blob: 3b35ce9193cb96ba2be73e64814a9bbcb88c7fdb [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import java.util.stream.Collectors;
import org.apache.hudi.DataSourceReadOptions;
import org.apache.hudi.DataSourceWriteOptions;
import org.apache.hudi.HoodieDataSourceHelpers;
import org.apache.hudi.common.model.HoodieTableType;
import org.apache.hudi.common.table.HoodieTableMetaClient;
import org.apache.hudi.common.table.timeline.HoodieTimeline;
import org.apache.hudi.common.testutils.HoodieTestDataGenerator;
import org.apache.hudi.common.util.ValidationUtils;
import org.apache.hudi.config.HoodieCompactionConfig;
import org.apache.hudi.config.HoodieWriteConfig;
import org.apache.hudi.exception.TableNotFoundException;
import org.apache.hudi.hive.MultiPartKeysValueExtractor;
import com.beust.jcommander.JCommander;
import com.beust.jcommander.Parameter;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.log4j.LogManager;
import org.apache.log4j.Logger;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SaveMode;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.streaming.DataStreamWriter;
import org.apache.spark.sql.streaming.OutputMode;
import org.apache.spark.sql.streaming.ProcessingTime;
import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import org.apache.spark.sql.streaming.StreamingQuery;
import static org.apache.hudi.common.testutils.RawTripTestPayload.recordsToStrings;
/**
* Sample program that writes & reads hoodie tables via the Spark datasource streaming.
*/
public class HoodieJavaStreamingApp {
@Parameter(names = {"--table-path", "-p"}, description = "path for Hoodie sample table")
private String tablePath = "/tmp/hoodie/streaming/sample-table";
@Parameter(names = {"--streaming-source-path", "-ssp"}, description = "path for streaming source file folder")
private String streamingSourcePath = "/tmp/hoodie/streaming/source";
@Parameter(names = {"--streaming-checkpointing-path", "-scp"},
description = "path for streaming checking pointing folder")
private String streamingCheckpointingPath = "/tmp/hoodie/streaming/checkpoint";
@Parameter(names = {"--streaming-duration-in-ms", "-sdm"},
description = "time in millisecond for the streaming duration")
private Long streamingDurationInMs = 15000L;
@Parameter(names = {"--table-name", "-n"}, description = "table name for Hoodie sample table")
private String tableName = "hoodie_test";
@Parameter(names = {"--table-type", "-t"}, description = "One of COPY_ON_WRITE or MERGE_ON_READ")
private String tableType = HoodieTableType.MERGE_ON_READ.name();
@Parameter(names = {"--hive-sync", "-hv"}, description = "Enable syncing to hive")
private Boolean enableHiveSync = false;
@Parameter(names = {"--hive-db", "-hd"}, description = "hive database")
private String hiveDB = "default";
@Parameter(names = {"--hive-table", "-ht"}, description = "hive table")
private String hiveTable = "hoodie_sample_test";
@Parameter(names = {"--hive-user", "-hu"}, description = "hive username")
private String hiveUser = "hive";
@Parameter(names = {"--hive-password", "-hp"}, description = "hive password")
private String hivePass = "hive";
@Parameter(names = {"--hive-url", "-hl"}, description = "hive JDBC URL")
private String hiveJdbcUrl = "jdbc:hive2://localhost:10000";
@Parameter(names = {"--use-multi-partition-keys", "-mp"}, description = "Use Multiple Partition Keys")
private Boolean useMultiPartitionKeys = false;
@Parameter(names = {"--help", "-h"}, help = true)
public Boolean help = false;
private static final Logger LOG = LogManager.getLogger(HoodieJavaStreamingApp.class);
public static void main(String[] args) throws Exception {
HoodieJavaStreamingApp cli = new HoodieJavaStreamingApp();
JCommander cmd = new JCommander(cli, null, args);
if (cli.help) {
cmd.usage();
System.exit(1);
}
int errStatus = 0;
try {
cli.run();
} catch (Exception ex) {
LOG.error("Got error running app ", ex);
errStatus = -1;
} finally {
System.exit(errStatus);
}
}
/**
*
* @throws Exception
*/
public void run() throws Exception {
// Spark session setup..
SparkSession spark = SparkSession.builder().appName("Hoodie Spark Streaming APP")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[1]").getOrCreate();
JavaSparkContext jssc = new JavaSparkContext(spark.sparkContext());
// folder path clean up and creation, preparing the environment
FileSystem fs = FileSystem.get(jssc.hadoopConfiguration());
fs.delete(new Path(streamingSourcePath), true);
fs.delete(new Path(streamingCheckpointingPath), true);
fs.delete(new Path(tablePath), true);
fs.mkdirs(new Path(streamingSourcePath));
// Generator of some records to be loaded in.
HoodieTestDataGenerator dataGen = new HoodieTestDataGenerator();
List<String> records1 = recordsToStrings(dataGen.generateInserts("001", 100));
Dataset<Row> inputDF1 = spark.read().json(jssc.parallelize(records1, 2));
List<String> records2 = recordsToStrings(dataGen.generateUpdatesForAllRecords("002"));
Dataset<Row> inputDF2 = spark.read().json(jssc.parallelize(records2, 2));
String ckptPath = streamingCheckpointingPath + "/stream1";
String srcPath = streamingSourcePath + "/stream1";
fs.mkdirs(new Path(ckptPath));
fs.mkdirs(new Path(srcPath));
// setup the input for streaming
Dataset<Row> streamingInput = spark.readStream().schema(inputDF1.schema()).json(srcPath + "/*");
// start streaming and showing
ExecutorService executor = Executors.newFixedThreadPool(2);
int numInitialCommits = 0;
// thread for spark strucutured streaming
try {
Future<Void> streamFuture = executor.submit(() -> {
LOG.info("===== Streaming Starting =====");
stream(streamingInput, DataSourceWriteOptions.UPSERT_OPERATION_OPT_VAL(), ckptPath);
LOG.info("===== Streaming Ends =====");
return null;
});
// thread for adding data to the streaming source and showing results over time
Future<Integer> showFuture = executor.submit(() -> {
LOG.info("===== Showing Starting =====");
int numCommits = addInputAndValidateIngestion(spark, fs, srcPath,0, 100, inputDF1, inputDF2, true);
LOG.info("===== Showing Ends =====");
return numCommits;
});
// let the threads run
streamFuture.get();
numInitialCommits = showFuture.get();
} finally {
executor.shutdownNow();
}
HoodieTableMetaClient metaClient = new HoodieTableMetaClient(jssc.hadoopConfiguration(), tablePath);
if (tableType.equals(HoodieTableType.MERGE_ON_READ.name())) {
// Ensure we have successfully completed one compaction commit
ValidationUtils.checkArgument(metaClient.getActiveTimeline().getCommitTimeline().getInstants().count() == 1);
} else {
ValidationUtils.checkArgument(metaClient.getActiveTimeline().getCommitTimeline().getInstants().count() >= 1);
}
// Deletes Stream
// Need to restart application to ensure spark does not assume there are multiple streams active.
spark.close();
SparkSession newSpark = SparkSession.builder().appName("Hoodie Spark Streaming APP")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer").master("local[1]").getOrCreate();
jssc = new JavaSparkContext(newSpark.sparkContext());
String ckptPath2 = streamingCheckpointingPath + "/stream2";
String srcPath2 = srcPath + "/stream2";
fs.mkdirs(new Path(ckptPath2));
fs.mkdirs(new Path(srcPath2));
Dataset<Row> delStreamingInput = newSpark.readStream().schema(inputDF1.schema()).json(srcPath2 + "/*");
List<String> deletes = recordsToStrings(dataGen.generateUniqueUpdates("002", 20));
Dataset<Row> inputDF3 = newSpark.read().json(jssc.parallelize(deletes, 2));
executor = Executors.newFixedThreadPool(2);
// thread for spark strucutured streaming
try {
Future<Void> streamFuture = executor.submit(() -> {
LOG.info("===== Streaming Starting =====");
stream(delStreamingInput, DataSourceWriteOptions.DELETE_OPERATION_OPT_VAL(), ckptPath2);
LOG.info("===== Streaming Ends =====");
return null;
});
final int numCommits = numInitialCommits;
// thread for adding data to the streaming source and showing results over time
Future<Void> showFuture = executor.submit(() -> {
LOG.info("===== Showing Starting =====");
addInputAndValidateIngestion(newSpark, fs, srcPath2, numCommits, 80, inputDF3, null, false);
LOG.info("===== Showing Ends =====");
return null;
});
// let the threads run
streamFuture.get();
showFuture.get();
} finally {
executor.shutdown();
}
}
private void waitTillNCommits(FileSystem fs, int numCommits, int timeoutSecs, int sleepSecsAfterEachRun)
throws InterruptedException {
long beginTime = System.currentTimeMillis();
long currTime = beginTime;
long timeoutMsecs = timeoutSecs * 1000;
while ((currTime - beginTime) < timeoutMsecs) {
try {
HoodieTimeline timeline = HoodieDataSourceHelpers.allCompletedCommitsCompactions(fs, tablePath);
LOG.info("Timeline :" + timeline.getInstants().collect(Collectors.toList()));
if (timeline.countInstants() >= numCommits) {
return;
}
HoodieTableMetaClient metaClient = new HoodieTableMetaClient(fs.getConf(), tablePath, true);
System.out.println("Instants :" + metaClient.getActiveTimeline().getInstants().collect(Collectors.toList()));
} catch (TableNotFoundException te) {
LOG.info("Got table not found exception. Retrying");
} finally {
Thread.sleep(sleepSecsAfterEachRun * 1000);
currTime = System.currentTimeMillis();
}
}
throw new IllegalStateException("Timedout waiting for " + numCommits + " commits to appear in " + tablePath);
}
/**
* Adding data to the streaming source and showing results over time.
*
* @param spark
* @param fs
* @param inputDF1
* @param inputDF2
* @throws Exception
*/
public int addInputAndValidateIngestion(SparkSession spark, FileSystem fs, String srcPath,
int initialCommits, int expRecords,
Dataset<Row> inputDF1, Dataset<Row> inputDF2, boolean instantTimeValidation) throws Exception {
// Ensure, we always write only one file. This is very important to ensure a single batch is reliably read
// atomically by one iteration of spark streaming.
inputDF1.coalesce(1).write().mode(SaveMode.Append).json(srcPath);
int numExpCommits = initialCommits + 1;
// wait for spark streaming to process one microbatch
waitTillNCommits(fs, numExpCommits, 180, 3);
String commitInstantTime1 = HoodieDataSourceHelpers.latestCommit(fs, tablePath);
LOG.info("First commit at instant time :" + commitInstantTime1);
String commitInstantTime2 = commitInstantTime1;
if (null != inputDF2) {
numExpCommits += 1;
inputDF2.write().mode(SaveMode.Append).json(srcPath);
// wait for spark streaming to process one microbatch
Thread.sleep(3000);
waitTillNCommits(fs, numExpCommits, 180, 3);
commitInstantTime2 = HoodieDataSourceHelpers.latestCommit(fs, tablePath);
LOG.info("Second commit at instant time :" + commitInstantTime2);
}
if (tableType.equals(HoodieTableType.MERGE_ON_READ.name())) {
numExpCommits += 1;
// Wait for compaction to also finish and track latest timestamp as commit timestamp
waitTillNCommits(fs, numExpCommits, 180, 3);
commitInstantTime2 = HoodieDataSourceHelpers.latestCommit(fs, tablePath);
LOG.info("Compaction commit at instant time :" + commitInstantTime2);
}
/**
* Read & do some queries
*/
Dataset<Row> hoodieROViewDF = spark.read().format("hudi")
// pass any path glob, can include hoodie & non-hoodie
// datasets
.load(tablePath + "/*/*/*/*");
hoodieROViewDF.registerTempTable("hoodie_ro");
spark.sql("describe hoodie_ro").show();
// all trips whose fare amount was greater than 2.
spark.sql("select fare.amount, begin_lon, begin_lat, timestamp from hoodie_ro where fare.amount > 2.0").show();
if (instantTimeValidation) {
System.out.println("Showing all records. Latest Instant Time =" + commitInstantTime2);
spark.sql("select * from hoodie_ro").show(200, false);
long numRecordsAtInstant2 =
spark.sql("select * from hoodie_ro where _hoodie_commit_time = " + commitInstantTime2).count();
ValidationUtils.checkArgument(numRecordsAtInstant2 == expRecords,
"Expecting " + expRecords + " records, Got " + numRecordsAtInstant2);
}
long numRecords = spark.sql("select * from hoodie_ro").count();
ValidationUtils.checkArgument(numRecords == expRecords,
"Expecting " + expRecords + " records, Got " + numRecords);
if (tableType.equals(HoodieTableType.COPY_ON_WRITE.name())) {
/**
* Consume incrementally, only changes in commit 2 above. Currently only supported for COPY_ON_WRITE TABLE
*/
Dataset<Row> hoodieIncViewDF = spark.read().format("hudi")
.option(DataSourceReadOptions.QUERY_TYPE_OPT_KEY(), DataSourceReadOptions.QUERY_TYPE_INCREMENTAL_OPT_VAL())
// Only changes in write 2 above
.option(DataSourceReadOptions.BEGIN_INSTANTTIME_OPT_KEY(), commitInstantTime1)
// For incremental view, pass in the root/base path of dataset
.load(tablePath);
LOG.info("You will only see records from : " + commitInstantTime2);
hoodieIncViewDF.groupBy(hoodieIncViewDF.col("_hoodie_commit_time")).count().show();
}
return numExpCommits;
}
/**
* Hoodie spark streaming job.
*
* @param streamingInput
* @throws Exception
*/
public void stream(Dataset<Row> streamingInput, String operationType, String checkpointLocation) throws Exception {
DataStreamWriter<Row> writer = streamingInput.writeStream().format("org.apache.hudi")
.option("hoodie.insert.shuffle.parallelism", "2").option("hoodie.upsert.shuffle.parallelism", "2")
.option(DataSourceWriteOptions.OPERATION_OPT_KEY(), operationType)
.option(DataSourceWriteOptions.TABLE_TYPE_OPT_KEY(), tableType)
.option(DataSourceWriteOptions.RECORDKEY_FIELD_OPT_KEY(), "_row_key")
.option(DataSourceWriteOptions.PARTITIONPATH_FIELD_OPT_KEY(), "partition")
.option(DataSourceWriteOptions.PRECOMBINE_FIELD_OPT_KEY(), "timestamp")
.option(HoodieCompactionConfig.INLINE_COMPACT_NUM_DELTA_COMMITS_PROP, "1")
.option(DataSourceWriteOptions.ASYNC_COMPACT_ENABLE_OPT_KEY(), "true")
.option(HoodieWriteConfig.TABLE_NAME, tableName).option("checkpointLocation", checkpointLocation)
.outputMode(OutputMode.Append());
updateHiveSyncConfig(writer);
StreamingQuery query = writer.trigger(new ProcessingTime(500)).start(tablePath);
query.awaitTermination(streamingDurationInMs);
}
/**
* Setup configs for syncing to hive.
*
* @param writer
* @return
*/
private DataStreamWriter<Row> updateHiveSyncConfig(DataStreamWriter<Row> writer) {
if (enableHiveSync) {
LOG.info("Enabling Hive sync to " + hiveJdbcUrl);
writer = writer.option(DataSourceWriteOptions.HIVE_TABLE_OPT_KEY(), hiveTable)
.option(DataSourceWriteOptions.HIVE_DATABASE_OPT_KEY(), hiveDB)
.option(DataSourceWriteOptions.HIVE_URL_OPT_KEY(), hiveJdbcUrl)
.option(DataSourceWriteOptions.HIVE_USER_OPT_KEY(), hiveUser)
.option(DataSourceWriteOptions.HIVE_PASS_OPT_KEY(), hivePass)
.option(DataSourceWriteOptions.HIVE_SYNC_ENABLED_OPT_KEY(), "true");
if (useMultiPartitionKeys) {
writer = writer.option(DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY(), "year,month,day").option(
DataSourceWriteOptions.HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY(),
MultiPartKeysValueExtractor.class.getCanonicalName());
} else {
writer = writer.option(DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY(), "dateStr");
}
}
return writer;
}
}