blob: e012265305c48d258a89f543e523a0d3d46e8edf [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define APR_WANT_STRFUNC
#include "apr_want.h"
#include "apr_lib.h"
#include "apr_hash.h"
#include "apr_strings.h"
#include "httpd.h"
#include "http_config.h"
#include "http_core.h"
#include "http_log.h"
#include "http_request.h"
#include "util_filter.h"
/* NOTE: Apache's current design doesn't allow a pool to be passed thru,
so we depend on a global to hold the correct pool
*/
#define FILTER_POOL apr_hook_global_pool
#include "ap_hooks.h" /* for apr_hook_global_pool */
/*
** This macro returns true/false if a given filter should be inserted BEFORE
** another filter. This will happen when one of: 1) there isn't another
** filter; 2) that filter has a higher filter type (class); 3) that filter
** corresponds to a different request.
*/
#define INSERT_BEFORE(f, before_this) ((before_this) == NULL \
|| (before_this)->frec->ftype > (f)->frec->ftype \
|| (before_this)->r != (f)->r)
/* Trie structure to hold the mapping from registered
* filter names to filters
*/
/* we know core's module_index is 0 */
#undef APLOG_MODULE_INDEX
#define APLOG_MODULE_INDEX AP_CORE_MODULE_INDEX
struct ap_filter_private {
/* Link to a pending_ring (keep first preferably) */
APR_RING_ENTRY(ap_filter_private) pending;
/* Backref to owning filter */
ap_filter_t *f;
/* Pending buckets */
apr_bucket_brigade *bb;
/* Dedicated pool to use for deferred writes. */
apr_pool_t *deferred_pool;
};
APR_RING_HEAD(pending_ring, ap_filter_private);
struct spare_data {
APR_RING_ENTRY(spare_data) link;
void *data;
};
APR_RING_HEAD(spare_ring, spare_data);
struct ap_filter_conn_ctx {
struct pending_ring *pending_input_filters;
struct pending_ring *pending_output_filters;
struct spare_ring *spare_containers,
*spare_brigades,
*spare_filters,
*dead_filters;
};
typedef struct filter_trie_node filter_trie_node;
typedef struct {
int c;
filter_trie_node *child;
} filter_trie_child_ptr;
/* Each trie node has an array of pointers to its children.
* The array is kept in sorted order so that add_any_filter()
* can do a binary search
*/
struct filter_trie_node {
ap_filter_rec_t *frec;
filter_trie_child_ptr *children;
int nchildren;
int size;
};
#define TRIE_INITIAL_SIZE 4
/* Link a trie node to its parent
*/
static void trie_node_link(apr_pool_t *p, filter_trie_node *parent,
filter_trie_node *child, int c)
{
int i, j;
if (parent->nchildren == parent->size) {
filter_trie_child_ptr *new;
parent->size *= 2;
new = (filter_trie_child_ptr *)apr_palloc(p, parent->size *
sizeof(filter_trie_child_ptr));
memcpy(new, parent->children, parent->nchildren *
sizeof(filter_trie_child_ptr));
parent->children = new;
}
for (i = 0; i < parent->nchildren; i++) {
if (c == parent->children[i].c) {
return;
}
else if (c < parent->children[i].c) {
break;
}
}
for (j = parent->nchildren; j > i; j--) {
parent->children[j].c = parent->children[j - 1].c;
parent->children[j].child = parent->children[j - 1].child;
}
parent->children[i].c = c;
parent->children[i].child = child;
parent->nchildren++;
}
/* Allocate a new node for a trie.
* If parent is non-NULL, link the new node under the parent node with
* key 'c' (or, if an existing child node matches, return that one)
*/
static filter_trie_node *trie_node_alloc(apr_pool_t *p,
filter_trie_node *parent, char c)
{
filter_trie_node *new_node;
if (parent) {
int i;
for (i = 0; i < parent->nchildren; i++) {
if (c == parent->children[i].c) {
return parent->children[i].child;
}
else if (c < parent->children[i].c) {
break;
}
}
new_node =
(filter_trie_node *)apr_palloc(p, sizeof(filter_trie_node));
trie_node_link(p, parent, new_node, c);
}
else { /* No parent node */
new_node = (filter_trie_node *)apr_palloc(p,
sizeof(filter_trie_node));
}
new_node->frec = NULL;
new_node->nchildren = 0;
new_node->size = TRIE_INITIAL_SIZE;
new_node->children = (filter_trie_child_ptr *)apr_palloc(p,
new_node->size * sizeof(filter_trie_child_ptr));
return new_node;
}
static filter_trie_node *registered_output_filters = NULL;
static filter_trie_node *registered_input_filters = NULL;
static apr_status_t filter_cleanup(void *ctx)
{
registered_output_filters = NULL;
registered_input_filters = NULL;
return APR_SUCCESS;
}
static ap_filter_rec_t *get_filter_handle(const char *name,
const filter_trie_node *filter_set)
{
if (filter_set) {
const char *n;
const filter_trie_node *node;
node = filter_set;
for (n = name; *n; n++) {
int start, end;
start = 0;
end = node->nchildren - 1;
while (end >= start) {
int middle = (end + start) / 2;
char ch = node->children[middle].c;
if (*n == ch) {
node = node->children[middle].child;
break;
}
else if (*n < ch) {
end = middle - 1;
}
else {
start = middle + 1;
}
}
if (end < start) {
node = NULL;
break;
}
}
if (node && node->frec) {
return node->frec;
}
}
return NULL;
}
AP_DECLARE(ap_filter_rec_t *)ap_get_output_filter_handle(const char *name)
{
return get_filter_handle(name, registered_output_filters);
}
AP_DECLARE(ap_filter_rec_t *)ap_get_input_filter_handle(const char *name)
{
return get_filter_handle(name, registered_input_filters);
}
static ap_filter_rec_t *register_filter(const char *name,
ap_filter_func filter_func,
ap_init_filter_func filter_init,
ap_filter_type ftype,
ap_filter_direction_e direction,
filter_trie_node **reg_filter_set)
{
ap_filter_rec_t *frec;
char *normalized_name;
const char *n;
filter_trie_node *node;
if (!*reg_filter_set) {
*reg_filter_set = trie_node_alloc(FILTER_POOL, NULL, 0);
}
normalized_name = apr_pstrdup(FILTER_POOL, name);
ap_str_tolower(normalized_name);
node = *reg_filter_set;
for (n = normalized_name; *n; n++) {
filter_trie_node *child = trie_node_alloc(FILTER_POOL, node, *n);
if (apr_isalpha(*n)) {
trie_node_link(FILTER_POOL, node, child, apr_toupper(*n));
}
node = child;
}
if (node->frec) {
frec = node->frec;
}
else {
frec = apr_pcalloc(FILTER_POOL, sizeof(*frec));
node->frec = frec;
frec->name = normalized_name;
}
frec->filter_func = filter_func;
frec->filter_init_func = filter_init;
frec->ftype = ftype;
frec->direction = direction;
apr_pool_cleanup_register(FILTER_POOL, NULL, filter_cleanup,
apr_pool_cleanup_null);
return frec;
}
AP_DECLARE(ap_filter_rec_t *) ap_register_input_filter(const char *name,
ap_in_filter_func filter_func,
ap_init_filter_func filter_init,
ap_filter_type ftype)
{
ap_filter_func f;
f.in_func = filter_func;
return register_filter(name, f, filter_init, ftype, AP_FILTER_INPUT,
&registered_input_filters);
}
AP_DECLARE(ap_filter_rec_t *) ap_register_output_filter(const char *name,
ap_out_filter_func filter_func,
ap_init_filter_func filter_init,
ap_filter_type ftype)
{
return ap_register_output_filter_protocol(name, filter_func,
filter_init, ftype, 0);
}
AP_DECLARE(ap_filter_rec_t *) ap_register_output_filter_protocol(
const char *name,
ap_out_filter_func filter_func,
ap_init_filter_func filter_init,
ap_filter_type ftype,
unsigned int proto_flags)
{
ap_filter_rec_t* ret ;
ap_filter_func f;
f.out_func = filter_func;
ret = register_filter(name, f, filter_init, ftype, AP_FILTER_OUTPUT,
&registered_output_filters);
ret->proto_flags = proto_flags ;
return ret ;
}
static struct ap_filter_conn_ctx *get_conn_ctx(conn_rec *c)
{
struct ap_filter_conn_ctx *x = c->filter_conn_ctx;
if (!x) {
c->filter_conn_ctx = x = apr_pcalloc(c->pool, sizeof(*x));
}
return x;
}
static APR_INLINE
void make_spare_ring(struct spare_ring **ring, apr_pool_t *p)
{
if (!*ring) {
*ring = apr_palloc(p, sizeof(**ring));
APR_RING_INIT(*ring, spare_data, link);
}
}
static void *get_spare(conn_rec *c, struct spare_ring *ring)
{
void *data = NULL;
if (ring && !APR_RING_EMPTY(ring, spare_data, link)) {
struct spare_data *sdata = APR_RING_FIRST(ring);
struct ap_filter_conn_ctx *x = c->filter_conn_ctx;
data = sdata->data;
sdata->data = NULL;
APR_RING_REMOVE(sdata, link);
make_spare_ring(&x->spare_containers, c->pool);
APR_RING_INSERT_TAIL(x->spare_containers, sdata, spare_data, link);
}
return data;
}
static void put_spare(conn_rec *c, void *data, struct spare_ring **ring)
{
struct ap_filter_conn_ctx *x = c->filter_conn_ctx;
struct spare_data *sdata;
if (!x->spare_containers || APR_RING_EMPTY(x->spare_containers,
spare_data, link)) {
sdata = apr_palloc(c->pool, sizeof(*sdata));
}
else {
sdata = APR_RING_FIRST(x->spare_containers);
APR_RING_REMOVE(sdata, link);
}
sdata->data = data;
make_spare_ring(ring, c->pool);
APR_RING_INSERT_TAIL(*ring, sdata, spare_data, link);
}
AP_DECLARE(apr_bucket_brigade *) ap_acquire_brigade(conn_rec *c)
{
struct ap_filter_conn_ctx *x = get_conn_ctx(c);
apr_bucket_brigade *bb = get_spare(c, x->spare_brigades);
return bb ? bb : apr_brigade_create(c->pool, c->bucket_alloc);
}
AP_DECLARE(void) ap_release_brigade(conn_rec *c, apr_bucket_brigade *bb)
{
struct ap_filter_conn_ctx *x = get_conn_ctx(c);
AP_DEBUG_ASSERT(bb->p == c->pool && bb->bucket_alloc == c->bucket_alloc);
apr_brigade_cleanup(bb);
put_spare(c, bb, &x->spare_brigades);
}
static apr_status_t request_filter_cleanup(void *arg)
{
ap_filter_t *f = arg;
conn_rec *c = f->c;
struct ap_filter_conn_ctx *x = c->filter_conn_ctx;
/* A request filter is cleaned up with an EOR bucket, so possibly
* while it is handling/passing the EOR, and we want each filter or
* ap_filter_output_pending() to be able to dereference f until they
* return. So request filters are recycled in dead_filters and will only
* be moved to spare_filters when recycle_dead_filters() is called, i.e.
* in ap_filter_{in,out}put_pending(). Set f->r to NULL still for any use
* after free to crash quite reliably.
*/
f->r = NULL;
put_spare(c, f, &x->dead_filters);
return APR_SUCCESS;
}
static void recycle_dead_filters(conn_rec *c)
{
struct ap_filter_conn_ctx *x = c->filter_conn_ctx;
if (!x || !x->dead_filters) {
return;
}
make_spare_ring(&x->spare_filters, c->pool);
APR_RING_CONCAT(x->spare_filters, x->dead_filters, spare_data, link);
}
static ap_filter_t *add_any_filter_handle(ap_filter_rec_t *frec, void *ctx,
request_rec *r, conn_rec *c,
ap_filter_t **r_filters,
ap_filter_t **p_filters,
ap_filter_t **c_filters)
{
ap_filter_t *f;
ap_filter_t **outf;
struct ap_filter_conn_ctx *x;
struct ap_filter_private *fp;
if (frec->ftype < AP_FTYPE_PROTOCOL) {
if (r) {
outf = r_filters;
}
else {
ap_log_cerror(APLOG_MARK, APLOG_ERR, 0, c, APLOGNO(00080)
"a content filter was added without a request: %s", frec->name);
return NULL;
}
}
else if (frec->ftype < AP_FTYPE_CONNECTION) {
if (r) {
outf = p_filters;
}
else {
ap_log_cerror(APLOG_MARK, APLOG_ERR, 0, c, APLOGNO(00081)
"a protocol filter was added without a request: %s", frec->name);
return NULL;
}
}
else {
outf = c_filters;
}
x = get_conn_ctx(c);
f = get_spare(c, x->spare_filters);
if (f) {
fp = f->priv;
}
else {
f = apr_palloc(c->pool, sizeof(*f));
fp = apr_palloc(c->pool, sizeof(*fp));
}
memset(f, 0, sizeof(*f));
memset(fp, 0, sizeof(*fp));
APR_RING_ELEM_INIT(fp, pending);
f->priv = fp;
fp->f = f;
f->frec = frec;
f->ctx = ctx;
/* f->r must always be NULL for connection filters */
if (r && frec->ftype < AP_FTYPE_CONNECTION) {
apr_pool_cleanup_register(r->pool, f, request_filter_cleanup,
apr_pool_cleanup_null);
f->r = r;
}
f->c = c;
if (INSERT_BEFORE(f, *outf)) {
f->next = *outf;
if (*outf) {
ap_filter_t *first = NULL;
if (r) {
/* If we are adding our first non-connection filter,
* Then don't try to find the right location, it is
* automatically first.
*/
if (*r_filters != *c_filters) {
first = *r_filters;
while (first && (first->next != (*outf))) {
first = first->next;
}
}
}
if (first && first != (*outf)) {
first->next = f;
}
}
*outf = f;
}
else {
ap_filter_t *fscan = *outf;
while (!INSERT_BEFORE(f, fscan->next))
fscan = fscan->next;
f->next = fscan->next;
fscan->next = f;
}
if (frec->ftype < AP_FTYPE_CONNECTION && (*r_filters == *c_filters)) {
*r_filters = *p_filters;
}
return f;
}
static ap_filter_t *add_any_filter(const char *name, void *ctx,
request_rec *r, conn_rec *c,
const filter_trie_node *reg_filter_set,
ap_filter_t **r_filters,
ap_filter_t **p_filters,
ap_filter_t **c_filters)
{
if (reg_filter_set) {
const char *n;
const filter_trie_node *node;
node = reg_filter_set;
for (n = name; *n; n++) {
int start, end;
start = 0;
end = node->nchildren - 1;
while (end >= start) {
int middle = (end + start) / 2;
char ch = node->children[middle].c;
if (*n == ch) {
node = node->children[middle].child;
break;
}
else if (*n < ch) {
end = middle - 1;
}
else {
start = middle + 1;
}
}
if (end < start) {
node = NULL;
break;
}
}
if (node && node->frec) {
return add_any_filter_handle(node->frec, ctx, r, c, r_filters,
p_filters, c_filters);
}
}
ap_log_cerror(APLOG_MARK, APLOG_ERR, 0, r ? r->connection : c, APLOGNO(00082)
"an unknown filter was not added: %s", name);
return NULL;
}
AP_DECLARE(ap_filter_t *) ap_add_input_filter(const char *name, void *ctx,
request_rec *r, conn_rec *c)
{
return add_any_filter(name, ctx, r, c, registered_input_filters,
r ? &r->input_filters : NULL,
r ? &r->proto_input_filters : NULL, &c->input_filters);
}
AP_DECLARE(ap_filter_t *) ap_add_input_filter_handle(ap_filter_rec_t *f,
void *ctx,
request_rec *r,
conn_rec *c)
{
return add_any_filter_handle(f, ctx, r, c, r ? &r->input_filters : NULL,
r ? &r->proto_input_filters : NULL,
&c->input_filters);
}
AP_DECLARE(ap_filter_t *) ap_add_output_filter(const char *name, void *ctx,
request_rec *r, conn_rec *c)
{
return add_any_filter(name, ctx, r, c, registered_output_filters,
r ? &r->output_filters : NULL,
r ? &r->proto_output_filters : NULL, &c->output_filters);
}
AP_DECLARE(ap_filter_t *) ap_add_output_filter_handle(ap_filter_rec_t *f,
void *ctx,
request_rec *r,
conn_rec *c)
{
return add_any_filter_handle(f, ctx, r, c, r ? &r->output_filters : NULL,
r ? &r->proto_output_filters : NULL,
&c->output_filters);
}
static APR_INLINE int is_pending_filter(ap_filter_t *f)
{
struct ap_filter_private *fp = f->priv;
return APR_RING_NEXT(fp, pending) != fp;
}
static apr_status_t pending_filter_cleanup(void *arg)
{
ap_filter_t *f = arg;
struct ap_filter_private *fp = f->priv;
if (is_pending_filter(f)) {
APR_RING_REMOVE(fp, pending);
APR_RING_ELEM_INIT(fp, pending);
}
if (fp->bb) {
ap_release_brigade(f->c, fp->bb);
fp->bb = NULL;
}
return APR_SUCCESS;
}
static void remove_any_filter(ap_filter_t *f, ap_filter_t **r_filt, ap_filter_t **p_filt,
ap_filter_t **c_filt)
{
ap_filter_t **curr = r_filt ? r_filt : c_filt;
ap_filter_t *fscan = *curr;
pending_filter_cleanup(f);
if (p_filt && *p_filt == f)
*p_filt = (*p_filt)->next;
if (*curr == f) {
*curr = (*curr)->next;
return;
}
while (fscan->next != f) {
if (!(fscan = fscan->next)) {
return;
}
}
fscan->next = f->next;
}
AP_DECLARE(void) ap_remove_input_filter(ap_filter_t *f)
{
remove_any_filter(f, f->r ? &f->r->input_filters : NULL,
f->r ? &f->r->proto_input_filters : NULL,
&f->c->input_filters);
}
AP_DECLARE(void) ap_remove_output_filter(ap_filter_t *f)
{
struct ap_filter_private *fp = f->priv;
if (fp->deferred_pool) {
AP_DEBUG_ASSERT(fp->bb);
apr_brigade_cleanup(fp->bb);
apr_pool_destroy(fp->deferred_pool);
fp->deferred_pool = NULL;
}
remove_any_filter(f, f->r ? &f->r->output_filters : NULL,
f->r ? &f->r->proto_output_filters : NULL,
&f->c->output_filters);
}
AP_DECLARE(apr_status_t) ap_remove_input_filter_byhandle(ap_filter_t *next,
const char *handle)
{
ap_filter_t *found = NULL;
ap_filter_rec_t *filter;
if (!handle) {
return APR_EINVAL;
}
filter = ap_get_input_filter_handle(handle);
if (!filter) {
return APR_NOTFOUND;
}
while (next) {
if (next->frec == filter) {
found = next;
break;
}
next = next->next;
}
if (found) {
ap_remove_input_filter(found);
return APR_SUCCESS;
}
return APR_NOTFOUND;
}
AP_DECLARE(apr_status_t) ap_remove_output_filter_byhandle(ap_filter_t *next,
const char *handle)
{
ap_filter_t *found = NULL;
ap_filter_rec_t *filter;
if (!handle) {
return APR_EINVAL;
}
filter = ap_get_output_filter_handle(handle);
if (!filter) {
return APR_NOTFOUND;
}
while (next) {
if (next->frec == filter) {
found = next;
break;
}
next = next->next;
}
if (found) {
ap_remove_output_filter(found);
return APR_SUCCESS;
}
return APR_NOTFOUND;
}
/*
* Read data from the next filter in the filter stack. Data should be
* modified in the bucket brigade that is passed in. The core allocates the
* bucket brigade, modules that wish to replace large chunks of data or to
* save data off to the side should probably create their own temporary
* brigade especially for that use.
*/
AP_DECLARE(apr_status_t) ap_get_brigade(ap_filter_t *next,
apr_bucket_brigade *bb,
ap_input_mode_t mode,
apr_read_type_e block,
apr_off_t readbytes)
{
if (next) {
return next->frec->filter_func.in_func(next, bb, mode, block,
readbytes);
}
return AP_NOBODY_READ;
}
/* Pass the buckets to the next filter in the filter stack. If the
* current filter is a handler, we should get NULL passed in instead of
* the current filter. At that point, we can just call the first filter in
* the stack, or r->output_filters.
*/
AP_DECLARE(apr_status_t) ap_pass_brigade(ap_filter_t *next,
apr_bucket_brigade *bb)
{
if (next) {
apr_bucket *e = APR_BRIGADE_LAST(bb);
if (e != APR_BRIGADE_SENTINEL(bb) && APR_BUCKET_IS_EOS(e) && next->r) {
/* This is only safe because HTTP_HEADER filter is always in
* the filter stack. This ensures that there is ALWAYS a
* request-based filter that we can attach this to. If the
* HTTP_FILTER is removed, and another filter is not put in its
* place, then handlers like mod_cgi, which attach their own
* EOS bucket to the brigade will be broken, because we will
* get two EOS buckets on the same request.
*/
next->r->eos_sent = 1;
/* remember the eos for internal redirects, too */
if (next->r->prev) {
request_rec *prev = next->r->prev;
while (prev) {
prev->eos_sent = 1;
prev = prev->prev;
}
}
}
return next->frec->filter_func.out_func(next, bb);
}
return AP_NOBODY_WROTE;
}
/* Pass the buckets to the next filter in the filter stack
* checking return status for filter errors.
* returns: OK if ap_pass_brigade returns APR_SUCCESS
* AP_FILTER_ERROR if filter error exists
* HTTP_INTERNAL_SERVER_ERROR for all other cases
* logged with optional errmsg
*/
AP_DECLARE(apr_status_t) ap_pass_brigade_fchk(request_rec *r,
apr_bucket_brigade *bb,
const char *fmt,
...)
{
apr_status_t rv;
rv = ap_pass_brigade(r->output_filters, bb);
if (rv != APR_SUCCESS) {
if (rv != AP_FILTER_ERROR) {
if (!fmt)
ap_log_rerror(APLOG_MARK, APLOG_DEBUG, rv, r, APLOGNO(00083)
"ap_pass_brigade returned %d", rv);
else {
va_list ap;
const char *res;
va_start(ap, fmt);
res = apr_pvsprintf(r->pool, fmt, ap);
va_end(ap);
ap_log_rerror(APLOG_MARK, APLOG_DEBUG, rv, r, APLOGNO(03158)
"%s", res);
}
return HTTP_INTERNAL_SERVER_ERROR;
}
return AP_FILTER_ERROR;
}
return OK;
}
AP_DECLARE(apr_status_t) ap_save_brigade(ap_filter_t *f,
apr_bucket_brigade **saveto,
apr_bucket_brigade **b, apr_pool_t *p)
{
apr_bucket *e;
apr_status_t rv, srv = APR_SUCCESS;
/* If have never stored any data in the filter, then we had better
* create an empty bucket brigade so that we can concat. Register
* a cleanup to zero out the pointer if the pool is cleared.
*/
if (!(*saveto)) {
*saveto = apr_brigade_create(p, f->c->bucket_alloc);
}
for (e = APR_BRIGADE_FIRST(*b);
e != APR_BRIGADE_SENTINEL(*b);
e = APR_BUCKET_NEXT(e))
{
rv = apr_bucket_setaside(e, p);
/* If the bucket type does not implement setaside, then
* (hopefully) morph it into a bucket type which does, and set
* *that* aside... */
if (rv == APR_ENOTIMPL) {
const char *s;
apr_size_t n;
rv = apr_bucket_read(e, &s, &n, APR_BLOCK_READ);
if (rv == APR_SUCCESS) {
rv = apr_bucket_setaside(e, p);
}
}
if (rv != APR_SUCCESS) {
srv = rv;
/* Return an error but still save the brigade if
* ->setaside() is really not implemented. */
if (rv != APR_ENOTIMPL) {
return rv;
}
}
}
APR_BRIGADE_CONCAT(*saveto, *b);
return srv;
}
AP_DECLARE(int) ap_filter_prepare_brigade(ap_filter_t *f)
{
conn_rec *c = f->c;
struct ap_filter_conn_ctx *x = get_conn_ctx(c);
struct ap_filter_private *fp = f->priv, *e;
struct pending_ring **ref, *pendings;
ap_filter_t *next;
if (is_pending_filter(f)) {
return DECLINED;
}
if (!fp->bb) {
fp->bb = ap_acquire_brigade(c);
if (f->r) {
/* Take care of request filters that don't remove themselves
* from the chain(s), when f->r is being destroyed.
*/
apr_pool_cleanup_register(f->r->pool, f,
pending_filter_cleanup,
apr_pool_cleanup_null);
}
else {
/* In fp->bb there may be buckets on fp->deferred_pool, so take
* care to always pre_cleanup the former before the latter.
*/
apr_pool_pre_cleanup_register(c->pool, f,
pending_filter_cleanup);
}
}
if (f->frec->direction == AP_FILTER_INPUT) {
ref = &x->pending_input_filters;
}
else {
ref = &x->pending_output_filters;
}
pendings = *ref;
/* Pending reads/writes must happen in the reverse order of the actual
* in/output filters (in/outer most first), though we still maintain the
* ring in the same "next" order as filters (walking is backward). So find
* the first f->next filter already in place and insert before if
* any, otherwise insert last.
*/
if (pendings) {
for (next = f->next; next; next = next->next) {
for (e = APR_RING_FIRST(pendings);
e != APR_RING_SENTINEL(pendings, ap_filter_private, pending);
e = APR_RING_NEXT(e, pending)) {
if (e == next->priv) {
APR_RING_INSERT_BEFORE(e, fp, pending);
return OK;
}
}
}
}
else {
pendings = *ref = apr_palloc(c->pool, sizeof(*pendings));
APR_RING_INIT(pendings, ap_filter_private, pending);
}
APR_RING_INSERT_TAIL(pendings, fp, ap_filter_private, pending);
return OK;
}
static apr_status_t save_aside_brigade(struct ap_filter_private *fp,
apr_bucket_brigade *bb)
{
if (!fp->deferred_pool) {
apr_pool_create(&fp->deferred_pool, fp->f->c->pool);
apr_pool_tag(fp->deferred_pool, "deferred_pool");
}
return ap_save_brigade(fp->f, &fp->bb, &bb, fp->deferred_pool);
}
AP_DECLARE(apr_status_t) ap_filter_setaside_brigade(ap_filter_t *f,
apr_bucket_brigade *bb)
{
apr_status_t rv = APR_SUCCESS;
struct ap_filter_private *fp = f->priv;
ap_log_cerror(APLOG_MARK, APLOG_TRACE6, 0, f->c,
"setaside %s brigade to %s brigade in '%s' %sput filter",
APR_BRIGADE_EMPTY(bb) ? "empty" : "full",
(!fp->bb || APR_BRIGADE_EMPTY(fp->bb)) ? "empty" : "full",
f->frec->name,
f->frec->direction == AP_FILTER_INPUT ? "in" : "out");
/* This API is not suitable for request filters */
if (f->frec->ftype < AP_FTYPE_CONNECTION) {
return APR_ENOTIMPL;
}
if (!APR_BRIGADE_EMPTY(bb)) {
apr_bucket_brigade *tmp_bb = NULL;
int batched_buckets = 0;
apr_bucket *e, *next;
/*
* Set aside the brigade bb to fp->bb.
*/
ap_filter_prepare_brigade(f);
for (e = APR_BRIGADE_FIRST(bb);
e != APR_BRIGADE_SENTINEL(bb);
e = next) {
next = APR_BUCKET_NEXT(e);
/* Opaque buckets (length == -1) are moved, so assumed to have
* next EOR's lifetime or at least the lifetime of the connection.
*/
if (e->length == (apr_size_t)-1) {
/* First save buckets batched below, if any. */
if (batched_buckets) {
batched_buckets = 0;
if (!tmp_bb) {
tmp_bb = ap_acquire_brigade(f->c);
}
apr_brigade_split_ex(bb, e, tmp_bb);
rv = save_aside_brigade(fp, bb);
APR_BRIGADE_CONCAT(bb, tmp_bb);
if (rv != APR_SUCCESS) {
break;
}
AP_DEBUG_ASSERT(APR_BRIGADE_FIRST(bb) == e);
}
APR_BUCKET_REMOVE(e);
APR_BRIGADE_INSERT_TAIL(fp->bb, e);
}
else {
/* Batch successive buckets to save. */
batched_buckets = 1;
}
}
if (tmp_bb) {
ap_release_brigade(f->c, tmp_bb);
}
if (batched_buckets) {
/* Save any remainder. */
rv = save_aside_brigade(fp, bb);
}
if (!APR_BRIGADE_EMPTY(bb)) {
/* Anything left in bb is what we could not save (error), clean up.
* This destroys anything pipelined so far, including EOR(s), and
* swallows all data, so from now this filter should only be passed
* connection close data like TLS close_notify.
*
* XXX: Should we cleanup all previous c->output_filters' setaside
* brigades?
*/
AP_DEBUG_ASSERT(rv != APR_SUCCESS);
f->c->keepalive = AP_CONN_CLOSE;
apr_brigade_cleanup(bb);
}
}
else if (fp->deferred_pool) {
/*
* There are no more requests in the pipeline. We can just clear the
* pool.
*/
AP_DEBUG_ASSERT(fp->bb);
apr_brigade_cleanup(fp->bb);
apr_pool_clear(fp->deferred_pool);
}
return rv;
}
AP_DECLARE(void) ap_filter_adopt_brigade(ap_filter_t *f,
apr_bucket_brigade *bb)
{
struct ap_filter_private *fp = f->priv;
ap_log_cerror(APLOG_MARK, APLOG_TRACE6, 0, f->c,
"adopt %s brigade to %s brigade in '%s' %sput filter",
APR_BRIGADE_EMPTY(bb) ? "empty" : "full",
(!fp->bb || APR_BRIGADE_EMPTY(fp->bb)) ? "empty" : "full",
f->frec->name,
f->frec->direction == AP_FILTER_INPUT ? "in" : "out");
if (!APR_BRIGADE_EMPTY(bb)) {
ap_filter_prepare_brigade(f);
APR_BRIGADE_CONCAT(fp->bb, bb);
}
}
AP_DECLARE(apr_status_t) ap_filter_reinstate_brigade(ap_filter_t *f,
apr_bucket_brigade *bb,
apr_bucket **flush_upto)
{
apr_bucket *bucket, *next;
apr_size_t bytes_in_brigade, memory_bytes_in_brigade;
int eor_buckets_in_brigade, opaque_buckets_in_brigade;
struct ap_filter_private *fp = f->priv;
core_server_config *conf;
ap_log_cerror(APLOG_MARK, APLOG_TRACE6, 0, f->c,
"reinstate %s brigade to %s brigade in '%s' %sput filter",
(!fp->bb || APR_BRIGADE_EMPTY(fp->bb) ? "empty" : "full"),
(APR_BRIGADE_EMPTY(bb) ? "empty" : "full"),
f->frec->name,
f->frec->direction == AP_FILTER_INPUT ? "in" : "out");
/* This API is not suitable for request filters */
if (f->frec->ftype < AP_FTYPE_CONNECTION) {
return APR_ENOTIMPL;
}
/* Buckets in fp->bb are leftover from previous call to setaside, so
* they happen before anything added here in bb.
*/
if (fp->bb) {
APR_BRIGADE_PREPEND(bb, fp->bb);
}
if (!flush_upto) {
/* Just prepend all. */
return APR_SUCCESS;
}
*flush_upto = NULL;
/*
* Determine if and up to which bucket the caller needs to do a blocking
* write:
*
* a) The brigade contains at least one flush bucket: do blocking writes
* of everything up to the last one.
*
* b) The brigade contains at least flush_max_threshold bytes in memory,
* that is non-file and non-opaque (length != -1) buckets: do blocking
* writes of everything up the last bucket above flush_max_threshold.
* (The point of this rule is to provide flow control, in case a
* handler is streaming out lots of data faster than the data can be
* sent to the client.)
*
* c) The brigade contains at least flush_max_pipelined EOR buckets: do
* blocking writes until after the last EOR above flush_max_pipelined.
* (The point of this rule is to prevent too many FDs being kept open
* by pipelined requests, possibly allowing a DoS).
*
* Morphing buckets (opaque and FILE) use no memory until read, so they
* don't account for point b) above. Both ap_filter_reinstate_brigade()
* and setaside_brigade() assume that opaque buckets have an appropriate
* lifetime (until next EOR for instance), so they are simply setaside or
* reinstated by moving them from/to fp->bb to/from user bb.
*/
bytes_in_brigade = 0;
memory_bytes_in_brigade = 0;
eor_buckets_in_brigade = 0;
opaque_buckets_in_brigade = 0;
conf = ap_get_core_module_config(f->c->base_server->module_config);
for (bucket = APR_BRIGADE_FIRST(bb); bucket != APR_BRIGADE_SENTINEL(bb);
bucket = next) {
next = APR_BUCKET_NEXT(bucket);
if (AP_BUCKET_IS_EOR(bucket)) {
eor_buckets_in_brigade++;
}
else if (bucket->length == (apr_size_t)-1) {
opaque_buckets_in_brigade++;
}
else if (bucket->length) {
bytes_in_brigade += bucket->length;
if (!APR_BUCKET_IS_FILE(bucket)) {
memory_bytes_in_brigade += bucket->length;
}
}
if (APR_BUCKET_IS_FLUSH(bucket)
|| (memory_bytes_in_brigade > conf->flush_max_threshold)
|| (conf->flush_max_pipelined >= 0
&& eor_buckets_in_brigade > conf->flush_max_pipelined)) {
/* this segment of the brigade MUST be sent before returning. */
if (APLOGctrace6(f->c)) {
char *reason = APR_BUCKET_IS_FLUSH(bucket) ?
"FLUSH bucket" :
(memory_bytes_in_brigade > conf->flush_max_threshold) ?
"max threshold" : "max requests in pipeline";
ap_log_cerror(APLOG_MARK, APLOG_TRACE6, 0, f->c,
"will flush because of %s", reason);
ap_log_cerror(APLOG_MARK, APLOG_TRACE8, 0, f->c,
"seen in brigade%s: bytes: %" APR_SIZE_T_FMT
", memory bytes: %" APR_SIZE_T_FMT ", eor "
"buckets: %d, opaque buckets: %d",
*flush_upto == NULL ? " so far"
: " since last flush point",
bytes_in_brigade,
memory_bytes_in_brigade,
eor_buckets_in_brigade,
opaque_buckets_in_brigade);
}
/*
* Defer the actual blocking write to avoid doing many writes.
*/
*flush_upto = next;
bytes_in_brigade = 0;
memory_bytes_in_brigade = 0;
eor_buckets_in_brigade = 0;
opaque_buckets_in_brigade = 0;
}
}
ap_log_cerror(APLOG_MARK, APLOG_TRACE8, 0, f->c,
"brigade contains%s: bytes: %" APR_SIZE_T_FMT
", non-file bytes: %" APR_SIZE_T_FMT
", eor buckets: %d, opaque buckets: %d",
*flush_upto == NULL ? "" : " since last flush point",
bytes_in_brigade, memory_bytes_in_brigade,
eor_buckets_in_brigade, opaque_buckets_in_brigade);
return APR_SUCCESS;
}
AP_DECLARE(int) ap_filter_should_yield(ap_filter_t *f)
{
/*
* Handle the AsyncFilter directive. We limit the filters that are
* eligible for asynchronous handling here.
*/
if (f->frec->ftype < f->c->async_filter) {
return 0;
}
/*
* This function decides whether a filter should yield due to buffered
* data in a downstream filter. If a downstream filter buffers we
* must back off so we don't overwhelm the server. If this function
* returns true, the filter should call ap_filter_setaside_brigade()
* to save unprocessed buckets, and then reinstate those buckets on
* the next call with ap_filter_reinstate_brigade() and continue
* where it left off.
*
* If this function is forced to return zero, we return back to
* synchronous filter behaviour.
*
* Subrequests present us with a problem - we don't know how much data
* they will produce and therefore how much buffering we'll need, and
* if a subrequest had to trigger buffering, but next subrequest wouldn't
* know when the previous one had finished sending data and buckets
* could be sent out of order.
*
* In the case of subrequests, deny the ability to yield. When the data
* reaches the filters from the main request, they will be setaside
* there in the right order and the request will be given the
* opportunity to yield.
*/
if (f->r && f->r->main) {
return 0;
}
/*
* This is either a main request or internal redirect, or it is a
* connection filter. Yield if there is any buffered data downstream
* from us.
*/
while (f) {
struct ap_filter_private *fp = f->priv;
if (fp->bb && !APR_BRIGADE_EMPTY(fp->bb)) {
return 1;
}
f = f->next;
}
return 0;
}
AP_DECLARE_NONSTD(int) ap_filter_output_pending(conn_rec *c)
{
struct ap_filter_conn_ctx *x = c->filter_conn_ctx;
struct ap_filter_private *fp, *prev;
apr_bucket_brigade *bb;
int rc = DECLINED;
if (!x || !x->pending_output_filters) {
goto cleanup;
}
/* Flush outer most filters first for ap_filter_should_yield(f->next)
* to be relevant in the previous ones (async filters won't pass their
* buckets if their next filters yield already).
*/
bb = ap_acquire_brigade(c);
for (fp = APR_RING_LAST(x->pending_output_filters);
fp != APR_RING_SENTINEL(x->pending_output_filters,
ap_filter_private, pending);
fp = prev) {
/* If a filter removes itself from the filters stack (when run), it
* also orphans itself from the ring, so save "prev" here to avoid
* an infinite loop in this case.
*/
prev = APR_RING_PREV(fp, pending);
AP_DEBUG_ASSERT(fp->bb);
if (!APR_BRIGADE_EMPTY(fp->bb)) {
ap_filter_t *f = fp->f;
apr_status_t rv;
rv = ap_pass_brigade(f, bb);
apr_brigade_cleanup(bb);
if (rv != APR_SUCCESS) {
ap_log_cerror(APLOG_MARK, APLOG_DEBUG, rv, c, APLOGNO(00470)
"write failure in '%s' output filter", f->frec->name);
rc = AP_FILTER_ERROR;
break;
}
if ((fp->bb && !APR_BRIGADE_EMPTY(fp->bb))
|| (f->next && ap_filter_should_yield(f->next))) {
rc = OK;
break;
}
}
}
ap_release_brigade(c, bb);
cleanup:
/* All filters have returned, time to recycle/unleak ap_filter_t-s
* before leaving (i.e. make them reusable).
*/
recycle_dead_filters(c);
return rc;
}
AP_DECLARE_NONSTD(int) ap_filter_input_pending(conn_rec *c)
{
struct ap_filter_conn_ctx *x = c->filter_conn_ctx;
struct ap_filter_private *fp;
int rc = DECLINED;
if (!x || !x->pending_input_filters) {
goto cleanup;
}
for (fp = APR_RING_LAST(x->pending_input_filters);
fp != APR_RING_SENTINEL(x->pending_input_filters,
ap_filter_private, pending);
fp = APR_RING_PREV(fp, pending)) {
apr_bucket *e;
/* if there is a leading non-opaque (length != -1) bucket
* in place, then we have data pending
*/
AP_DEBUG_ASSERT(fp->bb);
e = APR_BRIGADE_FIRST(fp->bb);
if (e != APR_BRIGADE_SENTINEL(fp->bb)
&& e->length != (apr_size_t)(-1)) {
rc = OK;
break;
}
}
cleanup:
/* All filters have returned, time to recycle/unleak ap_filter_t-s
* before leaving (i.e. make them reusable).
*/
recycle_dead_filters(c);
return rc;
}
AP_DECLARE_NONSTD(apr_status_t) ap_filter_flush(apr_bucket_brigade *bb,
void *ctx)
{
ap_filter_t *f = ctx;
apr_status_t rv;
rv = ap_pass_brigade(f, bb);
/* Before invocation of the flush callback, apr_brigade_write et
* al may place transient buckets in the brigade, which will fall
* out of scope after returning. Empty the brigade here, to avoid
* issues with leaving such buckets in the brigade if some filter
* fails and leaves a non-empty brigade. */
apr_brigade_cleanup(bb);
return rv;
}
AP_DECLARE(apr_status_t) ap_fflush(ap_filter_t *f, apr_bucket_brigade *bb)
{
apr_bucket *b;
b = apr_bucket_flush_create(f->c->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(bb, b);
return ap_pass_brigade(f, bb);
}
AP_DECLARE_NONSTD(apr_status_t) ap_fputstrs(ap_filter_t *f,
apr_bucket_brigade *bb, ...)
{
va_list args;
apr_status_t rv;
va_start(args, bb);
rv = apr_brigade_vputstrs(bb, ap_filter_flush, f, args);
va_end(args);
return rv;
}
AP_DECLARE_NONSTD(apr_status_t) ap_fprintf(ap_filter_t *f,
apr_bucket_brigade *bb,
const char *fmt,
...)
{
va_list args;
apr_status_t rv;
va_start(args, fmt);
rv = apr_brigade_vprintf(bb, ap_filter_flush, f, fmt, args);
va_end(args);
return rv;
}
AP_DECLARE(void) ap_filter_protocol(ap_filter_t *f, unsigned int flags)
{
f->frec->proto_flags = flags ;
}