| /* |
| * Licensed to the Apache Software Foundation (ASF) under one or more |
| * contributor license agreements. See the NOTICE file distributed with |
| * this work for additional information regarding copyright ownership. |
| * The ASF licenses this file to You under the Apache License, Version 2.0 |
| * (the "License"); you may not use this file except in compliance with |
| * the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package org.apache.ignite.examples.ml.tutorial; |
| |
| import java.io.FileNotFoundException; |
| import java.util.Arrays; |
| import org.apache.ignite.Ignite; |
| import org.apache.ignite.IgniteCache; |
| import org.apache.ignite.Ignition; |
| import org.apache.ignite.ml.math.functions.IgniteBiFunction; |
| import org.apache.ignite.ml.math.primitives.vector.Vector; |
| import org.apache.ignite.ml.nn.UpdatesStrategy; |
| import org.apache.ignite.ml.optimization.updatecalculators.SimpleGDParameterUpdate; |
| import org.apache.ignite.ml.optimization.updatecalculators.SimpleGDUpdateCalculator; |
| import org.apache.ignite.ml.preprocessing.encoding.EncoderTrainer; |
| import org.apache.ignite.ml.preprocessing.encoding.EncoderType; |
| import org.apache.ignite.ml.preprocessing.imputing.ImputerTrainer; |
| import org.apache.ignite.ml.preprocessing.minmaxscaling.MinMaxScalerTrainer; |
| import org.apache.ignite.ml.preprocessing.normalization.NormalizationTrainer; |
| import org.apache.ignite.ml.regressions.logistic.LogisticRegressionModel; |
| import org.apache.ignite.ml.regressions.logistic.LogisticRegressionSGDTrainer; |
| import org.apache.ignite.ml.selection.cv.CrossValidation; |
| import org.apache.ignite.ml.selection.scoring.evaluator.BinaryClassificationEvaluator; |
| import org.apache.ignite.ml.selection.scoring.metric.Accuracy; |
| import org.apache.ignite.ml.selection.split.TrainTestDatasetSplitter; |
| import org.apache.ignite.ml.selection.split.TrainTestSplit; |
| |
| /** |
| * Change classification algorithm that was used in {@link Step_8_CV_with_Param_Grid} from decision tree to logistic |
| * regression ({@link LogisticRegressionSGDTrainer}) because sometimes this can give the higher accuracy. |
| * <p> |
| * Code in this example launches Ignite grid and fills the cache with test data (based on Titanic passengers data).</p> |
| * <p> |
| * After that it defines how to split the data to train and test sets and configures preprocessors that extract |
| * features from an upstream data and perform other desired changes over the extracted data.</p> |
| * <p> |
| * Then, it tunes hyperparams with K-fold Cross-Validation on the split training set and trains the model based on |
| * the processed data using logistic regression and the obtained hyperparams.</p> |
| * <p> |
| * Finally, this example uses {@link BinaryClassificationEvaluator} functionality to compute metrics from predictions.</p> |
| */ |
| public class Step_9_Go_to_LogReg { |
| /** Run example. */ |
| public static void main(String[] args) { |
| System.out.println(); |
| System.out.println(">>> Tutorial step 9 (logistic regression) example started."); |
| |
| try (Ignite ignite = Ignition.start("examples/config/example-ignite.xml")) { |
| try { |
| IgniteCache<Integer, Object[]> dataCache = TitanicUtils.readPassengers(ignite); |
| |
| // Defines first preprocessor that extracts features from an upstream data. |
| // Extracts "pclass", "sibsp", "parch", "sex", "embarked", "age", "fare" |
| IgniteBiFunction<Integer, Object[], Object[]> featureExtractor |
| = (k, v) -> new Object[]{v[0], v[3], v[4], v[5], v[6], v[8], v[10]}; |
| |
| IgniteBiFunction<Integer, Object[], Double> lbExtractor = (k, v) -> (double) v[1]; |
| |
| TrainTestSplit<Integer, Object[]> split = new TrainTestDatasetSplitter<Integer, Object[]>() |
| .split(0.75); |
| |
| IgniteBiFunction<Integer, Object[], Vector> strEncoderPreprocessor = new EncoderTrainer<Integer, Object[]>() |
| .withEncoderType(EncoderType.STRING_ENCODER) |
| .withEncodedFeature(1) |
| .withEncodedFeature(6) // <--- Changed index here |
| .fit(ignite, |
| dataCache, |
| featureExtractor |
| ); |
| |
| IgniteBiFunction<Integer, Object[], Vector> imputingPreprocessor = new ImputerTrainer<Integer, Object[]>() |
| .fit(ignite, |
| dataCache, |
| strEncoderPreprocessor |
| ); |
| |
| IgniteBiFunction<Integer, Object[], Vector> minMaxScalerPreprocessor = new MinMaxScalerTrainer<Integer, Object[]>() |
| .fit( |
| ignite, |
| dataCache, |
| imputingPreprocessor |
| ); |
| |
| // Tune hyperparams with K-fold Cross-Validation on the split training set. |
| int[] pSet = new int[]{1, 2}; |
| int[] maxIterationsSet = new int[]{ 100, 1000}; |
| int[] batchSizeSet = new int[]{100, 10}; |
| int[] locIterationsSet = new int[]{10, 100}; |
| double[] learningRateSet = new double[]{0.1, 0.2, 0.5}; |
| |
| int bestP = 1; |
| int bestMaxIterations = 100; |
| int bestBatchSize = 10; |
| int bestLocIterations = 10; |
| double bestLearningRate = 0.0; |
| double avg = Double.MIN_VALUE; |
| |
| for(int p: pSet){ |
| for(int maxIterations: maxIterationsSet) { |
| for (int batchSize : batchSizeSet) { |
| for (int locIterations : locIterationsSet) { |
| for (double learningRate : learningRateSet) { |
| IgniteBiFunction<Integer, Object[], Vector> normalizationPreprocessor |
| = new NormalizationTrainer<Integer, Object[]>() |
| .withP(p) |
| .fit( |
| ignite, |
| dataCache, |
| minMaxScalerPreprocessor |
| ); |
| |
| LogisticRegressionSGDTrainer trainer = new LogisticRegressionSGDTrainer() |
| .withUpdatesStgy(new UpdatesStrategy<>(new SimpleGDUpdateCalculator(learningRate), |
| SimpleGDParameterUpdate::sumLocal, SimpleGDParameterUpdate::avg)) |
| .withMaxIterations(maxIterations) |
| .withLocIterations(locIterations) |
| .withBatchSize(batchSize) |
| .withSeed(123L); |
| |
| CrossValidation<LogisticRegressionModel, Double, Integer, Object[]> |
| scoreCalculator = new CrossValidation<>(); |
| |
| double[] scores = scoreCalculator.score( |
| trainer, |
| new Accuracy<>(), |
| ignite, |
| dataCache, |
| split.getTrainFilter(), |
| normalizationPreprocessor, |
| lbExtractor, |
| 3 |
| ); |
| |
| System.out.println("Scores are: " + Arrays.toString(scores)); |
| |
| final double currAvg = Arrays.stream(scores).average().orElse(Double.MIN_VALUE); |
| |
| if (currAvg > avg) { |
| avg = currAvg; |
| bestP = p; |
| bestMaxIterations = maxIterations; |
| bestBatchSize = batchSize; |
| bestLearningRate = learningRate; |
| bestLocIterations = locIterations; |
| } |
| |
| System.out.println("Avg is: " + currAvg |
| + " with p: " + p |
| + " with maxIterations: " + maxIterations |
| + " with batchSize: " + batchSize |
| + " with learningRate: " + learningRate |
| + " with locIterations: " + locIterations |
| ); |
| } |
| } |
| } |
| } |
| } |
| |
| System.out.println("Train " |
| + " with p: " + bestP |
| + " with maxIterations: " + bestMaxIterations |
| + " with batchSize: " + bestBatchSize |
| + " with learningRate: " + bestLearningRate |
| + " with locIterations: " + bestLocIterations |
| ); |
| |
| IgniteBiFunction<Integer, Object[], Vector> normalizationPreprocessor = new NormalizationTrainer<Integer, Object[]>() |
| .withP(bestP) |
| .fit( |
| ignite, |
| dataCache, |
| minMaxScalerPreprocessor |
| ); |
| |
| LogisticRegressionSGDTrainer trainer = new LogisticRegressionSGDTrainer() |
| .withUpdatesStgy(new UpdatesStrategy<>(new SimpleGDUpdateCalculator(bestLearningRate), |
| SimpleGDParameterUpdate::sumLocal, SimpleGDParameterUpdate::avg)) |
| .withMaxIterations(bestMaxIterations) |
| .withLocIterations(bestLocIterations) |
| .withBatchSize(bestBatchSize) |
| .withSeed(123L); |
| |
| System.out.println(">>> Perform the training to get the model."); |
| LogisticRegressionModel bestMdl = trainer.fit( |
| ignite, |
| dataCache, |
| split.getTrainFilter(), |
| normalizationPreprocessor, |
| lbExtractor |
| ); |
| |
| System.out.println("\n>>> Trained model: " + bestMdl); |
| |
| double accuracy = BinaryClassificationEvaluator.evaluate( |
| dataCache, |
| split.getTestFilter(), |
| bestMdl, |
| normalizationPreprocessor, |
| lbExtractor, |
| new Accuracy<>() |
| ); |
| |
| System.out.println("\n>>> Accuracy " + accuracy); |
| System.out.println("\n>>> Test Error " + (1 - accuracy)); |
| |
| System.out.println(">>> Tutorial step 9 (logistic regression) example completed."); |
| } |
| catch (FileNotFoundException e) { |
| e.printStackTrace(); |
| } |
| } |
| } |
| } |