blob: d9fa3e1e7bd43ad57f324981c273bd81d912e402 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from pathlib import Path
import pyarrow as pa
import pytest
from datafusion import SessionContext
from pyiceberg.catalog import Catalog, load_catalog
@pytest.fixture(scope="session")
def warehouse(tmp_path_factory: pytest.TempPathFactory) -> Path:
return tmp_path_factory.mktemp("warehouse")
@pytest.fixture(scope="session")
def catalog(warehouse: Path) -> Catalog:
catalog = load_catalog(
"default",
uri=f"sqlite:///{warehouse}/pyiceberg_catalog.db",
warehouse=f"file://{warehouse}",
)
return catalog
def test_datafusion_register_pyiceberg_table(catalog: Catalog, arrow_table_with_null: pa.Table) -> None:
catalog.create_namespace_if_not_exists("default")
iceberg_table = catalog.create_table_if_not_exists(
"default.dataset",
schema=arrow_table_with_null.schema,
)
iceberg_table.append(arrow_table_with_null)
ctx = SessionContext()
ctx.register_table_provider("test", iceberg_table)
datafusion_table = ctx.table("test")
assert datafusion_table is not None
assert datafusion_table.to_arrow_table().to_pylist() == iceberg_table.scan().to_arrow().to_pylist()
from pandas.testing import assert_frame_equal
assert_frame_equal(
datafusion_table.to_arrow_table().to_pandas(),
iceberg_table.scan().to_arrow().to_pandas(),
)