blob: 728cee95aa2ba64fc5daae13cf6ff5542a8d07e3 [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <apr_strings.h>
#include <apr_thread_mutex.h>
#include <apr_thread_cond.h>
#include <httpd.h>
#include <http_core.h>
#include <http_log.h>
#include <http_protocol.h>
#include <http_request.h>
#include <nghttp2/nghttp2.h>
#include "h2.h"
#include "h2_headers.h"
#include "h2_util.h"
/* h2_log2(n) iff n is a power of 2 */
unsigned char h2_log2(int n)
{
int lz = 0;
if (!n) {
return 0;
}
if (!(n & 0xffff0000u)) {
lz += 16;
n = (n << 16);
}
if (!(n & 0xff000000u)) {
lz += 8;
n = (n << 8);
}
if (!(n & 0xf0000000u)) {
lz += 4;
n = (n << 4);
}
if (!(n & 0xc0000000u)) {
lz += 2;
n = (n << 2);
}
if (!(n & 0x80000000u)) {
lz += 1;
}
return 31 - lz;
}
size_t h2_util_hex_dump(char *buffer, size_t maxlen,
const char *data, size_t datalen)
{
size_t offset = 0;
size_t maxoffset = (maxlen-4);
size_t i;
for (i = 0; i < datalen && offset < maxoffset; ++i) {
const char *sep = (i && i % 16 == 0)? "\n" : " ";
int n = apr_snprintf(buffer+offset, maxoffset-offset,
"%2x%s", ((unsigned int)data[i]&0xff), sep);
offset += n;
}
strcpy(buffer+offset, (i<datalen)? "..." : "");
return strlen(buffer);
}
void h2_util_camel_case_header(char *s, size_t len)
{
size_t start = 1;
size_t i;
for (i = 0; i < len; ++i) {
if (start) {
if (s[i] >= 'a' && s[i] <= 'z') {
s[i] -= 'a' - 'A';
}
start = 0;
}
else if (s[i] == '-') {
start = 1;
}
}
}
/* base64 url encoding */
#define N6 (unsigned int)-1
static const unsigned int BASE64URL_UINT6[] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, /* 0 */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, /* 1 */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, 62, N6, N6, /* 2 */
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, N6, N6, N6, N6, N6, N6, /* 3 */
N6, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 4 */
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, N6, N6, N6, N6, 63, /* 5 */
N6, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, /* 6 */
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, N6, N6, N6, N6, N6, /* 7 */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, /* 8 */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, /* 9 */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, /* a */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, /* b */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, /* c */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, /* d */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, /* e */
N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6, N6 /* f */
};
static const unsigned char BASE64URL_CHARS[] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0 - 9 */
'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10 - 19 */
'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20 - 29 */
'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30 - 39 */
'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40 - 49 */
'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50 - 59 */
'8', '9', '-', '_', ' ', ' ', ' ', ' ', ' ', ' ', /* 60 - 69 */
};
#define BASE64URL_CHAR(x) BASE64URL_CHARS[ (unsigned int)(x) & 0x3fu ]
apr_size_t h2_util_base64url_decode(const char **decoded, const char *encoded,
apr_pool_t *pool)
{
const unsigned char *e = (const unsigned char *)encoded;
const unsigned char *p = e;
unsigned char *d;
unsigned int n;
long len, mlen, remain, i;
while (*p && BASE64URL_UINT6[ *p ] != N6) {
++p;
}
len = (int)(p - e);
mlen = (len/4)*4;
*decoded = apr_pcalloc(pool, (apr_size_t)len + 1);
i = 0;
d = (unsigned char*)*decoded;
for (; i < mlen; i += 4) {
n = ((BASE64URL_UINT6[ e[i+0] ] << 18) +
(BASE64URL_UINT6[ e[i+1] ] << 12) +
(BASE64URL_UINT6[ e[i+2] ] << 6) +
(BASE64URL_UINT6[ e[i+3] ]));
*d++ = (unsigned char)(n >> 16);
*d++ = (unsigned char)(n >> 8 & 0xffu);
*d++ = (unsigned char)(n & 0xffu);
}
remain = len - mlen;
switch (remain) {
case 2:
n = ((BASE64URL_UINT6[ e[mlen+0] ] << 18) +
(BASE64URL_UINT6[ e[mlen+1] ] << 12));
*d++ = (unsigned char)(n >> 16);
remain = 1;
break;
case 3:
n = ((BASE64URL_UINT6[ e[mlen+0] ] << 18) +
(BASE64URL_UINT6[ e[mlen+1] ] << 12) +
(BASE64URL_UINT6[ e[mlen+2] ] << 6));
*d++ = (unsigned char)(n >> 16);
*d++ = (unsigned char)(n >> 8 & 0xffu);
remain = 2;
break;
default: /* do nothing */
break;
}
return (apr_size_t)(mlen/4*3 + remain);
}
const char *h2_util_base64url_encode(const char *data,
apr_size_t dlen, apr_pool_t *pool)
{
int i, len = (int)dlen;
apr_size_t slen = ((dlen+2)/3)*4 + 1; /* 0 terminated */
const unsigned char *udata = (const unsigned char*)data;
unsigned char *enc, *p = apr_pcalloc(pool, slen);
enc = p;
for (i = 0; i < len-2; i+= 3) {
*p++ = BASE64URL_CHAR( (udata[i] >> 2) );
*p++ = BASE64URL_CHAR( (udata[i] << 4) + (udata[i+1] >> 4) );
*p++ = BASE64URL_CHAR( (udata[i+1] << 2) + (udata[i+2] >> 6) );
*p++ = BASE64URL_CHAR( (udata[i+2]) );
}
if (i < len) {
*p++ = BASE64URL_CHAR( (udata[i] >> 2) );
if (i == (len - 1)) {
*p++ = BASE64URL_CHARS[ ((unsigned int)udata[i] << 4) & 0x3fu ];
}
else {
*p++ = BASE64URL_CHAR( (udata[i] << 4) + (udata[i+1] >> 4) );
*p++ = BASE64URL_CHAR( (udata[i+1] << 2) );
}
}
*p++ = '\0';
return (char *)enc;
}
/*******************************************************************************
* ihash - hash for structs with int identifier
******************************************************************************/
struct h2_ihash_t {
apr_hash_t *hash;
size_t ioff;
};
static unsigned int ihash(const char *key, apr_ssize_t *klen)
{
return (unsigned int)(*((int*)key));
}
h2_ihash_t *h2_ihash_create(apr_pool_t *pool, size_t offset_of_int)
{
h2_ihash_t *ih = apr_pcalloc(pool, sizeof(h2_ihash_t));
ih->hash = apr_hash_make_custom(pool, ihash);
ih->ioff = offset_of_int;
return ih;
}
unsigned int h2_ihash_count(h2_ihash_t *ih)
{
return apr_hash_count(ih->hash);
}
int h2_ihash_empty(h2_ihash_t *ih)
{
return apr_hash_count(ih->hash) == 0;
}
void *h2_ihash_get(h2_ihash_t *ih, int id)
{
return apr_hash_get(ih->hash, &id, sizeof(id));
}
typedef struct {
h2_ihash_iter_t *iter;
void *ctx;
} iter_ctx;
static int ihash_iter(void *ctx, const void *key, apr_ssize_t klen,
const void *val)
{
iter_ctx *ictx = ctx;
return ictx->iter(ictx->ctx, (void*)val); /* why is this passed const?*/
}
int h2_ihash_iter(h2_ihash_t *ih, h2_ihash_iter_t *fn, void *ctx)
{
iter_ctx ictx;
ictx.iter = fn;
ictx.ctx = ctx;
return apr_hash_do(ihash_iter, &ictx, ih->hash);
}
void h2_ihash_add(h2_ihash_t *ih, void *val)
{
apr_hash_set(ih->hash, ((char *)val + ih->ioff), sizeof(int), val);
}
void h2_ihash_remove(h2_ihash_t *ih, int id)
{
apr_hash_set(ih->hash, &id, sizeof(id), NULL);
}
void h2_ihash_remove_val(h2_ihash_t *ih, void *val)
{
int id = *((int*)((char *)val + ih->ioff));
apr_hash_set(ih->hash, &id, sizeof(id), NULL);
}
void h2_ihash_clear(h2_ihash_t *ih)
{
apr_hash_clear(ih->hash);
}
typedef struct {
h2_ihash_t *ih;
void **buffer;
size_t max;
size_t len;
} collect_ctx;
static int collect_iter(void *x, void *val)
{
collect_ctx *ctx = x;
if (ctx->len < ctx->max) {
ctx->buffer[ctx->len++] = val;
return 1;
}
return 0;
}
size_t h2_ihash_shift(h2_ihash_t *ih, void **buffer, size_t max)
{
collect_ctx ctx;
size_t i;
ctx.ih = ih;
ctx.buffer = buffer;
ctx.max = max;
ctx.len = 0;
h2_ihash_iter(ih, collect_iter, &ctx);
for (i = 0; i < ctx.len; ++i) {
h2_ihash_remove_val(ih, buffer[i]);
}
return ctx.len;
}
/*******************************************************************************
* iqueue - sorted list of int
******************************************************************************/
static void iq_grow(h2_iqueue *q, int nlen);
static void iq_swap(h2_iqueue *q, int i, int j);
static int iq_bubble_up(h2_iqueue *q, int i, int top,
h2_iq_cmp *cmp, void *ctx);
static int iq_bubble_down(h2_iqueue *q, int i, int bottom,
h2_iq_cmp *cmp, void *ctx);
h2_iqueue *h2_iq_create(apr_pool_t *pool, int capacity)
{
h2_iqueue *q = apr_pcalloc(pool, sizeof(h2_iqueue));
q->pool = pool;
iq_grow(q, capacity);
q->nelts = 0;
return q;
}
int h2_iq_empty(h2_iqueue *q)
{
return q->nelts == 0;
}
int h2_iq_count(h2_iqueue *q)
{
return q->nelts;
}
int h2_iq_add(h2_iqueue *q, int sid, h2_iq_cmp *cmp, void *ctx)
{
int i;
if (h2_iq_contains(q, sid)) {
return 0;
}
if (q->nelts >= q->nalloc) {
iq_grow(q, q->nalloc * 2);
}
i = (q->head + q->nelts) % q->nalloc;
q->elts[i] = sid;
++q->nelts;
if (cmp) {
/* bubble it to the front of the queue */
iq_bubble_up(q, i, q->head, cmp, ctx);
}
return 1;
}
int h2_iq_append(h2_iqueue *q, int sid)
{
return h2_iq_add(q, sid, NULL, NULL);
}
int h2_iq_remove(h2_iqueue *q, int sid)
{
int i;
for (i = 0; i < q->nelts; ++i) {
if (sid == q->elts[(q->head + i) % q->nalloc]) {
break;
}
}
if (i < q->nelts) {
++i;
for (; i < q->nelts; ++i) {
q->elts[(q->head+i-1)%q->nalloc] = q->elts[(q->head+i)%q->nalloc];
}
--q->nelts;
return 1;
}
return 0;
}
void h2_iq_clear(h2_iqueue *q)
{
q->nelts = 0;
}
void h2_iq_sort(h2_iqueue *q, h2_iq_cmp *cmp, void *ctx)
{
/* Assume that changes in ordering are minimal. This needs,
* best case, q->nelts - 1 comparisons to check that nothing
* changed.
*/
if (q->nelts > 0) {
int i, ni, prev, last;
/* Start at the end of the queue and create a tail of sorted
* entries. Make that tail one element longer in each iteration.
*/
last = i = (q->head + q->nelts - 1) % q->nalloc;
while (i != q->head) {
prev = (q->nalloc + i - 1) % q->nalloc;
ni = iq_bubble_up(q, i, prev, cmp, ctx);
if (ni == prev) {
/* i bubbled one up, bubble the new i down, which
* keeps all ints below i sorted. */
iq_bubble_down(q, i, last, cmp, ctx);
}
i = prev;
};
}
}
int h2_iq_shift(h2_iqueue *q)
{
int sid;
if (q->nelts <= 0) {
return 0;
}
sid = q->elts[q->head];
q->head = (q->head + 1) % q->nalloc;
q->nelts--;
return sid;
}
size_t h2_iq_mshift(h2_iqueue *q, int *pint, size_t max)
{
size_t i;
for (i = 0; i < max; ++i) {
pint[i] = h2_iq_shift(q);
if (pint[i] == 0) {
break;
}
}
return i;
}
static void iq_grow(h2_iqueue *q, int nlen)
{
if (nlen > q->nalloc) {
int *nq = apr_pcalloc(q->pool, sizeof(int) * nlen);
if (q->nelts > 0) {
int l = ((q->head + q->nelts) % q->nalloc) - q->head;
memmove(nq, q->elts + q->head, sizeof(int) * l);
if (l < q->nelts) {
/* elts wrapped, append elts in [0, remain] to nq */
int remain = q->nelts - l;
memmove(nq + l, q->elts, sizeof(int) * remain);
}
}
q->elts = nq;
q->nalloc = nlen;
q->head = 0;
}
}
static void iq_swap(h2_iqueue *q, int i, int j)
{
int x = q->elts[i];
q->elts[i] = q->elts[j];
q->elts[j] = x;
}
static int iq_bubble_up(h2_iqueue *q, int i, int top,
h2_iq_cmp *cmp, void *ctx)
{
int prev;
while (((prev = (q->nalloc + i - 1) % q->nalloc), i != top)
&& (*cmp)(q->elts[i], q->elts[prev], ctx) < 0) {
iq_swap(q, prev, i);
i = prev;
}
return i;
}
static int iq_bubble_down(h2_iqueue *q, int i, int bottom,
h2_iq_cmp *cmp, void *ctx)
{
int next;
while (((next = (q->nalloc + i + 1) % q->nalloc), i != bottom)
&& (*cmp)(q->elts[i], q->elts[next], ctx) > 0) {
iq_swap(q, next, i);
i = next;
}
return i;
}
int h2_iq_contains(h2_iqueue *q, int sid)
{
int i;
for (i = 0; i < q->nelts; ++i) {
if (sid == q->elts[(q->head + i) % q->nalloc]) {
return 1;
}
}
return 0;
}
/*******************************************************************************
* FIFO queue
******************************************************************************/
struct h2_fifo {
void **elems;
int capacity;
int set;
int in;
int out;
int count;
int aborted;
apr_thread_mutex_t *lock;
apr_thread_cond_t *not_empty;
apr_thread_cond_t *not_full;
};
static apr_status_t fifo_destroy(void *data)
{
h2_fifo *fifo = data;
apr_thread_cond_destroy(fifo->not_empty);
apr_thread_cond_destroy(fifo->not_full);
apr_thread_mutex_destroy(fifo->lock);
return APR_SUCCESS;
}
static int index_of(h2_fifo *fifo, void *elem)
{
int i;
for (i = fifo->out; i != fifo->in; i = (i + 1) % fifo->capacity) {
if (elem == fifo->elems[i]) {
return i;
}
}
return -1;
}
static apr_status_t create_int(h2_fifo **pfifo, apr_pool_t *pool,
int capacity, int as_set)
{
apr_status_t rv;
h2_fifo *fifo;
fifo = apr_pcalloc(pool, sizeof(*fifo));
if (fifo == NULL) {
return APR_ENOMEM;
}
rv = apr_thread_mutex_create(&fifo->lock,
APR_THREAD_MUTEX_UNNESTED, pool);
if (rv != APR_SUCCESS) {
return rv;
}
rv = apr_thread_cond_create(&fifo->not_empty, pool);
if (rv != APR_SUCCESS) {
return rv;
}
rv = apr_thread_cond_create(&fifo->not_full, pool);
if (rv != APR_SUCCESS) {
return rv;
}
fifo->elems = apr_pcalloc(pool, capacity * sizeof(void*));
if (fifo->elems == NULL) {
return APR_ENOMEM;
}
fifo->capacity = capacity;
fifo->set = as_set;
*pfifo = fifo;
apr_pool_cleanup_register(pool, fifo, fifo_destroy, apr_pool_cleanup_null);
return APR_SUCCESS;
}
apr_status_t h2_fifo_create(h2_fifo **pfifo, apr_pool_t *pool, int capacity)
{
return create_int(pfifo, pool, capacity, 0);
}
apr_status_t h2_fifo_set_create(h2_fifo **pfifo, apr_pool_t *pool, int capacity)
{
return create_int(pfifo, pool, capacity, 1);
}
apr_status_t h2_fifo_term(h2_fifo *fifo)
{
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(fifo->lock)) == APR_SUCCESS) {
fifo->aborted = 1;
apr_thread_cond_broadcast(fifo->not_empty);
apr_thread_cond_broadcast(fifo->not_full);
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
int h2_fifo_count(h2_fifo *fifo)
{
int n;
apr_thread_mutex_lock(fifo->lock);
n = fifo->count;
apr_thread_mutex_unlock(fifo->lock);
return n;
}
static apr_status_t check_not_empty(h2_fifo *fifo, int block)
{
while (fifo->count == 0) {
if (!block) {
return APR_EAGAIN;
}
if (fifo->aborted) {
return APR_EOF;
}
apr_thread_cond_wait(fifo->not_empty, fifo->lock);
}
return APR_SUCCESS;
}
static apr_status_t fifo_push_int(h2_fifo *fifo, void *elem, int block)
{
if (fifo->aborted) {
return APR_EOF;
}
if (fifo->set && index_of(fifo, elem) >= 0) {
/* set mode, elem already member */
return APR_EEXIST;
}
else if (fifo->count == fifo->capacity) {
if (block) {
while (fifo->count == fifo->capacity) {
if (fifo->aborted) {
return APR_EOF;
}
apr_thread_cond_wait(fifo->not_full, fifo->lock);
}
}
else {
return APR_EAGAIN;
}
}
fifo->elems[fifo->in++] = elem;
if (fifo->in >= fifo->capacity) {
fifo->in -= fifo->capacity;
}
++fifo->count;
if (fifo->count == 1) {
apr_thread_cond_signal(fifo->not_empty);
}
return APR_SUCCESS;
}
static apr_status_t fifo_push(h2_fifo *fifo, void *elem, int block)
{
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(fifo->lock)) == APR_SUCCESS) {
rv = fifo_push_int(fifo, elem, block);
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
apr_status_t h2_fifo_push(h2_fifo *fifo, void *elem)
{
return fifo_push(fifo, elem, 1);
}
apr_status_t h2_fifo_try_push(h2_fifo *fifo, void *elem)
{
return fifo_push(fifo, elem, 0);
}
static apr_status_t pull_head(h2_fifo *fifo, void **pelem, int block)
{
apr_status_t rv;
int was_full;
if ((rv = check_not_empty(fifo, block)) != APR_SUCCESS) {
*pelem = NULL;
return rv;
}
*pelem = fifo->elems[fifo->out++];
if (fifo->out >= fifo->capacity) {
fifo->out -= fifo->capacity;
}
was_full = (fifo->count == fifo->capacity);
--fifo->count;
if (was_full) {
apr_thread_cond_broadcast(fifo->not_full);
}
return APR_SUCCESS;
}
static apr_status_t fifo_pull(h2_fifo *fifo, void **pelem, int block)
{
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(fifo->lock)) == APR_SUCCESS) {
rv = pull_head(fifo, pelem, block);
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
apr_status_t h2_fifo_pull(h2_fifo *fifo, void **pelem)
{
return fifo_pull(fifo, pelem, 1);
}
apr_status_t h2_fifo_try_pull(h2_fifo *fifo, void **pelem)
{
return fifo_pull(fifo, pelem, 0);
}
static apr_status_t fifo_peek(h2_fifo *fifo, h2_fifo_peek_fn *fn, void *ctx, int block)
{
apr_status_t rv;
void *elem;
if (fifo->aborted) {
return APR_EOF;
}
if (APR_SUCCESS == (rv = apr_thread_mutex_lock(fifo->lock))) {
if (APR_SUCCESS == (rv = pull_head(fifo, &elem, block))) {
switch (fn(elem, ctx)) {
case H2_FIFO_OP_PULL:
break;
case H2_FIFO_OP_REPUSH:
rv = fifo_push_int(fifo, elem, block);
break;
}
}
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
apr_status_t h2_fifo_peek(h2_fifo *fifo, h2_fifo_peek_fn *fn, void *ctx)
{
return fifo_peek(fifo, fn, ctx, 1);
}
apr_status_t h2_fifo_try_peek(h2_fifo *fifo, h2_fifo_peek_fn *fn, void *ctx)
{
return fifo_peek(fifo, fn, ctx, 0);
}
apr_status_t h2_fifo_remove(h2_fifo *fifo, void *elem)
{
apr_status_t rv;
if (fifo->aborted) {
return APR_EOF;
}
if ((rv = apr_thread_mutex_lock(fifo->lock)) == APR_SUCCESS) {
int i, last_count = fifo->count;
for (i = fifo->out; i != fifo->in; i = (i + 1) % fifo->capacity) {
if (fifo->elems[i] == elem) {
--fifo->count;
if (fifo->count == 0) {
fifo->out = fifo->in = 0;
}
else if (i == fifo->out) {
/* first element */
++fifo->out;
if (fifo->out >= fifo->capacity) {
fifo->out -= fifo->capacity;
}
}
else if (((i + 1) % fifo->capacity) == fifo->in) {
/* last element */
--fifo->in;
if (fifo->in < 0) {
fifo->in += fifo->capacity;
}
}
else if (i > fifo->out) {
/* between out and in/capacity, move elements below up */
memmove(&fifo->elems[fifo->out+1], &fifo->elems[fifo->out],
(i - fifo->out) * sizeof(void*));
++fifo->out;
if (fifo->out >= fifo->capacity) {
fifo->out -= fifo->capacity;
}
}
else {
/* we wrapped around, move elements above down */
AP_DEBUG_ASSERT((fifo->in - i - 1) > 0);
AP_DEBUG_ASSERT((fifo->in - i - 1) < fifo->capacity);
memmove(&fifo->elems[i], &fifo->elems[i + 1],
(fifo->in - i - 1) * sizeof(void*));
--fifo->in;
if (fifo->in < 0) {
fifo->in += fifo->capacity;
}
}
}
}
if (fifo->count != last_count) {
if (last_count == fifo->capacity) {
apr_thread_cond_broadcast(fifo->not_full);
}
rv = APR_SUCCESS;
}
else {
rv = APR_EAGAIN;
}
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
/*******************************************************************************
* FIFO int queue
******************************************************************************/
struct h2_ififo {
int *elems;
int capacity;
int set;
int head;
int count;
int aborted;
apr_thread_mutex_t *lock;
apr_thread_cond_t *not_empty;
apr_thread_cond_t *not_full;
};
static int inth_index(h2_ififo *fifo, int n)
{
return (fifo->head + n) % fifo->capacity;
}
static apr_status_t ififo_destroy(void *data)
{
h2_ififo *fifo = data;
apr_thread_cond_destroy(fifo->not_empty);
apr_thread_cond_destroy(fifo->not_full);
apr_thread_mutex_destroy(fifo->lock);
return APR_SUCCESS;
}
static int iindex_of(h2_ififo *fifo, int id)
{
int i;
for (i = 0; i < fifo->count; ++i) {
if (id == fifo->elems[inth_index(fifo, i)]) {
return i;
}
}
return -1;
}
static apr_status_t icreate_int(h2_ififo **pfifo, apr_pool_t *pool,
int capacity, int as_set)
{
apr_status_t rv;
h2_ififo *fifo;
fifo = apr_pcalloc(pool, sizeof(*fifo));
if (fifo == NULL) {
return APR_ENOMEM;
}
rv = apr_thread_mutex_create(&fifo->lock,
APR_THREAD_MUTEX_UNNESTED, pool);
if (rv != APR_SUCCESS) {
return rv;
}
rv = apr_thread_cond_create(&fifo->not_empty, pool);
if (rv != APR_SUCCESS) {
return rv;
}
rv = apr_thread_cond_create(&fifo->not_full, pool);
if (rv != APR_SUCCESS) {
return rv;
}
fifo->elems = apr_pcalloc(pool, capacity * sizeof(int));
if (fifo->elems == NULL) {
return APR_ENOMEM;
}
fifo->capacity = capacity;
fifo->set = as_set;
*pfifo = fifo;
apr_pool_cleanup_register(pool, fifo, ififo_destroy, apr_pool_cleanup_null);
return APR_SUCCESS;
}
apr_status_t h2_ififo_create(h2_ififo **pfifo, apr_pool_t *pool, int capacity)
{
return icreate_int(pfifo, pool, capacity, 0);
}
apr_status_t h2_ififo_set_create(h2_ififo **pfifo, apr_pool_t *pool, int capacity)
{
return icreate_int(pfifo, pool, capacity, 1);
}
apr_status_t h2_ififo_term(h2_ififo *fifo)
{
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(fifo->lock)) == APR_SUCCESS) {
fifo->aborted = 1;
apr_thread_cond_broadcast(fifo->not_empty);
apr_thread_cond_broadcast(fifo->not_full);
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
int h2_ififo_count(h2_ififo *fifo)
{
return fifo->count;
}
static apr_status_t icheck_not_empty(h2_ififo *fifo, int block)
{
while (fifo->count == 0) {
if (!block) {
return APR_EAGAIN;
}
if (fifo->aborted) {
return APR_EOF;
}
apr_thread_cond_wait(fifo->not_empty, fifo->lock);
}
return APR_SUCCESS;
}
static apr_status_t ififo_push_int(h2_ififo *fifo, int id, int block)
{
if (fifo->aborted) {
return APR_EOF;
}
if (fifo->set && iindex_of(fifo, id) >= 0) {
/* set mode, elem already member */
return APR_EEXIST;
}
else if (fifo->count == fifo->capacity) {
if (block) {
while (fifo->count == fifo->capacity) {
if (fifo->aborted) {
return APR_EOF;
}
apr_thread_cond_wait(fifo->not_full, fifo->lock);
}
}
else {
return APR_EAGAIN;
}
}
ap_assert(fifo->count < fifo->capacity);
fifo->elems[inth_index(fifo, fifo->count)] = id;
++fifo->count;
if (fifo->count == 1) {
apr_thread_cond_broadcast(fifo->not_empty);
}
return APR_SUCCESS;
}
static apr_status_t ififo_push(h2_ififo *fifo, int id, int block)
{
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(fifo->lock)) == APR_SUCCESS) {
rv = ififo_push_int(fifo, id, block);
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
apr_status_t h2_ififo_push(h2_ififo *fifo, int id)
{
return ififo_push(fifo, id, 1);
}
apr_status_t h2_ififo_try_push(h2_ififo *fifo, int id)
{
return ififo_push(fifo, id, 0);
}
static apr_status_t ipull_head(h2_ififo *fifo, int *pi, int block)
{
apr_status_t rv;
if ((rv = icheck_not_empty(fifo, block)) != APR_SUCCESS) {
*pi = 0;
return rv;
}
*pi = fifo->elems[fifo->head];
--fifo->count;
if (fifo->count > 0) {
fifo->head = inth_index(fifo, 1);
if (fifo->count+1 == fifo->capacity) {
apr_thread_cond_broadcast(fifo->not_full);
}
}
return APR_SUCCESS;
}
static apr_status_t ififo_pull(h2_ififo *fifo, int *pi, int block)
{
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(fifo->lock)) == APR_SUCCESS) {
rv = ipull_head(fifo, pi, block);
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
apr_status_t h2_ififo_pull(h2_ififo *fifo, int *pi)
{
return ififo_pull(fifo, pi, 1);
}
apr_status_t h2_ififo_try_pull(h2_ififo *fifo, int *pi)
{
return ififo_pull(fifo, pi, 0);
}
static apr_status_t ififo_peek(h2_ififo *fifo, h2_ififo_peek_fn *fn, void *ctx, int block)
{
apr_status_t rv;
int id;
if (APR_SUCCESS == (rv = apr_thread_mutex_lock(fifo->lock))) {
if (APR_SUCCESS == (rv = ipull_head(fifo, &id, block))) {
switch (fn(id, ctx)) {
case H2_FIFO_OP_PULL:
break;
case H2_FIFO_OP_REPUSH:
rv = ififo_push_int(fifo, id, block);
break;
}
}
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
apr_status_t h2_ififo_peek(h2_ififo *fifo, h2_ififo_peek_fn *fn, void *ctx)
{
return ififo_peek(fifo, fn, ctx, 1);
}
apr_status_t h2_ififo_try_peek(h2_ififo *fifo, h2_ififo_peek_fn *fn, void *ctx)
{
return ififo_peek(fifo, fn, ctx, 0);
}
static apr_status_t ififo_remove(h2_ififo *fifo, int id)
{
int rc, i;
if (fifo->aborted) {
return APR_EOF;
}
rc = 0;
for (i = 0; i < fifo->count; ++i) {
int e = fifo->elems[inth_index(fifo, i)];
if (e == id) {
++rc;
}
else if (rc) {
fifo->elems[inth_index(fifo, i-rc)] = e;
}
}
if (!rc) {
return APR_EAGAIN;
}
fifo->count -= rc;
if (fifo->count + rc == fifo->capacity) {
apr_thread_cond_broadcast(fifo->not_full);
}
return APR_SUCCESS;
}
apr_status_t h2_ififo_remove(h2_ififo *fifo, int id)
{
apr_status_t rv;
if ((rv = apr_thread_mutex_lock(fifo->lock)) == APR_SUCCESS) {
rv = ififo_remove(fifo, id);
apr_thread_mutex_unlock(fifo->lock);
}
return rv;
}
/*******************************************************************************
* h2_util for apt_table_t
******************************************************************************/
typedef struct {
apr_size_t bytes;
apr_size_t pair_extra;
} table_bytes_ctx;
static int count_bytes(void *x, const char *key, const char *value)
{
table_bytes_ctx *ctx = x;
if (key) {
ctx->bytes += strlen(key);
}
if (value) {
ctx->bytes += strlen(value);
}
ctx->bytes += ctx->pair_extra;
return 1;
}
apr_size_t h2_util_table_bytes(apr_table_t *t, apr_size_t pair_extra)
{
table_bytes_ctx ctx;
ctx.bytes = 0;
ctx.pair_extra = pair_extra;
apr_table_do(count_bytes, &ctx, t, NULL);
return ctx.bytes;
}
/*******************************************************************************
* h2_util for bucket brigades
******************************************************************************/
static void fit_bucket_into(apr_bucket *b, apr_off_t *plen)
{
/* signed apr_off_t is at least as large as unsigned apr_size_t.
* Problems may arise when they are both the same size. Then
* the bucket length *may* be larger than a value we can hold
* in apr_off_t. Before casting b->length to apr_off_t we must
* check the limitations.
* After we resized the bucket, it is safe to cast and substract.
*/
if ((sizeof(apr_off_t) == sizeof(apr_int64_t)
&& b->length > APR_INT64_MAX)
|| (sizeof(apr_off_t) == sizeof(apr_int32_t)
&& b->length > APR_INT32_MAX)
|| *plen < (apr_off_t)b->length) {
/* bucket is longer the *plen */
apr_bucket_split(b, *plen);
}
*plen -= (apr_off_t)b->length;
}
apr_status_t h2_brigade_concat_length(apr_bucket_brigade *dest,
apr_bucket_brigade *src,
apr_off_t length)
{
apr_bucket *b;
apr_off_t remain = length;
apr_status_t status = APR_SUCCESS;
while (!APR_BRIGADE_EMPTY(src)) {
b = APR_BRIGADE_FIRST(src);
if (APR_BUCKET_IS_METADATA(b)) {
APR_BUCKET_REMOVE(b);
APR_BRIGADE_INSERT_TAIL(dest, b);
}
else {
if (remain <= 0) {
return status;
}
if (b->length == ((apr_size_t)-1)) {
const char *ign;
apr_size_t ilen;
status = apr_bucket_read(b, &ign, &ilen, APR_BLOCK_READ);
if (status != APR_SUCCESS) {
return status;
}
}
fit_bucket_into(b, &remain);
APR_BUCKET_REMOVE(b);
APR_BRIGADE_INSERT_TAIL(dest, b);
}
}
return status;
}
apr_status_t h2_brigade_copy_length(apr_bucket_brigade *dest,
apr_bucket_brigade *src,
apr_off_t length)
{
apr_bucket *b, *next;
apr_off_t remain = length;
apr_status_t status = APR_SUCCESS;
for (b = APR_BRIGADE_FIRST(src);
b != APR_BRIGADE_SENTINEL(src);
b = next) {
next = APR_BUCKET_NEXT(b);
if (APR_BUCKET_IS_METADATA(b)) {
/* fall through */
}
else {
if (remain <= 0) {
return status;
}
if (b->length == ((apr_size_t)-1)) {
const char *ign;
apr_size_t ilen;
status = apr_bucket_read(b, &ign, &ilen, APR_BLOCK_READ);
if (status != APR_SUCCESS) {
return status;
}
}
fit_bucket_into(b, &remain);
}
status = apr_bucket_copy(b, &b);
if (status != APR_SUCCESS) {
return status;
}
APR_BRIGADE_INSERT_TAIL(dest, b);
}
return status;
}
apr_size_t h2_util_bucket_print(char *buffer, apr_size_t bmax,
apr_bucket *b, const char *sep)
{
apr_size_t off = 0;
if (sep && *sep) {
off += apr_snprintf(buffer+off, bmax-off, "%s", sep);
}
if (bmax <= off) {
return off;
}
else if (APR_BUCKET_IS_METADATA(b)) {
off += apr_snprintf(buffer+off, bmax-off, "%s", b->type->name);
}
else if (bmax > off) {
off += apr_snprintf(buffer+off, bmax-off, "%s[%ld]",
b->type->name,
(long)(b->length == ((apr_size_t)-1)?
-1 : b->length));
}
return off;
}
apr_size_t h2_util_bb_print(char *buffer, apr_size_t bmax,
const char *tag, const char *sep,
apr_bucket_brigade *bb)
{
apr_size_t off = 0;
const char *sp = "";
apr_bucket *b;
if (bmax > 1) {
if (bb) {
memset(buffer, 0, bmax--);
off += apr_snprintf(buffer+off, bmax-off, "%s(", tag);
for (b = APR_BRIGADE_FIRST(bb);
(bmax > off) && (b != APR_BRIGADE_SENTINEL(bb));
b = APR_BUCKET_NEXT(b)) {
off += h2_util_bucket_print(buffer+off, bmax-off, b, sp);
sp = " ";
}
if (bmax > off) {
off += apr_snprintf(buffer+off, bmax-off, ")%s", sep);
}
}
else {
off += apr_snprintf(buffer+off, bmax-off, "%s(null)%s", tag, sep);
}
}
return off;
}
apr_status_t h2_append_brigade(apr_bucket_brigade *to,
apr_bucket_brigade *from,
apr_off_t *plen,
int *peos,
h2_bucket_gate *should_append)
{
apr_bucket *e;
apr_off_t start, remain;
apr_status_t rv;
*peos = 0;
start = remain = *plen;
while (!APR_BRIGADE_EMPTY(from)) {
e = APR_BRIGADE_FIRST(from);
if (!should_append(e)) {
goto leave;
}
else if (APR_BUCKET_IS_METADATA(e)) {
if (APR_BUCKET_IS_EOS(e)) {
*peos = 1;
apr_bucket_delete(e);
continue;
}
}
else {
if (remain <= 0) {
goto leave;
}
if (e->length == ((apr_size_t)-1)) {
const char *ign;
apr_size_t ilen;
rv = apr_bucket_read(e, &ign, &ilen, APR_BLOCK_READ);
if (rv != APR_SUCCESS) {
return rv;
}
}
fit_bucket_into(e, &remain);
}
APR_BUCKET_REMOVE(e);
APR_BRIGADE_INSERT_TAIL(to, e);
}
leave:
*plen = start - remain;
return APR_SUCCESS;
}
apr_off_t h2_brigade_mem_size(apr_bucket_brigade *bb)
{
apr_bucket *b;
apr_off_t total = 0;
for (b = APR_BRIGADE_FIRST(bb);
b != APR_BRIGADE_SENTINEL(bb);
b = APR_BUCKET_NEXT(b))
{
total += sizeof(*b);
if (b->length > 0) {
if (APR_BUCKET_IS_HEAP(b)
|| APR_BUCKET_IS_POOL(b)) {
total += b->length;
}
}
}
return total;
}
/*******************************************************************************
* h2_ngheader
******************************************************************************/
static int count_header(void *ctx, const char *key, const char *value)
{
if (!h2_util_ignore_resp_header(key)) {
(*((size_t*)ctx))++;
}
return 1;
}
static const char *inv_field_name_chr(const char *token)
{
const char *p = ap_scan_http_token(token);
if (p == token && *p == ':') {
p = ap_scan_http_token(++p);
}
return (p && *p)? p : NULL;
}
static const char *inv_field_value_chr(const char *token)
{
const char *p = ap_scan_http_field_content(token);
return (p && *p)? p : NULL;
}
static void strip_field_value_ws(nghttp2_nv *nv)
{
while(nv->valuelen && (nv->value[0] == ' ' || nv->value[0] == '\t')) {
nv->value++; nv->valuelen--;
}
while(nv->valuelen && (nv->value[nv->valuelen-1] == ' '
|| nv->value[nv->valuelen-1] == '\t')) {
nv->valuelen--;
}
}
typedef struct ngh_ctx {
apr_pool_t *p;
int unsafe;
h2_ngheader *ngh;
apr_status_t status;
} ngh_ctx;
static int add_header(ngh_ctx *ctx, const char *key, const char *value)
{
nghttp2_nv *nv = &(ctx->ngh)->nv[(ctx->ngh)->nvlen++];
const char *p;
if (!ctx->unsafe) {
if ((p = inv_field_name_chr(key))) {
ap_log_perror(APLOG_MARK, APLOG_TRACE1, APR_EINVAL, ctx->p,
"h2_request: head field '%s: %s' has invalid char %s",
key, value, p);
ctx->status = APR_EINVAL;
return 0;
}
if ((p = inv_field_value_chr(value))) {
ap_log_perror(APLOG_MARK, APLOG_TRACE1, APR_EINVAL, ctx->p,
"h2_request: head field '%s: %s' has invalid char %s",
key, value, p);
ctx->status = APR_EINVAL;
return 0;
}
}
nv->name = (uint8_t*)key;
nv->namelen = strlen(key);
nv->value = (uint8_t*)value;
nv->valuelen = strlen(value);
strip_field_value_ws(nv);
return 1;
}
static int add_table_header(void *ctx, const char *key, const char *value)
{
if (!h2_util_ignore_resp_header(key)) {
add_header(ctx, key, value);
}
return 1;
}
static apr_status_t ngheader_create(h2_ngheader **ph, apr_pool_t *p,
int unsafe, size_t key_count,
const char *keys[], const char *values[],
apr_table_t *headers)
{
ngh_ctx ctx;
size_t n, i;
ctx.p = p;
ctx.unsafe = unsafe;
n = key_count;
apr_table_do(count_header, &n, headers, NULL);
*ph = ctx.ngh = apr_pcalloc(p, sizeof(h2_ngheader));
if (!ctx.ngh) {
return APR_ENOMEM;
}
ctx.ngh->nv = apr_pcalloc(p, n * sizeof(nghttp2_nv));
if (!ctx.ngh->nv) {
return APR_ENOMEM;
}
ctx.status = APR_SUCCESS;
for (i = 0; i < key_count; ++i) {
if (!add_header(&ctx, keys[i], values[i])) {
return ctx.status;
}
}
apr_table_do(add_table_header, &ctx, headers, NULL);
return ctx.status;
}
#if AP_HAS_RESPONSE_BUCKETS
static int is_unsafe(ap_bucket_response *h)
{
const char *v = h->notes? apr_table_get(h->notes, H2_HDR_CONFORMANCE) : NULL;
return (v && !strcmp(v, H2_HDR_CONFORMANCE_UNSAFE));
}
apr_status_t h2_res_create_ngtrailer(h2_ngheader **ph, apr_pool_t *p,
ap_bucket_headers *headers)
{
return ngheader_create(ph, p, 0,
0, NULL, NULL, headers->headers);
}
apr_status_t h2_res_create_ngheader(h2_ngheader **ph, apr_pool_t *p,
ap_bucket_response *response)
{
const char *keys[] = {
":status"
};
const char *values[] = {
apr_psprintf(p, "%d", response->status)
};
return ngheader_create(ph, p, is_unsafe(response),
H2_ALEN(keys), keys, values, response->headers);
}
#else /* AP_HAS_RESPONSE_BUCKETS */
static int is_unsafe(h2_headers *h)
{
const char *v = h->notes? apr_table_get(h->notes, H2_HDR_CONFORMANCE) : NULL;
return (v && !strcmp(v, H2_HDR_CONFORMANCE_UNSAFE));
}
apr_status_t h2_res_create_ngtrailer(h2_ngheader **ph, apr_pool_t *p,
h2_headers *headers)
{
return ngheader_create(ph, p, is_unsafe(headers),
0, NULL, NULL, headers->headers);
}
apr_status_t h2_res_create_ngheader(h2_ngheader **ph, apr_pool_t *p,
h2_headers *headers)
{
const char *keys[] = {
":status"
};
const char *values[] = {
apr_psprintf(p, "%d", headers->status)
};
return ngheader_create(ph, p, is_unsafe(headers),
H2_ALEN(keys), keys, values, headers->headers);
}
#endif /* else AP_HAS_RESPONSE_BUCKETS */
apr_status_t h2_req_create_ngheader(h2_ngheader **ph, apr_pool_t *p,
const struct h2_request *req)
{
const char *keys[] = {
":scheme",
":authority",
":path",
":method",
};
const char *values[] = {
req->scheme,
req->authority,
req->path,
req->method,
};
ap_assert(req->scheme);
ap_assert(req->authority);
ap_assert(req->path);
ap_assert(req->method);
return ngheader_create(ph, p, 0, H2_ALEN(keys), keys, values, req->headers);
}
/*******************************************************************************
* header HTTP/1 <-> HTTP/2 conversions
******************************************************************************/
typedef struct {
const char *name;
size_t len;
} literal;
#define H2_DEF_LITERAL(n) { (n), (sizeof(n)-1) }
#define H2_LIT_ARGS(a) (a),H2_ALEN(a)
static literal IgnoredRequestHeaders[] = {
H2_DEF_LITERAL("upgrade"),
H2_DEF_LITERAL("connection"),
H2_DEF_LITERAL("keep-alive"),
H2_DEF_LITERAL("http2-settings"),
H2_DEF_LITERAL("proxy-connection"),
H2_DEF_LITERAL("transfer-encoding"),
};
static literal IgnoredRequestTrailers[] = { /* Ignore, see rfc7230, ch. 4.1.2 */
H2_DEF_LITERAL("te"),
H2_DEF_LITERAL("host"),
H2_DEF_LITERAL("range"),
H2_DEF_LITERAL("cookie"),
H2_DEF_LITERAL("expect"),
H2_DEF_LITERAL("pragma"),
H2_DEF_LITERAL("max-forwards"),
H2_DEF_LITERAL("cache-control"),
H2_DEF_LITERAL("authorization"),
H2_DEF_LITERAL("content-length"),
H2_DEF_LITERAL("proxy-authorization"),
};
static literal IgnoredResponseHeaders[] = {
H2_DEF_LITERAL("upgrade"),
H2_DEF_LITERAL("connection"),
H2_DEF_LITERAL("keep-alive"),
H2_DEF_LITERAL("transfer-encoding"),
};
static literal IgnoredResponseTrailers[] = {
H2_DEF_LITERAL("age"),
H2_DEF_LITERAL("date"),
H2_DEF_LITERAL("vary"),
H2_DEF_LITERAL("cookie"),
H2_DEF_LITERAL("expires"),
H2_DEF_LITERAL("warning"),
H2_DEF_LITERAL("location"),
H2_DEF_LITERAL("retry-after"),
H2_DEF_LITERAL("cache-control"),
H2_DEF_LITERAL("www-authenticate"),
H2_DEF_LITERAL("proxy-authenticate"),
};
static int contains_name(const literal *lits, size_t llen, nghttp2_nv *nv)
{
const literal *lit;
size_t i;
for (i = 0; i < llen; ++i) {
lit = &lits[i];
if (lit->len == nv->namelen
&& !apr_strnatcasecmp(lit->name, (const char *)nv->name)) {
return 1;
}
}
return 0;
}
int h2_util_ignore_resp_header(const char *name)
{
nghttp2_nv nv;
nv.name = (uint8_t*)name;
nv.namelen = strlen(name);
return contains_name(H2_LIT_ARGS(IgnoredResponseHeaders), &nv);
}
static int h2_req_ignore_header(nghttp2_nv *nv)
{
return contains_name(H2_LIT_ARGS(IgnoredRequestHeaders), nv);
}
int h2_ignore_req_trailer(const char *name, size_t len)
{
nghttp2_nv nv;
nv.name = (uint8_t*)name;
nv.namelen = strlen(name);
return (h2_req_ignore_header(&nv)
|| contains_name(H2_LIT_ARGS(IgnoredRequestTrailers), &nv));
}
int h2_ignore_resp_trailer(const char *name, size_t len)
{
nghttp2_nv nv;
nv.name = (uint8_t*)name;
nv.namelen = strlen(name);
return (contains_name(H2_LIT_ARGS(IgnoredResponseHeaders), &nv)
|| contains_name(H2_LIT_ARGS(IgnoredResponseTrailers), &nv));
}
static apr_status_t req_add_header(apr_table_t *headers, apr_pool_t *pool,
nghttp2_nv *nv, size_t max_field_len,
int *pwas_added)
{
char *hname, *hvalue;
const char *existing;
*pwas_added = 0;
strip_field_value_ws(nv);
if (h2_req_ignore_header(nv)) {
return APR_SUCCESS;
}
else if (nv->namelen == sizeof("cookie")-1
&& !apr_strnatcasecmp("cookie", (const char *)nv->name)) {
existing = apr_table_get(headers, "cookie");
if (existing) {
/* Cookie header come separately in HTTP/2, but need
* to be merged by "; " (instead of default ", ")
*/
if (max_field_len
&& strlen(existing) + nv->valuelen + nv->namelen + 4
> max_field_len) {
/* "key: oldval, nval" is too long */
return APR_EINVAL;
}
hvalue = apr_pstrndup(pool, (const char*)nv->value, nv->valuelen);
apr_table_setn(headers, "Cookie",
apr_psprintf(pool, "%s; %s", existing, hvalue));
return APR_SUCCESS;
}
}
else if (nv->namelen == sizeof("host")-1
&& !apr_strnatcasecmp("host", (const char *)nv->name)) {
if (apr_table_get(headers, "Host")) {
return APR_SUCCESS; /* ignore duplicate */
}
}
hname = apr_pstrndup(pool, (const char*)nv->name, nv->namelen);
h2_util_camel_case_header(hname, nv->namelen);
existing = apr_table_get(headers, hname);
if (max_field_len) {
if ((existing? strlen(existing)+2 : 0) + nv->valuelen + nv->namelen + 2
> max_field_len) {
/* "key: (oldval, )?nval" is too long */
return APR_EINVAL;
}
}
if (!existing) *pwas_added = 1;
hvalue = apr_pstrndup(pool, (const char*)nv->value, nv->valuelen);
apr_table_mergen(headers, hname, hvalue);
return APR_SUCCESS;
}
apr_status_t h2_req_add_header(apr_table_t *headers, apr_pool_t *pool,
const char *name, size_t nlen,
const char *value, size_t vlen,
size_t max_field_len, int *pwas_added)
{
nghttp2_nv nv;
nv.name = (uint8_t*)name;
nv.namelen = nlen;
nv.value = (uint8_t*)value;
nv.valuelen = vlen;
return req_add_header(headers, pool, &nv, max_field_len, pwas_added);
}
/*******************************************************************************
* frame logging
******************************************************************************/
int h2_util_frame_print(const nghttp2_frame *frame, char *buffer, size_t maxlen)
{
char scratch[128];
size_t s_len = sizeof(scratch)/sizeof(scratch[0]);
switch (frame->hd.type) {
case NGHTTP2_DATA: {
return apr_snprintf(buffer, maxlen,
"DATA[length=%d, flags=%d, stream=%d, padlen=%d]",
(int)frame->hd.length, frame->hd.flags,
frame->hd.stream_id, (int)frame->data.padlen);
}
case NGHTTP2_HEADERS: {
return apr_snprintf(buffer, maxlen,
"HEADERS[length=%d, hend=%d, stream=%d, eos=%d]",
(int)frame->hd.length,
!!(frame->hd.flags & NGHTTP2_FLAG_END_HEADERS),
frame->hd.stream_id,
!!(frame->hd.flags & NGHTTP2_FLAG_END_STREAM));
}
case NGHTTP2_PRIORITY: {
return apr_snprintf(buffer, maxlen,
"PRIORITY[length=%d, flags=%d, stream=%d]",
(int)frame->hd.length,
frame->hd.flags, frame->hd.stream_id);
}
case NGHTTP2_RST_STREAM: {
return apr_snprintf(buffer, maxlen,
"RST_STREAM[length=%d, flags=%d, stream=%d]",
(int)frame->hd.length,
frame->hd.flags, frame->hd.stream_id);
}
case NGHTTP2_SETTINGS: {
if (frame->hd.flags & NGHTTP2_FLAG_ACK) {
return apr_snprintf(buffer, maxlen,
"SETTINGS[ack=1, stream=%d]",
frame->hd.stream_id);
}
return apr_snprintf(buffer, maxlen,
"SETTINGS[length=%d, stream=%d]",
(int)frame->hd.length, frame->hd.stream_id);
}
case NGHTTP2_PUSH_PROMISE: {
return apr_snprintf(buffer, maxlen,
"PUSH_PROMISE[length=%d, hend=%d, stream=%d]",
(int)frame->hd.length,
!!(frame->hd.flags & NGHTTP2_FLAG_END_HEADERS),
frame->hd.stream_id);
}
case NGHTTP2_PING: {
return apr_snprintf(buffer, maxlen,
"PING[length=%d, ack=%d, stream=%d]",
(int)frame->hd.length,
frame->hd.flags&NGHTTP2_FLAG_ACK,
frame->hd.stream_id);
}
case NGHTTP2_GOAWAY: {
size_t len = (frame->goaway.opaque_data_len < s_len)?
frame->goaway.opaque_data_len : s_len-1;
if (len)
memcpy(scratch, frame->goaway.opaque_data, len);
scratch[len] = '\0';
return apr_snprintf(buffer, maxlen, "GOAWAY[error=%d, reason='%s', "
"last_stream=%d]", frame->goaway.error_code,
scratch, frame->goaway.last_stream_id);
}
case NGHTTP2_WINDOW_UPDATE: {
return apr_snprintf(buffer, maxlen,
"WINDOW_UPDATE[stream=%d, incr=%d]",
frame->hd.stream_id,
frame->window_update.window_size_increment);
}
default:
return apr_snprintf(buffer, maxlen,
"type=%d[length=%d, flags=%d, stream=%d]",
frame->hd.type, (int)frame->hd.length,
frame->hd.flags, frame->hd.stream_id);
}
}
/*******************************************************************************
* push policy
******************************************************************************/
int h2_push_policy_determine(apr_table_t *headers, apr_pool_t *p, int push_enabled)
{
h2_push_policy policy = H2_PUSH_NONE;
if (push_enabled) {
const char *val = apr_table_get(headers, "accept-push-policy");
if (val) {
if (ap_find_token(p, val, "fast-load")) {
policy = H2_PUSH_FAST_LOAD;
}
else if (ap_find_token(p, val, "head")) {
policy = H2_PUSH_HEAD;
}
else if (ap_find_token(p, val, "default")) {
policy = H2_PUSH_DEFAULT;
}
else if (ap_find_token(p, val, "none")) {
policy = H2_PUSH_NONE;
}
else {
/* nothing known found in this header, go by default */
policy = H2_PUSH_DEFAULT;
}
}
else {
policy = H2_PUSH_DEFAULT;
}
}
return policy;
}
void h2_util_drain_pipe(apr_file_t *pipe)
{
char rb[512];
apr_size_t nr = sizeof(rb);
while (apr_file_read(pipe, rb, &nr) == APR_SUCCESS) {
/* Although we write just one byte to the other end of the pipe
* during wakeup, multiple threads could call the wakeup.
* So simply drain out from the input side of the pipe all
* the data.
*/
if (nr != sizeof(rb))
break;
}
}
apr_status_t h2_util_wait_on_pipe(apr_file_t *pipe)
{
char rb[512];
apr_size_t nr = sizeof(rb);
return apr_file_read(pipe, rb, &nr);
}
#if AP_HAS_RESPONSE_BUCKETS
static int add_header_lengths(void *ctx, const char *name, const char *value)
{
apr_size_t *plen = ctx;
*plen += strlen(name) + strlen(value);
return 1;
}
apr_size_t headers_length_estimate(ap_bucket_headers *hdrs)
{
apr_size_t len = 0;
apr_table_do(add_header_lengths, &len, hdrs->headers, NULL);
return len;
}
apr_size_t response_length_estimate(ap_bucket_response *resp)
{
apr_size_t len = 3 + 1 + 8 + (resp->reason? strlen(resp->reason) : 10);
apr_table_do(add_header_lengths, &len, resp->headers, NULL);
return len;
}
#endif /* AP_HAS_RESPONSE_BUCKETS */