == CU.cacheId(GridCacheUtils.UTILITY_CACHE_NAME))
return false;
// Allow only first batch for cache 2.
if (msg.topologyVersion().equals(joinVer)) {
if (full.get() == null) {
Map<Integer, Long> last = U.field(msg, "last");
full.set(last.keySet());
return false;
}
return true;
}
if (msg.topologyVersion().equals(leftVer)) {
Map<Integer, Long> last = U.field(msg, "last");
leftVerParts.addAll(last.keySet());
return true;
}
} else if (m instanceof GridDhtPartitionsFullMessage) {
GridDhtPartitionsFullMessage msg = (GridDhtPartitionsFullMessage)m;
// Delay full message for ideal topology switch.
GridDhtPartitionExchangeId exchId = msg.exchangeId();
if (exchId != null && exchId.topologyVersion().equals(idealVer))
return true;
}
return false;
});
TestRecordingCommunicationSpi g1Spi = TestRecordingCommunicationSpi.spi(g1);
g1Spi.blockMessages((node, msg) -> {
if (msg instanceof GridDhtPartitionSupplyMessage) {
GridDhtPartitionSupplyMessage m = (GridDhtPartitionSupplyMessage)msg;
return m.groupId() == CU.cacheId(CACHE2);
}
return false;
});
startGrid(2);
crdSpi.waitForBlocked();
g1Spi.waitForBlocked();
// Wait partial owning.
assertTrue("Timed out while waiting for rebalance", GridTestUtils.waitForCondition(() -> {
// Await full rebalance for cache 2.
GridDhtPartitionTopology top0 = grid(2).cachex(CACHE1).context().topology();
for (int p = 0; p < PARTS_CNT; p++) {
if (top0.localPartition(p).state() != OWNING)
return false;
}
// Await partial rebalance for cache 1.
GridDhtPartitionTopology top1 = grid(2).cachex(CACHE2).context().topology();
for (Integer part : full.get()) {
if (top1.localPartition(part).state() != OWNING)
return false;
}
return true;
}, 10_000));
// At this point cache 1 is fully rebalanced and cache 2 is partially rebalanced.
// Stop supplier in the middle of rebalance.
g1.close();
// Wait for topologies and calculate required partitions.
grid(0).cachex(CACHE1).context().affinity().affinityReadyFuture(leftVer).get();
grid(2).cachex(CACHE1).context().affinity().affinityReadyFuture(leftVer).get();
grid(0).cachex(CACHE2).context().affinity().affinityReadyFuture(leftVer).get();
grid(2).cachex(CACHE2).context().affinity().affinityReadyFuture(leftVer).get();
AffinityAssignment assignment0 = grid(0).cachex(CACHE1).context().affinity().assignment(leftVer);
AffinityAssignment assignment = grid(0).cachex(CACHE2).context().affinity().assignment(leftVer);
// Search for a partition with incompatible assignment.
int stablePart = -1; // Partition for cache1 which is mapped for both late and ideal topologies to the same primary.
int movingPart = -1; // Partition for cache2 which is mapped for both late and ideal topologies on different primaries.
for (int p = 0; p < assignment0.assignment().size(); p++) {
List<ClusterNode> curr = assignment.assignment().get(p);
List<ClusterNode> ideal = assignment.idealAssignment().get(p);
if (curr.equals(ideal) && curr.get(0).order() == 1) {
stablePart = p;
break;
}
}
assertFalse(stablePart == -1);
for (int p = 0; p < assignment.assignment().size(); p++) {
List<ClusterNode> curr = assignment.assignment().get(p);
List<ClusterNode> ideal = assignment.idealAssignment().get(p);
if (!curr.equals(ideal) && curr.get(0).order() == 1) {
movingPart = p;
break;
}
}
assertFalse(movingPart == -1);
TestRecordingCommunicationSpi.spi(client).blockMessages(new IgniteBiPredicate<ClusterNode, Message>() {
@Override public boolean apply(ClusterNode node, Message msg) {
if (concurrency == PESSIMISTIC)
return msg instanceof GridNearLockRequest;
else
return msg instanceof GridNearTxPrepareRequest;
}
});
final int finalStablePart = stablePart;
final int finalMovingPart = movingPart;
IgniteInternalFuture<?> txFut = multithreadedAsync(() -> {
try (Transaction tx = client.transactions().txStart(concurrency, isolation)) {
client.cache(CACHE1).put(finalStablePart, 0); // Will map on crd(order=1).
// Next request will remap to ideal topology, but it's not ready on other node except crd.
client.cache(CACHE2).put(finalMovingPart, 0);
tx.commit();
}
}, 1, "tx-thread");
// Wait until all missing supply messages are blocked.
assertTrue(GridTestUtils.waitForCondition(() -> leftVerParts.size() == PARTS_CNT - full.get().size(), 5_000));
// Delay first lock request on late topology.
TestRecordingCommunicationSpi.spi(client).waitForBlocked();
// At this point only supply messages should be blocked.
// Unblock to continue rebalance and trigger ideal topology switch.
crdSpi.stopBlock(true, null, false, true);
// Wait until ideal topology is ready on crd.
crd.context().cache().context().exchange().affinityReadyFuture(idealVer).get(10_000);
// Other node must wait for full message.
assertFalse(GridTestUtils.waitForCondition(() ->
grid(2).context().cache().context().exchange().affinityReadyFuture(idealVer).isDone(), 1_000));
// Map on unstable topology (PME is in progress on other node).
TestRecordingCommunicationSpi.spi(client).stopBlock();
// Capture local transaction.
IgniteInternalTx tx0 = client.context().cache().context().tm().activeTransactions().iterator().next();
// Expected behavior: tx must hang (both pessimistic and optimistic) because topology is not ready.
try {
txFut.get(3_000);
fail("TX must not complete");
}
catch (IgniteFutureTimeoutCheckedException e) {
// Expected.
}
crdSpi.stopBlock();
txFut.get();
// Check transaction map version. Should be mapped on ideal topology.
assertEquals(tx0.topologyVersionSnapshot(), idealVer);
awaitPartitionMapExchange();
checkFutures();
}
finally {
stopAllGrids();
}
}
}