blob: 3ff229de3a89ffe2d50dc2bb0a82fbb885a02414 [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
** This program is based on ZeusBench V1.0 written by Adam Twiss
** which is Copyright (c) 1996 by Zeus Technology Ltd.
** http://web.archive.org/web/20000304112933/http://www.zeustech.net/
**
** This software is provided "as is" and any express or implied warranties,
** including but not limited to, the implied warranties of merchantability and
** fitness for a particular purpose are disclaimed. In no event shall
** Zeus Technology Ltd. be liable for any direct, indirect, incidental, special,
** exemplary, or consequential damaged (including, but not limited to,
** procurement of substitute good or services; loss of use, data, or profits;
** or business interruption) however caused and on theory of liability. Whether
** in contract, strict liability or tort (including negligence or otherwise)
** arising in any way out of the use of this software, even if advised of the
** possibility of such damage.
**
*/
/*
** HISTORY:
** - Originally written by Adam Twiss <adam@zeus.co.uk>, March 1996
** with input from Mike Belshe <mbelshe@netscape.com> and
** Michael Campanella <campanella@stevms.enet.dec.com>
** - Enhanced by Dean Gaudet <dgaudet@apache.org>, November 1997
** - Cleaned up by Ralf S. Engelschall <rse@apache.org>, March 1998
** - POST and verbosity by Kurt Sussman <kls@merlot.com>, August 1998
** - HTML table output added by David N. Welton <davidw@prosa.it>, January 1999
** - Added Cookie, Arbitrary header and auth support. <dirkx@webweaving.org>, April 1999
** Version 1.3d
** - Increased version number - as some of the socket/error handling has
** fundamentally changed - and will give fundamentally different results
** in situations where a server is dropping requests. Therefore you can
** no longer compare results of AB as easily. Hence the inc of the version.
** They should be closer to the truth though. Sander & <dirkx@covalent.net>, End 2000.
** - Fixed proxy functionality, added median/mean statistics, added gnuplot
** output option, added _experimental/rudimentary_ SSL support. Added
** confidence guestimators and warnings. Sander & <dirkx@covalent.net>, End 2000
** - Fixed serious int overflow issues which would cause realistic (longer
** than a few minutes) run's to have wrong (but believable) results. Added
** trapping of connection errors which influenced measurements.
** Contributed by Sander Temme, Early 2001
** Version 1.3e
** - Changed timeout behavior during write to work whilst the sockets
** are filling up and apr_write() does writes a few - but not all.
** This will potentially change results. <dirkx@webweaving.org>, April 2001
** Version 2.0.36-dev
** Improvements to concurrent processing:
** - Enabled non-blocking connect()s.
** - Prevent blocking calls to apr_socket_recv() (thereby allowing AB to
** manage its entire set of socket descriptors).
** - Any error returned from apr_socket_recv() that is not EAGAIN or EOF
** is now treated as fatal.
** Contributed by Aaron Bannert, April 24, 2002
**
** Version 2.0.36-2
** Internalized the version string - this string is part
** of the Agent: header and the result output.
**
** Version 2.0.37-dev
** Adopted SSL code by Madhu Mathihalli <madhusudan_mathihalli@hp.com>
** [PATCH] ab with SSL support Posted Wed, 15 Aug 2001 20:55:06 GMT
** Introduces four 'if (int == value)' tests per non-ssl request.
**
** Version 2.0.40-dev
** Switched to the new abstract pollset API, allowing ab to
** take advantage of future apr_pollset_t scalability improvements.
** Contributed by Brian Pane, August 31, 2002
**
** Version 2.3
** SIGINT now triggers output_results().
** Contributed by colm, March 30, 2006
**/
/* Note: this version string should start with \d+[\d\.]* and be a valid
* string for an HTTP Agent: header when prefixed with 'ApacheBench/'.
* It should reflect the version of AB - and not that of the apache server
* it happens to accompany. And it should be updated or changed whenever
* the results are no longer fundamentally comparable to the results of
* a previous version of ab. Either due to a change in the logic of
* ab - or to due to a change in the distribution it is compiled with
* (such as an APR change in for example blocking).
*/
#define AP_AB_BASEREVISION "2.3"
/*
* BUGS:
*
* - uses strcpy/etc.
* - has various other poor buffer attacks related to the lazy parsing of
* response headers from the server
* - doesn't implement much of HTTP/1.x, only accepts certain forms of
* responses
* - (performance problem) heavy use of strstr shows up top in profile
* only an issue for loopback usage
*/
/* -------------------------------------------------------------------- */
#if 'A' != 0x41
/* Hmmm... This source code isn't being compiled in ASCII.
* In order for data that flows over the network to make
* sense, we need to translate to/from ASCII.
*/
#define NOT_ASCII
#endif
/* affects include files on Solaris */
#define BSD_COMP
#include "apr.h"
#include "apr_signal.h"
#include "apr_strings.h"
#include "apr_network_io.h"
#include "apr_file_io.h"
#include "apr_ring.h"
#include "apr_time.h"
#include "apr_getopt.h"
#include "apr_general.h"
#include "apr_lib.h"
#include "apr_portable.h"
#include "ap_release.h"
#include "apr_poll.h"
#include "apr_atomic.h"
#if APR_HAS_THREADS
#include "apr_thread_proc.h"
#include "apr_thread_mutex.h"
#include "apr_thread_cond.h"
#if APR_HAVE_PTHREAD_H
#include <pthread.h>
#endif
#endif
#define APR_WANT_STRFUNC
#include "apr_want.h"
#include "apr_base64.h"
#ifdef NOT_ASCII
#include "apr_xlate.h"
#endif
#if APR_HAVE_STDIO_H
#include <stdio.h>
#endif
#if APR_HAVE_STDLIB_H
#include <stdlib.h>
#endif
#if APR_HAVE_UNISTD_H
#include <unistd.h> /* for getpid() */
#endif
#if !defined(WIN32) && !defined(NETWARE)
#include "ap_config_auto.h"
#endif
#include <math.h>
#if APR_HAVE_CTYPE_H
#include <ctype.h>
#endif
#if APR_HAVE_LIMITS_H
#include <limits.h>
#endif
#include <assert.h>
#if defined(HAVE_OPENSSL)
#include <openssl/evp.h>
#include <openssl/crypto.h>
#include <openssl/x509.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/ssl.h>
#include <openssl/rand.h>
#include <openssl/opensslv.h>
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
#include <openssl/core_names.h>
#endif
#define USE_SSL
#define SK_NUM(x) sk_X509_num(x)
#define SK_VALUE(x,y) sk_X509_value(x,y)
typedef STACK_OF(X509) X509_STACK_TYPE;
#if defined(_MSC_VER) && !defined(LIBRESSL_VERSION_NUMBER)
/* The following logic ensures we correctly glue FILE* within one CRT used
* by the OpenSSL library build to another CRT used by the ab.exe build.
* This became especially problematic with Visual Studio 2015.
*/
#include <openssl/applink.c>
#endif
#if (OPENSSL_VERSION_NUMBER >= 0x00909000)
#define AB_SSL_METHOD_CONST const
#else
#define AB_SSL_METHOD_CONST
#endif
#if (OPENSSL_VERSION_NUMBER >= 0x0090707f)
#define AB_SSL_CIPHER_CONST const
#else
#define AB_SSL_CIPHER_CONST
#endif
#ifdef SSL_OP_NO_TLSv1_2
#define HAVE_TLSV1_X
#endif
#if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_set_tlsext_host_name)
#define HAVE_TLSEXT
#endif
#if defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x2060000f
#define SSL_CTRL_SET_MIN_PROTO_VERSION 123
#define SSL_CTRL_SET_MAX_PROTO_VERSION 124
#define SSL_CTX_set_min_proto_version(ctx, version) \
SSL_CTX_ctrl(ctx, SSL_CTRL_SET_MIN_PROTO_VERSION, version, NULL)
#define SSL_CTX_set_max_proto_version(ctx, version) \
SSL_CTX_ctrl(ctx, SSL_CTRL_SET_MAX_PROTO_VERSION, version, NULL)
#endif
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
#ifdef TLS1_3_VERSION
#define MAX_SSL_PROTO TLS1_3_VERSION
#else
#define MAX_SSL_PROTO TLS1_2_VERSION
#endif
#ifndef OPENSSL_NO_SSL3
#define MIN_SSL_PROTO SSL3_VERSION
#else
#define MIN_SSL_PROTO TLS1_VERSION
#endif
#endif /* OPENSSL_VERSION_NUMBER >= 0x10100000L */
#endif /* HAVE_OPENSSL */
/* ------------------- DEFINITIONS -------------------------- */
#if defined(APR_INT64_MAX)
#define AB_TIME_MAX APR_INT64_MAX
#elif defined(LLONG_MAX)
#define AB_TIME_MAX LLONG_MAX
#else
#define AB_TIME_MAX APR_INT64_C(0x7fffffffffffffff)
#endif
/* default number of requests on a time limited test */
#define TIMED_REQUESTS (INT_MAX > 50000 ? 50000 : INT_MAX)
#define ROUND_UP(x, y) ((((x) + (y) - 1) / (y)) * (y))
static int test_started = 0,
test_aborted = 0;
/* connection state
* don't add enums or rearrange or otherwise change values without
* visiting set_conn_state()
*/
typedef enum {
STATE_DISCONNECTED = 0,
STATE_CONNECTING, /* TCP connect initiated, but we don't
* know if it worked yet
*/
#ifdef USE_SSL
STATE_HANDSHAKE, /* in the handshake phase */
#endif
STATE_WRITE, /* in the write phase */
STATE_READ, /* in the read phase */
STATE_COUNT
} conn_state_e;
const char *conn_state_str[STATE_COUNT] = {
"DISCONNECTED",
"CONNECTING",
#ifdef USE_SSL
"HANDSHAKE",
#endif
"WRITE",
"READ"
};
#define CBUFFSIZE (8192)
/* forward declare */
struct worker;
struct connection {
APR_RING_ENTRY(connection) delay_list;
struct worker *worker;
apr_pool_t *ctx;
apr_socket_t *aprsock;
apr_pollfd_t pollfd;
int state;
apr_time_t delay;
apr_size_t read; /* amount of bytes read */
apr_size_t bread; /* amount of body read */
apr_size_t rwrite, rwrote; /* keep pointers in what we write - across
* EAGAINs */
apr_size_t length; /* Content-Length value used for keep-alive */
char cbuff[CBUFFSIZE]; /* a buffer to store server response header */
int cbx; /* offset in cbuffer */
int keepalive; /* non-zero if a keep-alive request */
int gotheader; /* non-zero if we have the entire header in
* cbuff */
apr_time_t start, /* Start of connection */
connect, /* Connected, start writing */
endwrite, /* Request written */
beginread, /* First byte of input */
end; /* Connection closed */
apr_size_t keptalive; /* subsequent keepalive requests */
#ifdef USE_SSL
SSL *ssl;
#endif
};
struct data {
apr_time_t starttime; /* start time of connection */
apr_interval_time_t waittime; /* between request and reading response */
apr_interval_time_t ctime; /* time to connect */
apr_interval_time_t time; /* time for connection */
};
struct metrics {
apr_size_t doclen; /* the length the document should be */
apr_int64_t totalread; /* total number of bytes read */
apr_int64_t totalbread; /* totoal amount of entity body read */
apr_int64_t totalposted; /* total number of bytes posted, inc. headers */
apr_int64_t done; /* number of requests we have done */
apr_int64_t doneka; /* number of keep alive connections done */
apr_int64_t good, bad; /* number of good and bad requests */
int epipe; /* number of broken pipe writes */
int err_length; /* requests failed due to response length */
int err_conn; /* requests failed due to connection drop */
int err_recv; /* requests failed due to broken read */
int err_except; /* requests failed due to exception */
int err_response; /* requests with invalid or non-200 response */
int aborted_ka; /* requests aborted during keepalive (no data) */
int concurrent; /* Number of multiple requests actually made */
#ifdef USE_SSL
char ssl_info[128];
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
char ssl_tmp_key[128];
#endif
#endif
};
APR_RING_HEAD(delayed_ring_t, connection);
struct worker {
apr_pool_t *pool;
#if APR_HAS_THREADS
apr_thread_t *thd;
#endif
apr_pollset_t *pollset;
apr_sockaddr_t *destsa;
int slot;
int requests;
int concurrency;
int polls; /* number of connections polled */
int bind_rr; /* next address to bind (round robin) */
int succeeded_once; /* response header received once */
apr_int64_t started; /* number of requests started, so no excess */
struct data *stats;
struct connection *conns;
struct delayed_ring_t delayed_ring;
struct metrics metrics;
int counters[STATE_COUNT][2];
char tmp[1024];
char buffer[CBUFFSIZE]; /* throw-away buffer to read stuff into */
};
/* global metrics (consolidated from workers') */
static struct metrics metrics;
static void consolidate_metrics(void);
#define ap_min(a,b) (((a)<(b))?(a):(b))
#define ap_max(a,b) (((a)>(b))?(a):(b))
#define ap_round_ms(a) ((apr_time_t)((a) + 500)/1000)
#define ap_double_ms(a) ((double)(a)/1000.0)
#define MAX_CONCURRENCY 200000
/* --------------------- GLOBALS ---------------------------- */
int verbosity = 0; /* no verbosity by default */
int recverrok = 0; /* ok to proceed after socket receive errors */
enum {NO_METH = 0, GET, HEAD, PUT, POST, CUSTOM_METHOD} method = NO_METH;
const char *method_str[] = {"bug", "GET", "HEAD", "PUT", "POST", ""};
int send_body = 0; /* non-zero if sending body with request */
int requests = 0; /* Number of requests to make */
int num_workers = 1; /* Number of worker threads to use */
int no_banner = 0; /* Do not show copyright banner */
int heartbeatres = 100; /* How often do we say we're alive */
int concurrency = 1; /* Number of multiple requests to make */
int percentile = 1; /* Show percentile served */
int nolength = 0; /* Accept variable document length */
int confidence = 1; /* Show confidence estimator and warnings */
int tlimit = 0; /* time limit in secs */
int rlimited = 0; /* whether there is a requests limit */
int keepalive = 0; /* try and do keepalive connections */
int windowsize = 0; /* we use the OS default window size */
char servername[1024]; /* name that server reports */
char *hostname; /* host name from URL */
const char *host_field; /* value of "Host:" header field */
const char *path; /* path name */
char *postdata; /* *buffer containing data from postfile */
apr_size_t postlen = 0; /* length of data to be POSTed */
char *content_type = NULL; /* content type to put in POST header */
const char *cookie, /* optional cookie line */
*auth, /* optional (basic/uuencoded) auhentication */
*hdrs; /* optional arbitrary headers */
apr_port_t port; /* port number */
char *proxyhost = NULL; /* proxy host name */
int proxyport = 0; /* proxy port */
const char *connecthost;
int bind_count = 0;
const char **bind_hosts;
apr_sockaddr_t **bind_addrs;
apr_port_t connectport;
char *src_address;
const char *gnuplot; /* GNUplot file */
const char *csvperc; /* CSV Percentile file */
const char *fullurl;
const char *colonhost;
int isproxy = 0;
apr_interval_time_t hbperiod = 0; /* heartbeat period (when time limited) */
apr_interval_time_t aprtimeout = apr_time_from_sec(30); /* timeout value */
apr_interval_time_t ramp = apr_time_from_msec(0); /* ramp delay */
int pollset_wakeable = 0;
int watchdog = 0;
#define WATCHDOG_TIMEOUT apr_time_from_sec(5)
/* overrides for ab-generated common headers */
const char *opt_host; /* which optional "Host:" header specified, if any */
int opt_useragent = 0; /* was an optional "User-Agent:" header specified? */
int opt_accept = 0; /* was an optional "Accept:" header specified? */
/*
* XXX - this is now a per read/write transact type of value
*/
int use_html = 0; /* use html in the report */
const char *tablestring;
const char *trstring;
const char *tdstring;
#ifdef USE_SSL
int is_ssl;
SSL_CTX *ssl_ctx;
char *ssl_cipher = NULL;
char *ssl_cert = NULL;
BIO *bio_out,*bio_err;
#ifdef HAVE_TLSEXT
int tls_use_sni = 1; /* used by default, -I disables it */
const char *tls_sni = NULL; /* 'opt_host' if any, 'hostname' otherwise */
#endif
#endif
apr_time_t start, logtime;
volatile apr_time_t lasttime, stoptime;
/* global request (and its length) */
char _request[8192];
char *request = _request;
apr_size_t reqlen;
/* interesting percentiles */
int percs[] = {50, 66, 75, 80, 90, 95, 98, 99, 100};
struct worker *workers; /* worker threads */
struct connection *conns; /* connection array */
struct data *stats; /* data for each request */
apr_pool_t *cntxt;
apr_sockaddr_t *destsa;
#ifdef NOT_ASCII
apr_xlate_t *from_ascii, *to_ascii;
#endif
#if APR_HAS_THREADS
static apr_thread_mutex_t *workers_mutex;
static apr_thread_cond_t *workers_can_start;
#endif
static APR_INLINE int worker_should_stop(struct worker *worker)
{
return (stoptime <= lasttime
|| (rlimited && worker->metrics.done >= worker->requests));
}
static APR_INLINE int worker_can_connect(struct worker *worker)
{
return !(stoptime <= lasttime
|| (rlimited && worker->started >= worker->requests));
}
static void workers_may_exit(int);
static void start_connection(struct connection *c);
static void try_reconnect(struct connection *c, apr_status_t status);
static void write_request(struct connection *c);
static void read_response(struct connection *c);
static void finalize_connection(struct connection *c, int reuse);
static void close_connection(struct connection *c);
static APR_INLINE void shutdown_connection(struct connection *c)
{
finalize_connection(c, 0);
}
static APR_INLINE void abort_connection(struct connection *c)
{
c->gotheader = 0; /* invalidate */
shutdown_connection(c);
}
static void output_results(void);
static void output_html_results(void);
/* --------------------------------------------------------- */
/* simple little function to write an error string */
static void print_error(const char *s)
{
fprintf(stderr, "%s\n", s);
fflush(stderr);
}
static APR_INLINE void graceful_error(const char *s)
{
print_error(s);
workers_may_exit(0);
test_aborted = 1;
}
static APR_INLINE void fatal_error(const char *s)
{
print_error(s);
test_aborted = 1;
exit(1);
}
/* simple little function to write an APR error string */
static void print_strerror(const char *s, apr_status_t rv)
{
char buf[120];
fprintf(stderr, "%s: %s (%d)\n",
s, apr_strerror(rv, buf, sizeof buf), rv);
fflush(stderr);
}
static APR_INLINE void graceful_strerror(const char *s, apr_status_t rv)
{
print_strerror(s, rv);
workers_may_exit(0);
test_aborted = 1;
}
static APR_INLINE void fatal_strerror(const char *s, apr_status_t rv)
{
print_strerror(s, rv);
test_aborted = 1;
exit(1);
}
/*
* Similar to standard strstr() but we ignore case in this version.
* Copied from ap_strcasestr().
*/
static char *xstrcasestr(const char *s1, const char *s2)
{
char *p1, *p2;
if (*s2 == '\0') {
/* an empty s2 */
return((char *)s1);
}
while(1) {
for ( ; (*s1 != '\0') && (apr_tolower(*s1) != apr_tolower(*s2)); s1++);
if (*s1 == '\0') {
return(NULL);
}
/* found first character of s2, see if the rest matches */
p1 = (char *)s1;
p2 = (char *)s2;
for (++p1, ++p2; apr_tolower(*p1) == apr_tolower(*p2); ++p1, ++p2) {
if (*p1 == '\0') {
/* both strings ended together */
return((char *)s1);
}
}
if (*p2 == '\0') {
/* second string ended, a match */
break;
}
/* didn't find a match here, try starting at next character in s1 */
s1++;
}
return((char *)s1);
}
/* pool abort function */
static int abort_on_oom(int retcode)
{
fprintf(stderr, "Could not allocate memory\n");
exit(APR_ENOMEM);
/* not reached */
return retcode;
}
static int set_polled_events(struct connection *c, apr_int16_t new_reqevents)
{
apr_status_t rv;
/* Add POLLHUP and POLLERR to reqevents should some pollset
* implementations need/use them.
*/
if (new_reqevents != 0) {
new_reqevents |= APR_POLLERR;
if (new_reqevents & APR_POLLIN) {
new_reqevents |= APR_POLLHUP;
}
}
if (c->pollfd.reqevents != new_reqevents) {
if (c->pollfd.reqevents != 0) {
rv = apr_pollset_remove(c->worker->pollset, &c->pollfd);
if (rv != APR_SUCCESS && !APR_STATUS_IS_NOTFOUND(rv)) {
graceful_strerror("apr_pollset_remove()", rv);
return 0;
}
assert(c->worker->polls > 0);
c->worker->polls--;
}
c->pollfd.reqevents = new_reqevents;
if (new_reqevents != 0) {
rv = apr_pollset_add(c->worker->pollset, &c->pollfd);
if (rv != APR_SUCCESS) {
graceful_strerror("apr_pollset_add()", rv);
c->pollfd.reqevents = 0;
return 0;
}
c->worker->polls++;
}
}
return 1;
}
static void set_conn_state(struct connection *c, conn_state_e state,
apr_int16_t events)
{
int (*const counters)[2] = c->worker->counters;
assert(counters[c->state][(c->pollfd.reqevents & APR_POLLOUT) != 0] > 0);
counters[c->state][(c->pollfd.reqevents & APR_POLLOUT) != 0]--;
c->state = state;
if (!set_polled_events(c, events) && state != STATE_DISCONNECTED) {
close_connection(c);
}
counters[c->state][(c->pollfd.reqevents & APR_POLLOUT) != 0]++;
}
/* --------------------------------------------------------- */
/* write out request to a connection - assumes we can write
* (small) request out in one go into our new socket buffer
*
*/
#ifdef USE_SSL
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
static long ssl_print_cb(BIO *bio, int cmd, const char *argp,
size_t len, int argi, long argl, int ret,
size_t *processed)
#else
static long ssl_print_cb(BIO *bio, int cmd, const char *argp,
int argi, long argl, long ret)
#endif
{
BIO *out;
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
(void)len;
(void)processed;
#endif
out=(BIO *)BIO_get_callback_arg(bio);
if (out == NULL) return(ret);
if (cmd == (BIO_CB_READ|BIO_CB_RETURN)) {
BIO_printf(out,"read from %p [%p] (%d bytes => %ld (0x%lX))\n",
bio, argp, argi, (long)ret, (long)ret);
BIO_dump(out,(char *)argp,(int)ret);
return(ret);
}
else if (cmd == (BIO_CB_WRITE|BIO_CB_RETURN)) {
BIO_printf(out,"write to %p [%p] (%d bytes => %ld (0x%lX))\n",
bio, argp, argi, (long)ret, (long)ret);
BIO_dump(out,(char *)argp,(int)ret);
}
return ret;
}
static void ssl_state_cb(const SSL *s, int w, int r)
{
if (w & SSL_CB_ALERT) {
BIO_printf(bio_err, "SSL/TLS Alert [%s] %s:%s\n",
(w & SSL_CB_READ ? "read" : "write"),
SSL_alert_type_string_long(r),
SSL_alert_desc_string_long(r));
} else if (w & SSL_CB_LOOP) {
BIO_printf(bio_err, "SSL/TLS State [%s] %s\n",
(SSL_in_connect_init((SSL*)s) ? "connect" : "-"),
SSL_state_string_long(s));
} else if (w & (SSL_CB_HANDSHAKE_START|SSL_CB_HANDSHAKE_DONE)) {
BIO_printf(bio_err, "SSL/TLS Handshake [%s] %s\n",
(w & SSL_CB_HANDSHAKE_START ? "Start" : "Done"),
SSL_state_string_long(s));
}
}
#if OPENSSL_VERSION_NUMBER < 0x10101000
#ifndef RAND_MAX
#define RAND_MAX INT_MAX
#endif
static int ssl_rand_choosenum(int l, int h)
{
int i;
char buf[50];
apr_snprintf(buf, sizeof(buf), "%.0f",
(((double)(rand()%RAND_MAX)/RAND_MAX)*(h-l)));
i = atoi(buf)+1;
if (i < l) i = l;
if (i > h) i = h;
return i;
}
static void ssl_rand_seed(void)
{
int n, l;
apr_time_t t;
pid_t pid;
unsigned char stackdata[256];
/*
* seed in the current time (usually just 4 bytes)
*/
t = lasttime;
l = sizeof(apr_time_t);
RAND_seed((unsigned char *)&t, l);
/*
* seed in the current process id (usually just 4 bytes)
*/
pid = getpid();
l = sizeof(pid_t);
RAND_seed((unsigned char *)&pid, l);
/*
* seed in some current state of the run-time stack (128 bytes)
*/
n = ssl_rand_choosenum(0, sizeof(stackdata)-128-1);
RAND_seed(stackdata+n, 128);
}
#else
#define ssl_rand_seed() /* noop */
#endif
static int ssl_print_connection_info(BIO *bio, SSL *ssl)
{
AB_SSL_CIPHER_CONST SSL_CIPHER *c;
int alg_bits,bits;
BIO_printf(bio,"Transport Protocol :%s\n", SSL_get_version(ssl));
c = SSL_get_current_cipher(ssl);
BIO_printf(bio,"Cipher Suite Protocol :%s\n", SSL_CIPHER_get_version(c));
BIO_printf(bio,"Cipher Suite Name :%s\n",SSL_CIPHER_get_name(c));
bits = SSL_CIPHER_get_bits(c,&alg_bits);
BIO_printf(bio,"Cipher Suite Cipher Bits:%d (%d)\n",bits,alg_bits);
return(1);
}
static void ssl_print_cert_info(BIO *bio, X509 *cert)
{
X509_NAME *dn;
EVP_PKEY *pk;
char buf[1024];
BIO_printf(bio, "Certificate version: %ld\n", X509_get_version(cert)+1);
BIO_printf(bio,"Valid from: ");
ASN1_UTCTIME_print(bio, X509_get_notBefore(cert));
BIO_printf(bio,"\n");
BIO_printf(bio,"Valid to : ");
ASN1_UTCTIME_print(bio, X509_get_notAfter(cert));
BIO_printf(bio,"\n");
pk = X509_get_pubkey(cert);
BIO_printf(bio,"Public key is %d bits\n",
EVP_PKEY_bits(pk));
EVP_PKEY_free(pk);
dn = X509_get_issuer_name(cert);
X509_NAME_oneline(dn, buf, sizeof(buf));
BIO_printf(bio,"The issuer name is %s\n", buf);
dn=X509_get_subject_name(cert);
X509_NAME_oneline(dn, buf, sizeof(buf));
BIO_printf(bio,"The subject name is %s\n", buf);
/* dump the extension list too */
BIO_printf(bio, "Extension Count: %d\n", X509_get_ext_count(cert));
}
static void ssl_print_info(struct connection *c)
{
X509_STACK_TYPE *sk;
X509 *cert;
int count;
BIO_printf(bio_err, "\n");
sk = SSL_get_peer_cert_chain(c->ssl);
if ((count = SK_NUM(sk)) > 0) {
int i;
for (i=1; i<count; i++) {
cert = (X509 *)SK_VALUE(sk, i);
ssl_print_cert_info(bio_out, cert);
}
}
cert = SSL_get_peer_certificate(c->ssl);
if (cert == NULL) {
BIO_printf(bio_out, "Anon DH\n");
} else {
BIO_printf(bio_out, "Peer certificate\n");
ssl_print_cert_info(bio_out, cert);
X509_free(cert);
}
ssl_print_connection_info(bio_err,c->ssl);
SSL_SESSION_print(bio_err, SSL_get_session(c->ssl));
}
static void ssl_proceed_handshake(struct connection *c)
{
struct worker *worker = c->worker;
int again;
do {
int ret, ecode;
apr_status_t status;
again = 0; /* until further notice */
ret = SSL_do_handshake(c->ssl);
ecode = SSL_get_error(c->ssl, ret);
switch (ecode) {
case SSL_ERROR_NONE:
if (verbosity >= 2)
ssl_print_info(c);
if (!worker->metrics.ssl_info[0]) {
AB_SSL_CIPHER_CONST SSL_CIPHER *ci;
X509 *cert;
int sk_bits, pk_bits, swork;
ci = SSL_get_current_cipher(c->ssl);
sk_bits = SSL_CIPHER_get_bits(ci, &swork);
cert = SSL_get_peer_certificate(c->ssl);
if (cert)
pk_bits = EVP_PKEY_bits(X509_get_pubkey(cert));
else
pk_bits = 0; /* Anon DH */
apr_snprintf(worker->metrics.ssl_info, sizeof(worker->metrics.ssl_info),
"%s,%s,%d,%d",
SSL_get_version(c->ssl),
SSL_CIPHER_get_name(ci),
pk_bits, sk_bits);
if (cert) X509_free(cert);
}
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
if (!worker->metrics.ssl_tmp_key[0] && !worker->metrics.ssl_tmp_key[1]) {
EVP_PKEY *key;
if (SSL_get_server_tmp_key(c->ssl, &key)) {
switch (EVP_PKEY_id(key)) {
case EVP_PKEY_RSA:
apr_snprintf(worker->metrics.ssl_tmp_key, 128, "RSA %d bits",
EVP_PKEY_bits(key));
break;
case EVP_PKEY_DH:
apr_snprintf(worker->metrics.ssl_tmp_key, 128, "DH %d bits",
EVP_PKEY_bits(key));
break;
#ifndef OPENSSL_NO_EC
case EVP_PKEY_EC: {
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
size_t len;
char cname[80];
if (!EVP_PKEY_get_utf8_string_param(key, OSSL_PKEY_PARAM_GROUP_NAME,
cname, sizeof(cname), &len)) {
cname[0] = '?';
len = 1;
}
cname[len] = '\0';
#else
const char *cname = NULL;
EC_KEY *ec = EVP_PKEY_get1_EC_KEY(key);
int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
EC_KEY_free(ec);
cname = EC_curve_nid2nist(nid);
if (!cname) {
cname = OBJ_nid2sn(nid);
if (!cname)
cname = "?";
}
#endif
apr_snprintf(worker->metrics.ssl_tmp_key, 128, "ECDH %s %d bits",
cname, EVP_PKEY_bits(key));
break;
}
#endif
default:
apr_snprintf(worker->metrics.ssl_tmp_key, 128, "%s %d bits",
OBJ_nid2sn(EVP_PKEY_id(key)),
EVP_PKEY_bits(key));
break;
}
EVP_PKEY_free(key);
}
else {
/* not available, do not reenter here still */
worker->metrics.ssl_tmp_key[1] = !0;
}
}
#endif
write_request(c);
break;
case SSL_ERROR_WANT_READ:
set_conn_state(c, STATE_HANDSHAKE, APR_POLLIN);
break;
case SSL_ERROR_WANT_WRITE:
set_conn_state(c, STATE_HANDSHAKE, APR_POLLOUT);
break;
case SSL_ERROR_WANT_CONNECT:
case SSL_ERROR_SSL:
case SSL_ERROR_SYSCALL:
/* Unexpected result */
status = apr_get_netos_error();
BIO_printf(bio_err, "SSL handshake failed (%d): %s\n", ecode,
apr_psprintf(c->ctx, "%pm", &status));
ERR_print_errors(bio_err);
abort_connection(c);
break;
default:
again = 1;
break;
}
} while (again);
}
#endif /* USE_SSL */
static void write_request(struct connection * c)
{
struct worker *worker = c->worker;
do {
apr_time_t tnow;
apr_size_t l = c->rwrite;
apr_status_t e = APR_SUCCESS; /* prevent gcc warning */
tnow = lasttime = apr_time_now();
/*
* First time round ?
*/
if (c->rwrite == 0) {
/* zero connect time with keep-alive */
if (c->keptalive)
c->start = tnow;
c->connect = tnow;
c->rwrote = 0;
c->rwrite = reqlen;
if (send_body)
c->rwrite += postlen;
l = c->rwrite;
}
else if (tnow > c->connect + aprtimeout) {
printf("Send request timed out!\n");
abort_connection(c);
return;
}
#ifdef USE_SSL
if (c->ssl) {
e = SSL_write(c->ssl, request + c->rwrote, l);
if (e <= 0) {
int scode = SSL_get_error(c->ssl, e);
switch (scode) {
case SSL_ERROR_WANT_READ:
set_conn_state(c, STATE_WRITE, APR_POLLIN);
break;
case SSL_ERROR_WANT_WRITE:
set_conn_state(c, STATE_WRITE, APR_POLLOUT);
break;
case SSL_ERROR_SYSCALL:
if (c->keptalive) {
/* connection aborted during keepalive:
* let the length check determine whether it's an error
*/
shutdown_connection(c);
break;
}
default:
/* some fatal error: */
BIO_printf(bio_err, "SSL write failed (%d) - closing connection\n", scode);
ERR_print_errors(bio_err);
abort_connection(c);
break;
}
return;
}
l = e;
}
else
#endif
{
e = apr_socket_send(c->aprsock, request + c->rwrote, &l);
if (e != APR_SUCCESS && !l) {
if (APR_STATUS_IS_EAGAIN(e)) {
set_conn_state(c, STATE_WRITE, APR_POLLOUT);
return;
}
if (c->keptalive) {
/* connection aborted during keepalive:
* let the length check determine whether it's an error
*/
shutdown_connection(c);
}
else {
worker->metrics.epipe++;
printf("Send request failed!\n");
abort_connection(c);
}
return;
}
}
worker->metrics.totalposted += l;
c->rwrote += l;
c->rwrite -= l;
} while (c->rwrite);
c->endwrite = lasttime = apr_time_now();
worker->started++;
set_conn_state(c, STATE_READ, APR_POLLIN);
}
/* --------------------------------------------------------- */
/* calculate and output results */
static int compradre(struct data * a, struct data * b)
{
if ((a->ctime) < (b->ctime))
return -1;
if ((a->ctime) > (b->ctime))
return +1;
return 0;
}
static int comprando(struct data * a, struct data * b)
{
if ((a->time) < (b->time))
return -1;
if ((a->time) > (b->time))
return +1;
return 0;
}
static int compri(struct data * a, struct data * b)
{
apr_interval_time_t p = a->time - a->ctime;
apr_interval_time_t q = b->time - b->ctime;
if (p < q)
return -1;
if (p > q)
return +1;
return 0;
}
static int compwait(struct data * a, struct data * b)
{
if ((a->waittime) < (b->waittime))
return -1;
if ((a->waittime) > (b->waittime))
return 1;
return 0;
}
static void consolidate_metrics(void)
{
int i, j;
for (i = 0; i < num_workers; i++) {
struct worker *worker = &workers[i];
metrics.done += worker->metrics.done;
metrics.doneka += worker->metrics.doneka;
metrics.good += worker->metrics.good;
metrics.bad += worker->metrics.bad;
metrics.epipe += worker->metrics.epipe;
metrics.err_length += worker->metrics.err_length;
metrics.err_conn += worker->metrics.err_conn;
metrics.err_recv += worker->metrics.err_recv;
metrics.err_except += worker->metrics.err_except;
metrics.err_response += worker->metrics.err_response;
metrics.aborted_ka += worker->metrics.aborted_ka;
metrics.concurrent += worker->metrics.concurrent;
metrics.totalread += worker->metrics.totalread;
metrics.totalbread += worker->metrics.totalbread;
metrics.totalposted += worker->metrics.totalposted;
if (metrics.doclen == 0) {
metrics.doclen = worker->metrics.doclen;
}
#ifdef USE_SSL
if (is_ssl && !metrics.ssl_info[0] && worker->metrics.ssl_info[0]) {
apr_cpystrn(metrics.ssl_info, worker->metrics.ssl_info,
sizeof(metrics.ssl_info));
}
if (is_ssl && !metrics.ssl_tmp_key[0] && worker->metrics.ssl_tmp_key[0]) {
apr_cpystrn(metrics.ssl_tmp_key, worker->metrics.ssl_tmp_key,
sizeof(metrics.ssl_tmp_key));
}
#endif
if (worker->metrics.done > worker->requests) {
/* Mean of the cumulative stats accross the window */
int n = (worker->metrics.done + worker->requests - 1) / worker->requests;
int m = (worker->metrics.done % worker->requests);
for (j = 0; j < worker->requests; j++) {
struct data *s = &worker->stats[j];
if (j == m) {
n--;
}
s->waittime /= n;
s->ctime /= n;
s->time /= n;
}
}
}
}
static void output_results(void)
{
double timetaken;
timetaken = (double) (lasttime - start) / APR_USEC_PER_SEC;
printf("\n\n");
printf("Server Software: %s\n", servername);
printf("Server Hostname: %s\n", hostname);
printf("Server Port: %hu\n", port);
#ifdef USE_SSL
if (is_ssl && metrics.ssl_info[0]) {
printf("SSL/TLS Protocol: %s\n", metrics.ssl_info);
}
#if OPENSSL_VERSION_NUMBER >= 0x10002000L
if (is_ssl && metrics.ssl_tmp_key[0]) {
printf("Server Temp Key: %s\n", metrics.ssl_tmp_key);
}
#endif
#ifdef HAVE_TLSEXT
if (is_ssl && tls_sni) {
printf("TLS Server Name: %s\n", tls_sni);
}
#endif
#endif
printf("\n");
printf("Document Path: %s\n", path);
if (nolength)
printf("Document Length: Variable\n");
else
printf("Document Length: %" APR_SIZE_T_FMT " bytes\n", metrics.doclen);
printf("\n");
printf("Number of workers: %d\n", num_workers);
printf("Concurrency Level: %d\n", concurrency);
printf("Concurrency achieved: %d\n", metrics.concurrent);
printf("Rampup delay: %" APR_TIME_T_FMT " [ms]\n", apr_time_as_msec(ramp));
printf("Time taken for tests: %.3f seconds\n", timetaken);
printf("Number of requests: %d%s\n", requests, rlimited ? "" : " (window)");
printf("Complete requests: %" APR_INT64_T_FMT "\n", metrics.done);
printf("Failed requests: %" APR_INT64_T_FMT "\n", metrics.bad);
if (metrics.bad)
printf(" (Connect: %d, Receive: %d, Length: %d, Exceptions: %d)\n",
metrics.err_conn, metrics.err_recv, metrics.err_length, metrics.err_except);
if (metrics.epipe)
printf("Write errors: %d\n", metrics.epipe);
if (metrics.err_response)
printf("Non-2xx responses: %d\n", metrics.err_response);
if (keepalive) {
printf("Keep-Alive requests: %" APR_INT64_T_FMT "\n", metrics.doneka);
if (metrics.aborted_ka) {
printf("Keep-Alive aborts: %d\n", metrics.aborted_ka);
}
}
printf("Total transferred: %" APR_INT64_T_FMT " bytes\n", metrics.totalread);
if (send_body)
printf("Total body sent: %" APR_INT64_T_FMT "\n", metrics.totalposted);
printf("HTML transferred: %" APR_INT64_T_FMT " bytes\n", metrics.totalbread);
/* avoid divide by zero */
if (timetaken && metrics.done) {
printf("Requests per second: %.2f [#/sec] (mean)\n",
(double) metrics.done / timetaken);
printf("Time per request: %.3f [ms] (mean)\n",
(double) concurrency * timetaken * 1000 / metrics.done);
printf("Time per request: %.3f [ms] (mean, across all concurrent requests)\n",
(double) timetaken * 1000 / metrics.done);
printf("Transfer rate: %.2f [Kbytes/sec] received\n",
(double) metrics.totalread / 1024 / timetaken);
if (send_body) {
printf(" %.2f kb/s sent\n",
(double) metrics.totalposted / 1024 / timetaken);
printf(" %.2f kb/s total\n",
(double) (metrics.totalread + metrics.totalposted) / 1024 / timetaken);
}
}
if (metrics.done > 0) {
/* work out connection times */
apr_int64_t i, count = ap_min(metrics.done, requests);
apr_time_t totalcon = 0, total = 0, totald = 0, totalwait = 0;
apr_time_t meancon, meantot, meand, meanwait;
apr_interval_time_t mincon = AB_TIME_MAX, mintot = AB_TIME_MAX,
mind = AB_TIME_MAX, minwait = AB_TIME_MAX;
apr_interval_time_t maxcon = 0, maxtot = 0, maxd = 0, maxwait = 0;
apr_interval_time_t mediancon = 0, mediantot = 0, mediand = 0, medianwait = 0;
double sdtot = 0, sdcon = 0, sdd = 0, sdwait = 0;
for (i = 0; i < count; i++) {
struct data *s = &stats[i];
mincon = ap_min(mincon, s->ctime);
mintot = ap_min(mintot, s->time);
mind = ap_min(mind, s->time - s->ctime);
minwait = ap_min(minwait, s->waittime);
maxcon = ap_max(maxcon, s->ctime);
maxtot = ap_max(maxtot, s->time);
maxd = ap_max(maxd, s->time - s->ctime);
maxwait = ap_max(maxwait, s->waittime);
totalcon += s->ctime;
total += s->time;
totald += s->time - s->ctime;
totalwait += s->waittime;
}
meancon = totalcon / count;
meantot = total / count;
meand = totald / count;
meanwait = totalwait / count;
/* calculating the sample variance: the sum of the squared deviations, divided by n-1 */
for (i = 0; i < count; i++) {
struct data *s = &stats[i];
double a;
a = ((double)s->time - meantot);
sdtot += a * a;
a = ((double)s->ctime - meancon);
sdcon += a * a;
a = ((double)s->time - (double)s->ctime - meand);
sdd += a * a;
a = ((double)s->waittime - meanwait);
sdwait += a * a;
}
sdtot = (count > 1) ? sqrt(sdtot / (count - 1)) : 0;
sdcon = (count > 1) ? sqrt(sdcon / (count - 1)) : 0;
sdd = (count > 1) ? sqrt(sdd / (count - 1)) : 0;
sdwait = (count > 1) ? sqrt(sdwait / (count - 1)) : 0;
/*
* XXX: what is better; this hideous cast of the compradre function; or
* the four warnings during compile ? dirkx just does not know and
* hates both/
*/
qsort(stats, count, sizeof(struct data),
(int (*) (const void *, const void *)) compradre);
if ((count > 1) && (count % 2))
mediancon = (stats[count / 2].ctime + stats[count / 2 + 1].ctime) / 2;
else
mediancon = stats[count / 2].ctime;
qsort(stats, count, sizeof(struct data),
(int (*) (const void *, const void *)) compri);
if ((count > 1) && (count % 2))
mediand = (stats[count / 2].time + stats[count / 2 + 1].time \
-stats[count / 2].ctime - stats[count / 2 + 1].ctime) / 2;
else
mediand = stats[count / 2].time - stats[count / 2].ctime;
qsort(stats, count, sizeof(struct data),
(int (*) (const void *, const void *)) compwait);
if ((count > 1) && (count % 2))
medianwait = (stats[count / 2].waittime + stats[count / 2 + 1].waittime) / 2;
else
medianwait = stats[count / 2].waittime;
qsort(stats, count, sizeof(struct data),
(int (*) (const void *, const void *)) comprando);
if ((count > 1) && (count % 2))
mediantot = (stats[count / 2].time + stats[count / 2 + 1].time) / 2;
else
mediantot = stats[count / 2].time;
printf("\nConnection Times (ms)\n");
/*
* Reduce stats from apr time to milliseconds
*/
mincon = ap_round_ms(mincon);
mind = ap_round_ms(mind);
minwait = ap_round_ms(minwait);
mintot = ap_round_ms(mintot);
meancon = ap_round_ms(meancon);
meand = ap_round_ms(meand);
meanwait = ap_round_ms(meanwait);
meantot = ap_round_ms(meantot);
mediancon = ap_round_ms(mediancon);
mediand = ap_round_ms(mediand);
medianwait = ap_round_ms(medianwait);
mediantot = ap_round_ms(mediantot);
maxcon = ap_round_ms(maxcon);
maxd = ap_round_ms(maxd);
maxwait = ap_round_ms(maxwait);
maxtot = ap_round_ms(maxtot);
sdcon = ap_double_ms(sdcon);
sdd = ap_double_ms(sdd);
sdwait = ap_double_ms(sdwait);
sdtot = ap_double_ms(sdtot);
if (confidence) {
#define CONF_FMT_STRING "%5" APR_TIME_T_FMT " %4" APR_TIME_T_FMT " %5.1f %6" APR_TIME_T_FMT " %7" APR_TIME_T_FMT "\n"
printf(" min mean[+/-sd] median max\n");
printf("Connect: " CONF_FMT_STRING,
mincon, meancon, sdcon, mediancon, maxcon);
printf("Processing: " CONF_FMT_STRING,
mind, meand, sdd, mediand, maxd);
printf("Waiting: " CONF_FMT_STRING,
minwait, meanwait, sdwait, medianwait, maxwait);
printf("Total: " CONF_FMT_STRING,
mintot, meantot, sdtot, mediantot, maxtot);
#undef CONF_FMT_STRING
#define SANE(what,mean,median,sd) \
{ \
double d = (double)mean - median; \
if (d < 0) d = -d; \
if (d > 2 * sd ) \
printf("ERROR: The median and mean for " what " are more than twice the standard\n" \
" deviation apart. These results are NOT reliable.\n"); \
else if (d > sd ) \
printf("WARNING: The median and mean for " what " are not within a normal deviation\n" \
" These results are probably not that reliable.\n"); \
}
SANE("the initial connection time", meancon, mediancon, sdcon);
SANE("the processing time", meand, mediand, sdd);
SANE("the waiting time", meanwait, medianwait, sdwait);
SANE("the total time", meantot, mediantot, sdtot);
}
else {
printf(" min avg max\n");
#define CONF_FMT_STRING "%5" APR_TIME_T_FMT " %5" APR_TIME_T_FMT "%5" APR_TIME_T_FMT "\n"
printf("Connect: " CONF_FMT_STRING, mincon, meancon, maxcon);
printf("Processing: " CONF_FMT_STRING, mind, meand, maxd);
printf("Waiting: " CONF_FMT_STRING, minwait, meanwait, maxwait);
printf("Total: " CONF_FMT_STRING, mintot, meantot, maxtot);
#undef CONF_FMT_STRING
}
/* Sorted on total connect times */
if (percentile && (count > 1)) {
printf("\nPercentage of the requests served within a certain time (ms)\n");
for (i = 0; i < sizeof(percs) / sizeof(int); i++) {
if (percs[i] <= 0)
printf(" 0%% <0> (never)\n");
else if (percs[i] >= 100)
printf(" 100%% %5" APR_TIME_T_FMT " (longest request)\n",
ap_round_ms(stats[count - 1].time));
else
printf(" %d%% %5" APR_TIME_T_FMT "\n", percs[i],
ap_round_ms(stats[(unsigned long)count * percs[i] / 100].time));
}
}
if (csvperc) {
FILE *out = fopen(csvperc, "w");
if (!out) {
perror("Cannot open CSV output file");
exit(1);
}
fprintf(out, "" "Percentage served" "," "Time in ms" "\n");
for (i = 0; i <= 100; i++) {
double t;
if (i == 0)
t = ap_double_ms(stats[0].time);
else if (i == 100)
t = ap_double_ms(stats[count - 1].time);
else
t = ap_double_ms(stats[(unsigned long) (0.5 + (double)count * i / 100.0)].time);
fprintf(out, "%" APR_INT64_T_FMT ",%.3f\n", i, t);
}
fclose(out);
}
if (gnuplot) {
char tmstring[APR_CTIME_LEN];
FILE *out = fopen(gnuplot, "w");
if (!out) {
perror("Cannot open gnuplot output file");
exit(1);
}
fprintf(out, "starttime\tseconds\tctime\tdtime\tttime\twait\n");
for (i = 0; i < count; i++) {
(void) apr_ctime(tmstring, stats[i].starttime);
fprintf(out, "%s\t%" APR_TIME_T_FMT "\t%" APR_TIME_T_FMT
"\t%" APR_TIME_T_FMT "\t%" APR_TIME_T_FMT
"\t%" APR_TIME_T_FMT "\n", tmstring,
apr_time_sec(stats[i].starttime),
ap_round_ms(stats[i].ctime),
ap_round_ms(stats[i].time - stats[i].ctime),
ap_round_ms(stats[i].time),
ap_round_ms(stats[i].waittime));
}
fclose(out);
}
}
fflush(stdout);
}
/* --------------------------------------------------------- */
/* calculate and output results in HTML */
static void output_html_results(void)
{
double timetaken = (double) (lasttime - start) / APR_USEC_PER_SEC;
printf("\n\n<table %s>\n", tablestring);
printf("<tr %s><th colspan=2 %s>Server Software:</th>"
"<td colspan=2 %s>%s</td></tr>\n",
trstring, tdstring, tdstring, servername);
printf("<tr %s><th colspan=2 %s>Server Hostname:</th>"
"<td colspan=2 %s>%s</td></tr>\n",
trstring, tdstring, tdstring, hostname);
printf("<tr %s><th colspan=2 %s>Server Port:</th>"
"<td colspan=2 %s>%hu</td></tr>\n",
trstring, tdstring, tdstring, port);
printf("<tr %s><th colspan=2 %s>Document Path:</th>"
"<td colspan=2 %s>%s</td></tr>\n",
trstring, tdstring, tdstring, path);
if (nolength)
printf("<tr %s><th colspan=2 %s>Document Length:</th>"
"<td colspan=2 %s>Variable</td></tr>\n",
trstring, tdstring, tdstring);
else
printf("<tr %s><th colspan=2 %s>Document Length:</th>"
"<td colspan=2 %s>%" APR_SIZE_T_FMT " bytes</td></tr>\n",
trstring, tdstring, tdstring, metrics.doclen);
printf("<tr %s><th colspan=2 %s>Number of workers:</th>"
"<td colspan=2 %s>%d</td></tr>\n",
trstring, tdstring, tdstring, num_workers);
printf("<tr %s><th colspan=2 %s>Concurrency Level:</th>"
"<td colspan=2 %s>%d</td></tr>\n",
trstring, tdstring, tdstring, concurrency);
printf("<tr %s><th colspan=2 %s>Concurrency achieved:</th>"
"<td colspan=2 %s>%d</td></tr>\n",
trstring, tdstring, tdstring, metrics.concurrent);
printf("<tr %s><th colspan=2 %s>Rampup delay:</th>"
"<td colspan=2 %s>%" APR_TIME_T_FMT " [ms]</td></tr>\n",
trstring, tdstring, tdstring, apr_time_as_msec(ramp));
printf("<tr %s><th colspan=2 %s>Time taken for tests:</th>"
"<td colspan=2 %s>%.3f seconds</td></tr>\n",
trstring, tdstring, tdstring, timetaken);
printf("<tr %s><th colspan=2 %s>Complete requests:</th>"
"<td colspan=2 %s>%" APR_INT64_T_FMT "</td></tr>\n",
trstring, tdstring, tdstring, metrics.done);
printf("<tr %s><th colspan=2 %s>Failed requests:</th>"
"<td colspan=2 %s>%" APR_INT64_T_FMT "</td></tr>\n",
trstring, tdstring, tdstring, metrics.bad);
if (metrics.bad)
printf("<tr %s><td colspan=4 %s > (Connect: %d, Length: %d, Exceptions: %d)</td></tr>\n",
trstring, tdstring, metrics.err_conn, metrics.err_length, metrics.err_except);
if (metrics.err_response)
printf("<tr %s><th colspan=2 %s>Non-2xx responses:</th>"
"<td colspan=2 %s>%d</td></tr>\n",
trstring, tdstring, tdstring, metrics.err_response);
if (keepalive)
printf("<tr %s><th colspan=2 %s>Keep-Alive requests:</th>"
"<td colspan=2 %s>%" APR_INT64_T_FMT "</td></tr>\n",
trstring, tdstring, tdstring, metrics.doneka);
printf("<tr %s><th colspan=2 %s>Total transferred:</th>"
"<td colspan=2 %s>%" APR_INT64_T_FMT " bytes</td></tr>\n",
trstring, tdstring, tdstring, metrics.totalread);
if (send_body)
printf("<tr %s><th colspan=2 %s>Total body sent:</th>"
"<td colspan=2 %s>%" APR_INT64_T_FMT "</td></tr>\n",
trstring, tdstring, tdstring, metrics.totalposted);
printf("<tr %s><th colspan=2 %s>HTML transferred:</th>"
"<td colspan=2 %s>%" APR_INT64_T_FMT " bytes</td></tr>\n",
trstring, tdstring, tdstring, metrics.totalbread);
/* avoid divide by zero */
if (timetaken) {
printf("<tr %s><th colspan=2 %s>Requests per second:</th>"
"<td colspan=2 %s>%.2f</td></tr>\n",
trstring, tdstring, tdstring, (double) metrics.done / timetaken);
printf("<tr %s><th colspan=2 %s>Transfer rate:</th>"
"<td colspan=2 %s>%.2f kb/s received</td></tr>\n",
trstring, tdstring, tdstring, (double) metrics.totalread / 1024 / timetaken);
if (send_body) {
printf("<tr %s><td colspan=2 %s>&nbsp;</td>"
"<td colspan=2 %s>%.2f kb/s sent</td></tr>\n",
trstring, tdstring, tdstring,
(double) metrics.totalposted / 1024 / timetaken);
printf("<tr %s><td colspan=2 %s>&nbsp;</td>"
"<td colspan=2 %s>%.2f kb/s total</td></tr>\n",
trstring, tdstring, tdstring,
(double) (metrics.totalread + metrics.totalposted) / 1024 / timetaken);
}
}
{
/* work out connection times */
apr_int64_t i, count = ap_min(metrics.done, requests);
apr_interval_time_t totalcon = 0, total = 0;
apr_interval_time_t mincon = AB_TIME_MAX, mintot = AB_TIME_MAX;
apr_interval_time_t maxcon = 0, maxtot = 0;
for (i = 0; i < count; i++) {
struct data *s = &stats[i];
mincon = ap_min(mincon, s->ctime);
mintot = ap_min(mintot, s->time);
maxcon = ap_max(maxcon, s->ctime);
maxtot = ap_max(maxtot, s->time);
totalcon += s->ctime;
total += s->time;
}
/*
* Reduce stats from apr time to milliseconds
*/
mincon = ap_round_ms(mincon);
mintot = ap_round_ms(mintot);
maxcon = ap_round_ms(maxcon);
maxtot = ap_round_ms(maxtot);
totalcon = ap_round_ms(totalcon);
total = ap_round_ms(total);
if (count > 0) { /* avoid division by zero (if 0 count) */
printf("<tr %s><th %s colspan=4>Connection Times (ms)</th></tr>\n",
trstring, tdstring);
printf("<tr %s><th %s>&nbsp;</th> <th %s>min</th> <th %s>avg</th> <th %s>max</th></tr>\n",
trstring, tdstring, tdstring, tdstring, tdstring);
printf("<tr %s><th %s>Connect:</th>"
"<td %s>%5" APR_TIME_T_FMT "</td>"
"<td %s>%5" APR_TIME_T_FMT "</td>"
"<td %s>%5" APR_TIME_T_FMT "</td></tr>\n",
trstring, tdstring, tdstring, mincon, tdstring, totalcon / count, tdstring, maxcon);
printf("<tr %s><th %s>Processing:</th>"
"<td %s>%5" APR_TIME_T_FMT "</td>"
"<td %s>%5" APR_TIME_T_FMT "</td>"
"<td %s>%5" APR_TIME_T_FMT "</td></tr>\n",
trstring, tdstring, tdstring, mintot - mincon, tdstring,
(total / count) - (totalcon / count), tdstring, maxtot - maxcon);
printf("<tr %s><th %s>Total:</th>"
"<td %s>%5" APR_TIME_T_FMT "</td>"
"<td %s>%5" APR_TIME_T_FMT "</td>"
"<td %s>%5" APR_TIME_T_FMT "</td></tr>\n",
trstring, tdstring, tdstring, mintot, tdstring, total / count, tdstring, maxtot);
}
printf("</table>\n");
}
fflush(stdout);
}
/* --------------------------------------------------------- */
/* start asnchronous non-blocking connection */
static void start_connection(struct connection * c)
{
struct worker *worker = c->worker;
apr_status_t rv;
apr_sockaddr_t *from;
if (!worker_can_connect(worker)) {
return;
}
assert(c->state == STATE_DISCONNECTED);
if (!c->ctx) {
apr_pool_create(&c->ctx, worker->pool);
APR_RING_ELEM_INIT(c, delay_list);
worker->counters[STATE_DISCONNECTED][0]++;
worker->metrics.concurrent++;
}
if ((rv = apr_socket_create(&c->aprsock, worker->destsa->family,
SOCK_STREAM, 0, c->ctx)) != APR_SUCCESS) {
graceful_strerror("socket", rv);
return;
}
c->pollfd.desc.s = c->aprsock;
c->pollfd.desc_type = APR_POLL_SOCKET;
c->pollfd.reqevents = c->pollfd.rtnevents = 0;
c->pollfd.client_data = c;
if (bind_count) {
if (worker->bind_rr >= bind_count) {
worker->bind_rr = 0;
}
if ((rv = apr_socket_bind(c->aprsock, bind_addrs[worker->bind_rr++]))) {
graceful_strerror("bind", rv);
close_connection(c);
return;
}
}
apr_socket_timeout_set(c->aprsock, 0);
if ((rv = apr_socket_opt_set(c->aprsock, APR_SO_NONBLOCK, 1))) {
graceful_strerror("socket nonblock", rv);
close_connection(c);
return;
}
if ((rv = apr_socket_opt_set(c->aprsock, APR_TCP_NODELAY, 1))) {
graceful_strerror("socket nodelay", rv);
close_connection(c);
return;
}
if (windowsize != 0) {
rv = apr_socket_opt_set(c->aprsock, APR_SO_SNDBUF,
windowsize);
if (rv != APR_SUCCESS && rv != APR_ENOTIMPL) {
graceful_strerror("socket send buffer", rv);
close_connection(c);
return;
}
rv = apr_socket_opt_set(c->aprsock, APR_SO_RCVBUF,
windowsize);
if (rv != APR_SUCCESS && rv != APR_ENOTIMPL) {
graceful_strerror("socket receive buffer", rv);
close_connection(c);
return;
}
}
if (src_address) {
if ((rv = apr_sockaddr_info_get(&from, src_address, destsa->family,
0, 0, c->ctx)) != APR_SUCCESS)
graceful_strerror("src_address get", rv);
if ((rv = apr_socket_bind(c->aprsock, from)) != APR_SUCCESS)
graceful_strerror("src_address bind", rv);
}
c->read = 0;
c->bread = 0;
c->length = 0;
c->keepalive = 0;
c->cbx = 0;
c->gotheader = 0;
c->rwrite = 0;
c->keptalive = 0;
c->start = lasttime = apr_time_now();
#ifdef USE_SSL
if (is_ssl) {
BIO *bio;
apr_os_sock_t fd;
ssl_rand_seed();
apr_os_sock_get(&fd, c->aprsock);
if ((c->ssl = SSL_new(ssl_ctx)) == NULL) {
graceful_error("SSL_new failed");
ERR_print_errors(bio_err);
close_connection(c);
return;
}
if((bio = BIO_new_socket(fd, BIO_NOCLOSE)) == NULL) {
graceful_error("BIO_new_socket failed");
ERR_print_errors(bio_err);
close_connection(c);
return;
}
BIO_set_nbio(bio, 1);
SSL_set_bio(c->ssl, bio, bio);
SSL_set_connect_state(c->ssl);
if (verbosity >= 4) {
#if OPENSSL_VERSION_NUMBER >= 0x30000000L
BIO_set_callback_ex(bio, ssl_print_cb);
#else
BIO_set_callback(bio, ssl_print_cb);
#endif
BIO_set_callback_arg(bio, (void *)bio_err);
}
#ifdef HAVE_TLSEXT
if (tls_sni) {
SSL_set_tlsext_host_name(c->ssl, tls_sni);
}
#endif
} else {
c->ssl = NULL;
}
#endif
if ((rv = apr_socket_connect(c->aprsock, worker->destsa))) {
if (APR_STATUS_IS_EINPROGRESS(rv)) {
set_conn_state(c, STATE_CONNECTING, APR_POLLOUT);
}
else {
try_reconnect(c, rv);
}
return;
}
/* connected first time */
#ifdef USE_SSL
if (c->ssl) {
set_conn_state(c, STATE_HANDSHAKE, 0);
ssl_proceed_handshake(c);
}
else
#endif
{
set_conn_state(c, STATE_WRITE, 0);
write_request(c);
}
}
/* --------------------------------------------------------- */
/* close the transport layer */
static void close_connection(struct connection *c)
{
set_conn_state(c, STATE_DISCONNECTED, 0);
#ifdef USE_SSL
if (c->ssl) {
SSL_shutdown(c->ssl);
SSL_free(c->ssl);
c->ssl = NULL;
}
#endif
apr_pool_clear(c->ctx);
c->aprsock = NULL;
}
/* --------------------------------------------------------- */
/* retry a connect()ion failure on the next address (if any) */
static void try_reconnect(struct connection *c, apr_status_t status)
{
struct worker *worker = c->worker;
if (worker->metrics.good == 0 && worker->destsa->next) {
worker->destsa = worker->destsa->next;
close_connection(c);
start_connection(c);
}
else {
worker->metrics.err_conn++;
if (worker->metrics.good == 0) {
if (worker->metrics.err_conn > 10) {
fprintf(stderr,
"\nTest aborted after 10 failures\n\n");
graceful_strerror("apr_socket_connect()", status);
}
worker->destsa = destsa;
}
abort_connection(c);
}
}
/* --------------------------------------------------------- */
/* shutdown or reuse the connection, saving stats */
static void finalize_connection(struct connection *c, int reuse)
{
struct worker *worker = c->worker;
int good = (c->gotheader && c->bread >= c->length);
int final_state = c->state;
/* close before measuring, to account for shutdown time */
if (!reuse || !good) {
close_connection(c);
reuse = 0;
}
if (c->read == 0 && c->keptalive) {
/*
* server has legitimately shut down an idle keep alive connection
* as per RFC7230 6.3.1, revert previous accounting (not an error).
*/
worker->metrics.doneka--;
worker->metrics.aborted_ka++;
if (final_state > STATE_WRITE) {
worker->started--;
}
}
else {
/* save out time */
if (tlimit || worker->metrics.done < worker->requests) {
apr_time_t tnow = lasttime = c->end = apr_time_now();
struct data *s = &worker->stats[worker->metrics.done % worker->requests];
/* Cumulative for when worker->metrics.done > worker->requests (tlimit),
* consolidate_metrics() will do the mean.
*/
s->starttime = c->start; /* use last.. */
s->time += ap_max(0, c->end - c->start);
s->ctime += ap_max(0, c->connect - c->start);
s->waittime += ap_max(0, c->beginread - c->endwrite);
if (heartbeatres) {
static apr_int64_t reqs_count64;
static apr_uint32_t reqs_count32;
int sync = 0, flush = 0;
apr_uint32_t n;
#if APR_HAS_THREADS
/* use 32bit atomics only to help 32bit systems and support
* earlier APR versions (which lack 64bit atomics).
*/
if (num_workers > 1)
n = apr_atomic_inc32(&reqs_count32) + 1;
else
#endif
n = ++reqs_count32;
if (!tlimit && !(n % heartbeatres)) {
sync = 1;
}
else if (tlimit && tnow >= logtime) {
sync = (logtime != 0);
logtime = tnow + hbperiod;
}
if (sync) {
#if APR_HAS_THREADS
if (num_workers > 1) {
apr_uint32_t m = apr_atomic_xchg32(&reqs_count32, 0);
if (m) {
/* races should be rare here now */
apr_thread_mutex_lock(workers_mutex);
reqs_count64 += m;
apr_thread_mutex_unlock(workers_mutex);
flush = (m >= n);
}
}
else
#endif
{
reqs_count64 += reqs_count32;
reqs_count32 = 0;
flush = 1;
}
}
if (flush) {
fprintf(stderr,
"Completed %" APR_INT64_T_FMT " requests\n",
reqs_count64);
fflush(stderr);
}
}
}
worker->metrics.done++;
/* update worker's metrics */
if (good) {
if (worker->metrics.good == 0) {
/* first time saves the doclen */
worker->metrics.doclen = c->bread;
}
worker->metrics.good++;
}
else {
if (c->state >= STATE_READ
&& !nolength && c->bread != worker->metrics.doclen) {
worker->metrics.err_length++;
}
worker->metrics.bad++;
}
}
if (!reuse) {
start_connection(c); /* nop if !worker_can_connect() */
}
else if (worker_can_connect(worker)) {
c->keptalive++;
worker->metrics.doneka++;
c->read = 0;
c->bread = 0;
c->length = 0;
c->keepalive = 0;
c->cbx = 0;
c->gotheader = 0;
c->rwrite = 0;
write_request(c);
}
else {
close_connection(c);
}
}
/* --------------------------------------------------------- */
/* read data from connection */
static void read_response(struct connection * c)
{
struct worker *worker = c->worker;
apr_size_t r;
apr_status_t status;
char *part;
char respcode[4]; /* 3 digits and null */
read_more:
r = sizeof(worker->buffer);
if (c->length && r > c->length - c->bread) {
r = c->length - c->bread;
}
#ifdef USE_SSL
if (c->ssl) {
status = SSL_read(c->ssl, worker->buffer, r);
if (status <= 0) {
int scode = SSL_get_error(c->ssl, status);
switch (scode) {
case SSL_ERROR_WANT_READ:
set_conn_state(c, STATE_READ, APR_POLLIN);
break;
case SSL_ERROR_WANT_WRITE:
set_conn_state(c, STATE_READ, APR_POLLOUT);
break;
case SSL_ERROR_SYSCALL:
if (status == 0 && c->keptalive) {
case SSL_ERROR_ZERO_RETURN:
/* connection closed cleanly or aborted during keepalive:
* let the length check determine whether it's an error
*/
shutdown_connection(c);
break;
}
default:
/* some fatal error: */
BIO_printf(bio_err, "SSL read failed (%d) - closing connection\n", scode);
ERR_print_errors(bio_err);
abort_connection(c);
break;
}
return;
}
r = status;
}
else
#endif
{
status = apr_socket_recv(c->aprsock, worker->buffer, &r);
if (APR_STATUS_IS_EAGAIN(status)) {
set_conn_state(c, STATE_READ, APR_POLLIN);
return;
}
if (status != APR_SUCCESS && !r) {
if (APR_STATUS_IS_EOF(status) || c->keptalive) {
/* connection closed cleanly or aborted during keepalive:
* let the length check determine whether it's an error
*/
shutdown_connection(c);
}
else {
worker->metrics.err_recv++;
if (recverrok) {
if (verbosity >= 1) {
char buf[120];
fprintf(stderr,"%s: %s (%d)\n", "apr_socket_recv",
apr_strerror(status, buf, sizeof buf), status);
}
}
else {
graceful_strerror("apr_socket_recv", status);
}
abort_connection(c);
}
return;
}
}
worker->metrics.totalread += r;
if (c->read == 0) {
c->beginread = apr_time_now();
}
c->read += r;
if (!c->gotheader) {
char *s;
int l = 4;
apr_size_t space = CBUFFSIZE - c->cbx - 1; /* -1 allows for \0 term */
int tocopy = (space < r) ? space : r;
#ifdef NOT_ASCII
apr_size_t inbytes_left = space, outbytes_left = space;
status = apr_xlate_conv_buffer(from_ascii, worker->buffer, &inbytes_left,
c->cbuff + c->cbx, &outbytes_left);
if (status || inbytes_left || outbytes_left) {
fprintf(stderr, "only simple translation is supported (%d/%" APR_SIZE_T_FMT
"/%" APR_SIZE_T_FMT ")\n", status, inbytes_left, outbytes_left);
exit(1);
}
#else
memcpy(c->cbuff + c->cbx, worker->buffer, space);
#endif /* NOT_ASCII */
c->cbx += tocopy;
space -= tocopy;
c->cbuff[c->cbx] = 0; /* terminate for benefit of strstr */
if (verbosity >= 2) {
printf("LOG: header received:\n%s\n", c->cbuff);
}
s = strstr(c->cbuff, "\r\n\r\n");
/*
* this next line is so that we talk to NCSA 1.5 which blatantly
* breaks the http specifaction
*/
if (!s) {
s = strstr(c->cbuff, "\n\n");
l = 2;
}
if (!s) {
/* read rest next time */
if (space) {
set_conn_state(c, STATE_READ, APR_POLLIN);
}
else {
/* header is in invalid or too big - close connection */
if (++worker->metrics.err_response > 10) {
fprintf(stderr,
"\nTest aborted after 10 failures\n\n");
graceful_error("Response header too long\n");
}
abort_connection(c);
}
return;
}
{
/* have full header */
s[l / 2] = '\0'; /* terminate at end of header */
c->gotheader = 1;
/* account for the body we may have read already */
c->bread += c->cbx - (s + l - c->cbuff) + r - tocopy;
worker->metrics.totalbread += c->bread;
/*
* XXX: this parsing isn't even remotely HTTP compliant... but in
* the interest of speed it doesn't totally have to be, it just
* needs to be extended to handle whatever servers folks want to
* test against. -djg
*/
/* check response code */
part = strstr(c->cbuff, "HTTP"); /* really HTTP/1.x_ */
if (part && strlen(part) > strlen("HTTP/1.x_")) {
strncpy(respcode, (part + strlen("HTTP/1.x_")), 3);
respcode[3] = '\0';
}
else {
strcpy(respcode, "500");
}
if (respcode[0] != '2') {
worker->metrics.err_response++;
if (verbosity >= 2)
printf("WARNING: Response code not 2xx (%s)\n", respcode);
}
else if (verbosity >= 3) {
printf("LOG: Response code = %s\n", respcode);
}
c->keepalive = (keepalive && xstrcasestr(c->cbuff, "Keep-Alive"));
if (c->keepalive) {
const char *cl = xstrcasestr(c->cbuff, "Content-Length:");
if (cl && method != HEAD) {
/* response to HEAD doesn't have entity body */
c->length = atoi(cl + 16);
}
else {
c->length = 0;
}
}
/* We have received the header, so we know this destination socket
* address is working, so schedule all remaining connections. */
if (!worker->succeeded_once) {
int i;
apr_time_t now = apr_time_now();
for (i = 1; i < worker->concurrency; i++) {
worker->conns[i].delay = now + (i * ramp);
APR_RING_INSERT_TAIL(&worker->delayed_ring, &worker->conns[i],
connection, delay_list);
}
worker->succeeded_once = 1;
/*
* first time, extract some interesting info
*/
if (worker->slot == 0) {
char *p, *q;
size_t len = 0;
p = xstrcasestr(c->cbuff, "Server:");
q = servername;
if (p) {
p += 8;
/* -1 to not overwrite last '\0' byte */
while (*p > 32 && len++ < sizeof(servername) - 1)
*q++ = *p++;
}
*q = 0;
}
#if APR_HAS_THREADS
if (num_workers > 1 && worker->slot == 0) {
apr_status_t rv;
apr_thread_mutex_lock(workers_mutex);
rv = apr_thread_cond_signal(workers_can_start);
if (rv != APR_SUCCESS) {
graceful_strerror("apr_thread_cond_wait()", rv);
close_connection(c);
return;
}
workers_can_start = NULL; /* one shot */
apr_thread_mutex_unlock(workers_mutex);
}
#endif
}
}
}
else {
/* outside header, everything we have read is entity body */
c->bread += r;
worker->metrics.totalbread += r;
}
/* read incomplete or connection terminated by close, continue
* reading until we get everything or EOF/EAGAIN.
*/
if (c->bread < c->length || (!c->length && method != HEAD)) {
goto read_more;
}
/* read complete, reuse/close depending on keepalive */
finalize_connection(c, c->keepalive != 0);
}
/* --------------------------------------------------------- */
/* run the tests */
static void start_worker(struct worker *worker);
#if APR_HAS_THREADS
static void join_worker(struct worker *worker);
#endif /* APR_HAS_THREADS */
#if (APR_HAS_THREADS \
&& (APR_HAVE_PTHREAD_H || defined(SIGPROCMASK_SETS_THREAD_MASK)))
#define USE_SIGMASK 1
#else
#define USE_SIGMASK 0
#endif
static void init_signals(void)
{
#ifdef SIGINT
#if USE_SIGMASK
if (num_workers > 1) {
apr_status_t rv;
rv = apr_setup_signal_thread();
if (rv != APR_SUCCESS) {
fatal_strerror("apr_setup_signal_thread()", rv);
}
}
#endif
/* Stop early on SIGINT */
apr_signal(SIGINT, workers_may_exit);
#endif /* SIGINT */
}
#if APR_HAS_THREADS
static void block_signals(int block)
{
#ifdef SIGINT
#if USE_SIGMASK
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGINT);
#if defined(SIGPROCMASK_SETS_THREAD_MASK)
sigprocmask(block ? SIG_BLOCK : SIG_UNBLOCK, &set, NULL);
#else
pthread_sigmask(block ? SIG_BLOCK : SIG_UNBLOCK, &set, NULL);
#endif
#endif /* USE_SIGMASK */
#endif /* SIGINT */
}
#endif /* APR_HAS_THREADS */
static int test(void)
{
apr_status_t rv;
int i, j;
int snprintf_res = 0;
#ifdef NOT_ASCII
apr_size_t inbytes_left, outbytes_left;
#endif
if (isproxy) {
connecthost = apr_pstrdup(cntxt, proxyhost);
connectport = proxyport;
}
else {
connecthost = apr_pstrdup(cntxt, hostname);
connectport = port;
}
if (!use_html) {
printf("Benchmarking %s ", hostname);
if (isproxy)
printf("[through %s:%d] ", proxyhost, proxyport);
printf("(be patient)%s",
(heartbeatres ? "\n" : "..."));
fflush(stdout);
}
/* add default headers if necessary */
if (!opt_host) {
/* Host: header not overridden, add default value to hdrs */
hdrs = apr_pstrcat(cntxt, hdrs, "Host: ", host_field, colonhost, "\r\n", NULL);
}
else {
/* Header overridden, no need to add, as it is already in hdrs */
}
#ifdef HAVE_TLSEXT
if (is_ssl && tls_use_sni) {
apr_ipsubnet_t *ip;
if (((tls_sni = opt_host) || (tls_sni = hostname)) &&
(!*tls_sni || apr_ipsubnet_create(&ip, tls_sni, NULL,
cntxt) == APR_SUCCESS)) {
/* IP not allowed in TLS SNI extension */
tls_sni = NULL;
}
}
#endif
if (!opt_useragent) {
/* User-Agent: header not overridden, add default value to hdrs */
hdrs = apr_pstrcat(cntxt, hdrs, "User-Agent: ApacheBench/", AP_AB_BASEREVISION, "\r\n", NULL);
}
else {
/* Header overridden, no need to add, as it is already in hdrs */
}
if (!opt_accept) {
/* Accept: header not overridden, add default value to hdrs */
hdrs = apr_pstrcat(cntxt, hdrs, "Accept: */*\r\n", NULL);
}
else {
/* Header overridden, no need to add, as it is already in hdrs */
}
/* setup request */
if (!send_body) {
snprintf_res = apr_snprintf(request, sizeof(_request),
"%s %s HTTP/1.0\r\n"
"%s" "%s" "%s"
"%s" "\r\n",
method_str[method],
(isproxy) ? fullurl : path,
keepalive ? "Connection: Keep-Alive\r\n" : "",
cookie, auth, hdrs);
}
else {
snprintf_res = apr_snprintf(request, sizeof(_request),
"%s %s HTTP/1.0\r\n"
"%s" "%s" "%s"
"Content-length: %" APR_SIZE_T_FMT "\r\n"
"Content-type: %s\r\n"
"%s"
"\r\n",
method_str[method],
(isproxy) ? fullurl : path,
keepalive ? "Connection: Keep-Alive\r\n" : "",
cookie, auth,
postlen,
(content_type != NULL) ? content_type : "text/plain", hdrs);
}
if (snprintf_res >= sizeof(_request)) {
fatal_error("Request too long\n");
}
if (verbosity >= 2)
printf("INFO: %s header == \n---\n%s\n---\n",
method_str[method], request);
reqlen = strlen(request);
/*
* Combine headers and (optional) post file into one continuous buffer
*/
if (send_body) {
char *buff = apr_palloc(cntxt, postlen + reqlen + 1);
strcpy(buff, request);
memcpy(buff + reqlen, postdata, postlen);
request = buff;
}
#ifdef NOT_ASCII
inbytes_left = outbytes_left = reqlen;
rv = apr_xlate_conv_buffer(to_ascii, request, &inbytes_left,
request, &outbytes_left);
if (rv || inbytes_left || outbytes_left) {
fprintf(stderr, "only simple translation is supported (%d/%"
APR_SIZE_T_FMT "/%" APR_SIZE_T_FMT ")\n",
rv, inbytes_left, outbytes_left);
exit(1);
}
#endif /* NOT_ASCII */
if (bind_count) {
/* This only needs to be done once */
bind_addrs = apr_pcalloc(cntxt, bind_count * sizeof(apr_sockaddr_t*));
for (i = 0; i < bind_count; ++i) {
if ((rv = apr_sockaddr_info_get(&bind_addrs[i], bind_hosts[i],
APR_UNSPEC, 0, 0, cntxt))) {
char buf[120];
apr_snprintf(buf, sizeof(buf),
"apr_sockaddr_info_get() for %s", bind_hosts[i]);
fatal_strerror(buf, rv);
}
}
}
/* This too */
if ((rv = apr_sockaddr_info_get(&destsa, connecthost,
bind_count ? bind_addrs[0]->family : APR_UNSPEC,
connectport, 0, cntxt))) {
char buf[120];
apr_snprintf(buf, sizeof(buf),
"apr_sockaddr_info_get() for %s", connecthost);
fatal_strerror(buf, rv);
}
/*
* XXX: a way to calculate the stats without requiring O(requests) memory
* XXX: would be nice.
*/
stats = apr_pcalloc(cntxt, requests * sizeof(struct data));
conns = apr_pcalloc(cntxt, concurrency * sizeof(struct connection));
workers = apr_pcalloc(cntxt, num_workers * sizeof(struct worker));
for (i = 0; i < num_workers; i++) {
struct worker *worker = &workers[i];
worker->slot = i;
worker->pool = cntxt;
worker->destsa = destsa;
worker->requests = requests / num_workers;
worker->concurrency = concurrency / num_workers;
worker->stats = &stats[i * worker->requests];
worker->conns = &conns[i * worker->concurrency];
for (j = 0; j < worker->concurrency; j++) {
worker->conns[j].worker = worker;
}
APR_RING_INIT(&worker->delayed_ring, connection, delay_list);
#ifdef APR_POLLSET_WAKEABLE
rv = apr_pollset_create(&worker->pollset, worker->concurrency,
cntxt, APR_POLLSET_NOCOPY | APR_POLLSET_WAKEABLE);
if (rv == APR_SUCCESS)
pollset_wakeable = 1;
else if (APR_STATUS_IS_ENOTIMPL(rv))
#endif
rv = apr_pollset_create(&worker->pollset, worker->concurrency,
cntxt, APR_POLLSET_NOCOPY);
if (rv != APR_SUCCESS) {
fatal_strerror("apr_pollset_create failed", rv);
}
}
#if APR_HAS_THREADS
if (num_workers > 1) {
rv = apr_thread_mutex_create(&workers_mutex, APR_THREAD_MUTEX_DEFAULT,
cntxt);
if (rv != APR_SUCCESS) {
fatal_strerror("apr_thread_mutex_create()", rv);
}
rv = apr_thread_cond_create(&workers_can_start, cntxt);
if (rv != APR_SUCCESS) {
fatal_strerror("apr_thread_cond_create()", rv);
}
}
#endif
init_signals();
test_started = 1;
/* ok - lets start */
start = lasttime = apr_time_now();
stoptime = tlimit ? start + apr_time_from_sec(tlimit) : AB_TIME_MAX;
#if APR_HAS_THREADS
if (num_workers > 1) {
/* let the first worker determine if the connectivity is ok before
* starting the others (if any).
*/
block_signals(1);
start_worker(&workers[0]);
block_signals(0);
/* wait for the first worker to tell us to continue */
apr_thread_mutex_lock(workers_mutex);
if (workers_can_start) { /* might have been signaled & NULL-ed already */
rv = apr_thread_cond_wait(workers_can_start, workers_mutex);
if (rv != APR_SUCCESS) {
fatal_strerror("apr_thread_cond_wait()", rv);
}
}
apr_thread_mutex_unlock(workers_mutex);
/* start the others? */
if (workers[0].succeeded_once) {
block_signals(1);
for (i = 1; i < num_workers; i++) {
start_worker(&workers[i]);
}
block_signals(0);
}
/* wait what's started only, join_worker() knows */
for (i = 0; i < num_workers; i++) {
join_worker(&workers[i]);
}
}
else
#endif
start_worker(&workers[0]);
return test_aborted != 0;
}
static void worker_test(struct worker *worker)
{
apr_status_t rv;
apr_time_t poll_expiry = 0;
apr_time_t watchdog_expiry = 0;
struct connection *c;
apr_int16_t rtnev;
int i;
/* initialise first connection to determine destination socket address
* which should be used for next connections. */
start_connection(&worker->conns[0]);
do {
apr_int32_t n;
const apr_pollfd_t *pollresults, *pollfd;
apr_interval_time_t t = aprtimeout;
apr_time_t now = 0;
if (watchdog || !APR_RING_EMPTY(&worker->delayed_ring, connection, delay_list)) {
now = apr_time_now();
if (poll_expiry == 0) {
poll_expiry = now + aprtimeout;
}
else if (t > poll_expiry - now) {
t = poll_expiry > now ? poll_expiry - now : 0;
}
if (watchdog) {
if (watchdog_expiry && watchdog_expiry <= now) {
int state;
apr_size_t len = 0;
len += apr_snprintf(worker->tmp + len, sizeof(worker->tmp) - len,
"Worker %d: requests %" APR_INT64_T_FMT "/%d, polls %d",
worker->slot,
worker->metrics.done, worker->requests,
worker->polls);
for (state = 0; state < STATE_COUNT; ++state) {
len += apr_snprintf(worker->tmp + len, sizeof(worker->tmp) - len,
", %s %d/%d",
conn_state_str[state],
worker->counters[state][0],
worker->counters[state][1]);
}
fprintf(stderr, "%s\n", worker->tmp);
fflush(stderr);
}
if (watchdog_expiry <= now) {
watchdog_expiry = now + WATCHDOG_TIMEOUT;
}
if (t > WATCHDOG_TIMEOUT) {
t = WATCHDOG_TIMEOUT;
}
}
while (!APR_RING_EMPTY(&worker->delayed_ring, connection, delay_list)) {
c = APR_RING_FIRST(&worker->delayed_ring);
if (c->delay <= now) {
APR_RING_REMOVE(c, delay_list);
APR_RING_ELEM_INIT(c, delay_list);
c->delay = 0;
start_connection(c);
}
else {
if (t > c->delay - now) {
t = c->delay - now;
}
break;
}
}
}
assert(worker->polls > 0);
n = worker->metrics.concurrent;
rv = apr_pollset_poll(worker->pollset, t, &n, &pollresults);
if (rv != APR_SUCCESS) {
if (APR_STATUS_IS_EINTR(rv)
|| (APR_STATUS_IS_TIMEUP(rv)
&& poll_expiry && poll_expiry > apr_time_now())) {
continue;
}
graceful_strerror("apr_pollset_poll", rv);
return;
}
poll_expiry = 0;
for (i = 0, pollfd = pollresults; i < n; i++, pollfd++) {
c = pollfd->client_data;
rtnev = pollfd->rtnevents;
if (rtnev & APR_POLLOUT) {
if (c->state == STATE_CONNECTING) {
/* call connect() again to detect errors */
rv = apr_socket_connect(c->aprsock, worker->destsa);
if (rv != APR_SUCCESS) {
try_reconnect(c, rv);
continue;
}
#ifdef USE_SSL
if (c->ssl)
set_conn_state(c, STATE_HANDSHAKE, 0);
else
#endif
set_conn_state(c, STATE_WRITE, 0);
}
switch (c->state) {
#ifdef USE_SSL
case STATE_HANDSHAKE:
ssl_proceed_handshake(c);
break;
#endif
case STATE_WRITE:
write_request(c);
break;
case STATE_READ:
read_response(c);
break;
default:
assert(0);
break;
}
continue;
}
/*
* Notes: APR_POLLHUP is set after FIN is received on some
* systems, so treat that like APR_POLLIN so that we try to read
* again.
*
* Some systems return APR_POLLERR with APR_POLLHUP. We need to
* call read_response() for APR_POLLHUP, so check for
* APR_POLLHUP first so that a closed connection isn't treated
* like an I/O error. If it is, we never figure out that the
* connection is done and we loop here endlessly calling
* apr_poll().
*/
if (rtnev & (APR_POLLIN | APR_POLLHUP | APR_POLLPRI)) {
switch (c->state) {
#ifdef USE_SSL
case STATE_HANDSHAKE:
ssl_proceed_handshake(c);
break;
#endif
case STATE_WRITE:
write_request(c);
break;
case STATE_READ:
read_response(c);
break;
default:
assert(0);
break;
}
continue;
}
if (rtnev & (APR_POLLERR | APR_POLLNVAL)) {
if (c->state == STATE_CONNECTING) {
try_reconnect(c, APR_ENOPOLL);
}
else {
worker->metrics.err_except++;
abort_connection(c);
}
continue;
}
}
} while (!worker_should_stop(worker));
}
#if APR_HAS_THREADS
static void *APR_THREAD_FUNC worker_thread(apr_thread_t *thd, void *arg)
{
struct worker *worker = arg;
worker->pool = apr_thread_pool_get(thd);
worker_test(worker);
/* unblock the main thread if the first worker could never start successfully */
if (num_workers > 1 && worker->slot == 0 && !worker->succeeded_once) {
apr_status_t rv;
apr_thread_mutex_lock(workers_mutex);
rv = apr_thread_cond_signal(workers_can_start);
if (rv != APR_SUCCESS) {
fatal_strerror("apr_thread_cond_wait()", rv);
}
workers_can_start = NULL; /* one shot */
apr_thread_mutex_unlock(workers_mutex);
}
apr_thread_exit(thd, APR_SUCCESS);
return NULL;
}
#endif
static void start_worker(struct worker *worker)
{
#if APR_HAS_THREADS
if (num_workers > 1) {
apr_status_t rv;
rv = apr_thread_create(&worker->thd, NULL, worker_thread, worker, cntxt);
if (rv != APR_SUCCESS) {
if (worker->slot == 0) {
fatal_strerror("apr_thread_create()", rv);
}
else {
graceful_strerror("apr_thread_create()", rv);
}
return;
}
}
else
#endif /* APR_HAS_THREADS */
worker_test(worker);
}
#if APR_HAS_THREADS
static void join_worker(struct worker *worker)
{
apr_thread_t *thd = worker->thd;
if (thd) {
apr_status_t rv, thread_rv;
rv = apr_thread_join(&thread_rv, thd);
if (rv != APR_SUCCESS) {
fatal_strerror("apr_thread_join()", rv);
}
worker->thd = NULL;
}
}
#endif /* APR_HAS_THREADS */
static void workers_may_exit(int unused)
{
(void)unused;
stoptime = 0; /* everyone stop now! */
lasttime = apr_time_now(); /* record final time if interrupted */
test_aborted = -1;
#ifdef APR_POLLSET_WAKEABLE
/* wake up poll()ing workers */
if (workers && pollset_wakeable) {
int i;
for (i = 0; i < num_workers; ++i) {
if (workers[i].pollset) {
apr_pollset_wakeup(workers[i].pollset);
}
}
}
#endif
}
/* ------------------------------------------------------- */
/* display copyright information */
static void copyright(void)
{
if (!use_html) {
printf("This is ApacheBench, Version %s\n", AP_AB_BASEREVISION " <$Revision$>");
printf("Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://web.archive.org/web/20000304112933/http://www.zeustech.net/\n");
printf("Licensed to The Apache Software Foundation, http://www.apache.org/\n");
printf("\n");
}
else {
printf("<p>\n");
printf(" This is ApacheBench, Version %s <i>&lt;%s&gt;</i><br>\n", AP_AB_BASEREVISION, "$Revision$");
printf(" Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://web.archive.org/web/20000304112933/http://www.zeustech.net/<br>\n");
printf(" Licensed to The Apache Software Foundation, http://www.apache.org/<br>\n");
printf("</p>\n<p>\n");
}
}
/* display usage information */
static void usage(const char *progname)
{
fprintf(stderr, "Usage: %s [options] [http"
#ifdef USE_SSL
"[s]"
#endif
"://]hostname[:port]/path\n", progname);
/* 80 column ruler: ********************************************************************************
*/
fprintf(stderr, "Options are:\n");
fprintf(stderr, " -n requests Number of requests to perform\n");
fprintf(stderr, " -c concurrency Number of multiple requests to make at a time\n");
fprintf(stderr, " -W workers Number of concurrent worker threads\n");
fprintf(stderr, " -t timelimit Seconds to max. to spend on benchmarking\n");
fprintf(stderr, " This implies -n 50000\n");
fprintf(stderr, " -s timeout Seconds to max. wait for each response\n");
fprintf(stderr, " Default is 30 seconds\n");
fprintf(stderr, " -R rampdelay Milliseconds in between each new connection when starting up\n");
fprintf(stderr, " Default is no delay\n");
fprintf(stderr, " -b windowsize Size of TCP send/receive buffer, in bytes\n");
fprintf(stderr, " -B addr[,addr]* Address[es] to bind to when making outgoing connections\n");
fprintf(stderr, " -p postfile File containing data to POST. Remember also to set -T\n");
fprintf(stderr, " -u putfile File containing data to PUT. Remember also to set -T\n");
fprintf(stderr, " -T content-type Content-type header to use for POST/PUT data, eg.\n");
fprintf(stderr, " 'application/x-www-form-urlencoded'\n");
fprintf(stderr, " Default is 'text/plain'\n");
fprintf(stderr, " -v verbosity How much troubleshooting info to print\n");
fprintf(stderr, " -w Print out results in HTML tables\n");
fprintf(stderr, " -i Use HEAD instead of GET\n");
fprintf(stderr, " -x attributes String to insert as table attributes\n");
fprintf(stderr, " -y attributes String to insert as tr attributes\n");
fprintf(stderr, " -z attributes String to insert as td or th attributes\n");
fprintf(stderr, " -C attribute Add cookie, eg. 'Apache=1234'. (repeatable)\n");
fprintf(stderr, " -H attribute Add Arbitrary header line, eg. 'Accept-Encoding: gzip'\n");
fprintf(stderr, " Inserted after all normal header lines. (repeatable)\n");
fprintf(stderr, " -A attribute Add Basic WWW Authentication, the attributes\n");
fprintf(stderr, " are a colon separated username and password.\n");
fprintf(stderr, " -P attribute Add Basic Proxy Authentication, the attributes\n");
fprintf(stderr, " are a colon separated username and password.\n");
fprintf(stderr, " -X proxy:port Proxyserver and port number to use\n");
fprintf(stderr, " -o src_address Set the local source address\n");
fprintf(stderr, " -V Print version number and exit\n");
fprintf(stderr, " -k Use HTTP KeepAlive feature\n");
fprintf(stderr, " -d Do not show percentiles served table.\n");
fprintf(stderr, " -S Do not show confidence estimators and warnings.\n");
fprintf(stderr, " -q Do not show progress when doing more than 150 requests\n");
fprintf(stderr, " -Q Do not show copyright banner\n");
fprintf(stderr, " -l Accept variable document length (use this for dynamic pages)\n");
fprintf(stderr, " -g filename Output collected data to gnuplot format file.\n");
fprintf(stderr, " -e filename Output CSV file with percentages served\n");
fprintf(stderr, " -r Don't exit on socket receive errors.\n");
fprintf(stderr, " -m method Method name\n");
fprintf(stderr, " -D Debug watchdog to show some counters during runtime\n");
fprintf(stderr, " -h Display usage information (this message)\n");
#ifdef USE_SSL
#ifndef OPENSSL_NO_SSL2
#define SSL2_HELP_MSG "SSL2, "
#else
#define SSL2_HELP_MSG ""
#endif
#ifndef OPENSSL_NO_SSL3
#define SSL3_HELP_MSG "SSL3, "
#else
#define SSL3_HELP_MSG ""
#endif
#ifdef HAVE_TLSV1_X
#ifdef TLS1_3_VERSION
#define TLS1_X_HELP_MSG ", TLS1.1, TLS1.2, TLS1.3"
#else
#define TLS1_X_HELP_MSG ", TLS1.1, TLS1.2"
#endif
#else
#define TLS1_X_HELP_MSG ""
#endif
#ifdef HAVE_TLSEXT
fprintf(stderr, " -I Disable TLS Server Name Indication (SNI) extension\n");
#endif
fprintf(stderr, " -Z ciphersuite Specify SSL/TLS cipher suite (See openssl ciphers)\n");
fprintf(stderr, " -f protocol Specify SSL/TLS protocol\n");
fprintf(stderr, " (" SSL2_HELP_MSG SSL3_HELP_MSG "TLS1" TLS1_X_HELP_MSG " or ALL)\n");
fprintf(stderr, " -E certfile Specify optional client certificate chain and private key\n");
#endif
exit(EINVAL);
}
/* ------------------------------------------------------- */
/* split URL into parts */
static int parse_url(const char *url)
{
char *cp;
char *h;
char *scope_id;
apr_status_t rv;
/* Save a copy for the proxy */
fullurl = apr_pstrdup(cntxt, url);
if (strlen(url) > 7 && strncmp(url, "http://", 7) == 0) {
url += 7;
#ifdef USE_SSL
is_ssl = 0;
#endif
}
else
#ifdef USE_SSL
if (strlen(url) > 8 && strncmp(url, "https://", 8) == 0) {
url += 8;
is_ssl = 1;
}
#else
if (strlen(url) > 8 && strncmp(url, "https://", 8) == 0) {
fprintf(stderr, "SSL not compiled in; no https support\n");
exit(1);
}
#endif
if ((cp = strchr(url, '/')) == NULL)
return 1;
h = apr_pstrmemdup(cntxt, url, cp - url);
rv = apr_parse_addr_port(&hostname, &scope_id, &port, h, cntxt);
if (rv != APR_SUCCESS || !hostname || scope_id) {
return 1;
}
path = apr_pstrdup(cntxt, cp);
*cp = '\0';
if (*url == '[') { /* IPv6 numeric address string */
host_field = apr_psprintf(cntxt, "[%s]", hostname);
}
else {
host_field = hostname;
}
if (port == 0) { /* no port specified */
#ifdef USE_SSL
if (is_ssl)
port = 443;
else
#endif
port = 80;
}
if ((
#ifdef USE_SSL
is_ssl && (port != 443)) || (!is_ssl &&
#endif
(port != 80)))
{
colonhost = apr_psprintf(cntxt,":%d",port);
} else
colonhost = "";
return 0;
}
/* ------------------------------------------------------- */
/* read data to POST/PUT from file, save contents and length */
static apr_status_t open_postfile(const char *pfile)
{
apr_file_t *postfd;
apr_finfo_t finfo;
apr_status_t rv;
char errmsg[120];
rv = apr_file_open(&postfd, pfile, APR_READ, APR_OS_DEFAULT, cntxt);
if (rv != APR_SUCCESS) {
fprintf(stderr, "ab: Could not open POST data file (%s): %s\n", pfile,
apr_strerror(rv, errmsg, sizeof errmsg));
return rv;
}
rv = apr_file_info_get(&finfo, APR_FINFO_NORM, postfd);
if (rv != APR_SUCCESS) {
fprintf(stderr, "ab: Could not stat POST data file (%s): %s\n", pfile,
apr_strerror(rv, errmsg, sizeof errmsg));
return rv;
}
postlen = (apr_size_t)finfo.size;
postdata = apr_palloc(cntxt, postlen);
rv = apr_file_read_full(postfd, postdata, postlen, NULL);
if (rv != APR_SUCCESS) {
fprintf(stderr, "ab: Could not read POST data file: %s\n",
apr_strerror(rv, errmsg, sizeof errmsg));
return rv;
}
apr_file_close(postfd);
return APR_SUCCESS;
}
static void output_results_at_exit(void)
{
if (test_started) {
consolidate_metrics();
if (test_aborted <= 0) {
if (heartbeatres)
fprintf(stderr, "Finished %" APR_INT64_T_FMT " requests%s\n",
metrics.done, stoptime ? "" : " (interrupted)");
else if (!stoptime)
printf("..interrupted\n");
else
printf("..done\n");
}
else if (metrics.done) {
printf("Total of %" APR_INT64_T_FMT " requests completed\n" ,
metrics.done);
}
if (use_html)
output_html_results();
else
output_results();
}
apr_pool_destroy(cntxt);
apr_terminate();
}
/* ------------------------------------------------------- */
/* sort out command-line args and call test */
int main(int argc, const char * const argv[])
{
char tmp[1024];
apr_status_t status;
apr_getopt_t *opt;
const char *opt_arg;
char c;
#ifdef USE_SSL
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
int max_prot = MAX_SSL_PROTO;
int min_prot = MIN_SSL_PROTO;
#endif /* #if OPENSSL_VERSION_NUMBER >= 0x10100000L */
AB_SSL_METHOD_CONST SSL_METHOD *meth = SSLv23_client_method();
#endif /* USE_SSL */
srand((unsigned int)apr_time_now());
/* table defaults */
tablestring = "";
trstring = "";
tdstring = "bgcolor=white";
cookie = "";
auth = "";
proxyhost = "";
hdrs = "";
apr_app_initialize(&argc, &argv, NULL);
if (apr_pool_create(&cntxt, NULL) != APR_SUCCESS) {
abort_on_oom(APR_ENOMEM);
}
apr_pool_abort_set(abort_on_oom, cntxt);
atexit(output_results_at_exit);
#ifdef NOT_ASCII
status = apr_xlate_open(&to_ascii, "ISO-8859-1", APR_DEFAULT_CHARSET, cntxt);
if (status) {
fprintf(stderr, "apr_xlate_open(to ASCII)->%d\n", status);
exit(1);
}
status = apr_xlate_open(&from_ascii, APR_DEFAULT_CHARSET, "ISO-8859-1", cntxt);
if (status) {
fprintf(stderr, "apr_xlate_open(from ASCII)->%d\n", status);
exit(1);
}
status = apr_base64init_ebcdic(to_ascii, from_ascii);
if (status) {
fprintf(stderr, "apr_base64init_ebcdic()->%d\n", status);
exit(1);
}
#endif
apr_getopt_init(&opt, cntxt, argc, argv);
while ((status = apr_getopt(opt, "n:c:t:s:b:T:p:u:v:lrkVhwiIx:y:z:C:H:P:A:g:X:de:SqQDB:m:R:o:"
#if APR_HAS_THREADS
"W:"
#endif
#ifdef USE_SSL
"Z:f:E:"
#endif
,&c, &opt_arg)) == APR_SUCCESS) {
switch (c) {
case 'n':
requests = atoi(opt_arg);
if (requests <= 0) {
fatal_error("Invalid number of requests\n");
}
break;
#if APR_HAS_THREADS
case 'W':
num_workers = atoi(opt_arg);
if (num_workers < 0) {
fatal_error("Invalid number of workers\n");
}
break;
#endif
case 'k':
keepalive = 1;
break;
case 'o':
src_address = strdup(opt_arg);
break;
case 'q':
heartbeatres = 0;
break;
case 'Q':
no_banner = 1;
break;
case 'D':
watchdog = 1;
break;
case 'c':
concurrency = atoi(opt_arg);
if (concurrency < 0) {
fatal_error("Invalid negative concurrency\n");
}
break;
case 'b':
windowsize = atoi(opt_arg);
break;
case 'i':
if (method != NO_METH)
fatal_error("Cannot mix HEAD with other methods\n");
method = HEAD;
break;
case 'g':
gnuplot = apr_pstrdup(cntxt, opt_arg);
break;
case 'd':
percentile = 0;
break;
case 'e':
csvperc = apr_pstrdup(cntxt, opt_arg);
break;
case 'S':
confidence = 0;
break;
case 's':
aprtimeout = apr_time_from_sec(atoi(opt_arg)); /* timeout value */
break;
case 'R':
ramp = apr_time_from_msec(atoi(opt_arg)); /* ramp delay */
break;
case 'p':
if (method != NO_METH)
fatal_error("Cannot mix POST with other methods\n");
if (open_postfile(opt_arg) != APR_SUCCESS) {
exit(1);
}
method = POST;
send_body = 1;
break;
case 'u':
if (method != NO_METH)
fatal_error("Cannot mix PUT with other methods\n");
if (open_postfile(opt_arg) != APR_SUCCESS) {
exit(1);
}
method = PUT;
send_body = 1;
break;
case 'l':
nolength = 1;
break;
case 'r':
recverrok = 1;
break;
case 'v':
verbosity = atoi(opt_arg);
break;
case 't':
tlimit = atoi(opt_arg);
if (tlimit < 0)
fatal_error("Invalid negative timelimit\n");
break;
case 'T':
content_type = apr_pstrdup(cntxt, opt_arg);
break;
case 'C':
cookie = apr_pstrcat(cntxt, "Cookie: ", opt_arg, "\r\n", NULL);
break;
case 'A':
/*
* assume username passwd already to be in colon separated form.
* Ready to be uu-encoded.
*/
while (apr_isspace(*opt_arg))
opt_arg++;
if (apr_base64_encode_len(strlen(opt_arg)) > sizeof(tmp)) {
fatal_error("Authentication credentials too long\n");
}
apr_base64_encode(tmp, opt_arg, strlen(opt_arg));
auth = apr_pstrcat(cntxt, auth, "Authorization: Basic ", tmp,
"\r\n", NULL);
break;
case 'P':
/*
* assume username passwd already to be in colon separated form.
*/
while (apr_isspace(*opt_arg))
opt_arg++;
if (apr_base64_encode_len(strlen(opt_arg)) > sizeof(tmp)) {
fatal_error("Proxy credentials too long\n");
}
apr_base64_encode(tmp, opt_arg, strlen(opt_arg));
auth = apr_pstrcat(cntxt, auth, "Proxy-Authorization: Basic ",
tmp, "\r\n", NULL);
break;
case 'H':
hdrs = apr_pstrcat(cntxt, hdrs, opt_arg, "\r\n", NULL);
/*
* allow override of some of the common headers that ab adds
*/
if (strncasecmp(opt_arg, "Host:", 5) == 0) {
char *host;
apr_size_t len;
opt_arg += 5;
while (apr_isspace(*opt_arg))
opt_arg++;
len = strlen(opt_arg);
host = strdup(opt_arg);
while (len && apr_isspace(host[len-1]))
host[--len] = '\0';
opt_host = host;
} else if (strncasecmp(opt_arg, "Accept:", 7) == 0) {
opt_accept = 1;
} else if (strncasecmp(opt_arg, "User-Agent:", 11) == 0) {
opt_useragent = 1;
}
break;
case 'w':
use_html = 1;
break;
/*
* if any of the following three are used, turn on html output
* automatically
*/
case 'x':
use_html = 1;
tablestring = opt_arg;
break;
case 'X':
{
char *p;
/*
* assume proxy-name[:port]
*/
if ((p = strchr(opt_arg, ':'))) {
*p = '\0';
p++;
proxyport = atoi(p);
}
proxyhost = apr_pstrdup(cntxt, opt_arg);
isproxy = 1;
}
break;
case 'y':
use_html = 1;
trstring = opt_arg;
break;
case 'z':
use_html = 1;
tdstring = opt_arg;
break;
case 'h':
usage(argv[0]);
break;
case 'V':
copyright();
return 0;
case 'B':
{
const char *ptr, *end;
bind_count = 1;
for (ptr = opt_arg; (end = strchr(ptr, ',')); ptr = end + 1) {
bind_count++;
}
bind_hosts = apr_palloc(cntxt, bind_count * sizeof(char*));
bind_count = 0;
for (ptr = opt_arg; (end = strchr(ptr, ',')); ptr = end + 1) {
if (end > ptr) {
bind_hosts[bind_count++] = apr_pstrmemdup(cntxt, ptr, end - ptr);
}
}
if (*ptr) {
bind_hosts[bind_count++] = apr_pstrdup(cntxt, ptr);
}
if (!bind_count) {
fprintf(stderr, "%s: Invalid bind address[es]\n", argv[0]);
usage(argv[0]);
}
}
break;
case 'm':
method = CUSTOM_METHOD;
method_str[CUSTOM_METHOD] = strdup(opt_arg);
break;
#ifdef USE_SSL
case 'Z':
ssl_cipher = strdup(opt_arg);
break;
case 'E':
ssl_cert = strdup(opt_arg);
break;
case 'f':
#if OPENSSL_VERSION_NUMBER < 0x10100000L
if (strncasecmp(opt_arg, "ALL", 3) == 0) {
meth = SSLv23_client_method();
#ifndef OPENSSL_NO_SSL2
} else if (strncasecmp(opt_arg, "SSL2", 4) == 0) {
meth = SSLv2_client_method();
#ifdef HAVE_TLSEXT
tls_use_sni = 0;
#endif
#endif
#ifndef OPENSSL_NO_SSL3
} else if (strncasecmp(opt_arg, "SSL3", 4) == 0) {
meth = SSLv3_client_method();
#ifdef HAVE_TLSEXT
tls_use_sni = 0;
#endif
#endif
#ifdef HAVE_TLSV1_X
} else if (strncasecmp(opt_arg, "TLS1.1", 6) == 0) {
meth = TLSv1_1_client_method();
} else if (strncasecmp(opt_arg, "TLS1.2", 6) == 0) {
meth = TLSv1_2_client_method();
#endif
} else if (strncasecmp(opt_arg, "TLS1", 4) == 0) {
meth = TLSv1_client_method();
}
#else /* #if OPENSSL_VERSION_NUMBER < 0x10100000L */
meth = TLS_client_method();
if (strncasecmp(opt_arg, "ALL", 3) == 0) {
max_prot = MAX_SSL_PROTO;
min_prot = MIN_SSL_PROTO;
#ifndef OPENSSL_NO_SSL3
} else if (strncasecmp(opt_arg, "SSL3", 4) == 0) {
max_prot = SSL3_VERSION;
min_prot = SSL3_VERSION;
#endif
} else if (strncasecmp(opt_arg, "TLS1.1", 6) == 0) {
max_prot = TLS1_1_VERSION;
min_prot = TLS1_1_VERSION;
} else if (strncasecmp(opt_arg, "TLS1.2", 6) == 0) {
max_prot = TLS1_2_VERSION;
min_prot = TLS1_2_VERSION;
#ifdef TLS1_3_VERSION
} else if (strncasecmp(opt_arg, "TLS1.3", 6) == 0) {
max_prot = TLS1_3_VERSION;
min_prot = TLS1_3_VERSION;
#endif
} else if (strncasecmp(opt_arg, "TLS1", 4) == 0) {
max_prot = TLS1_VERSION;
min_prot = TLS1_VERSION;
}
#endif /* #if OPENSSL_VERSION_NUMBER < 0x10100000L */
break;
#ifdef HAVE_TLSEXT
case 'I':
tls_use_sni = 0;
break;
#endif
#endif /* USE_SSL */
}
}
if (status != APR_EOF || opt->ind != argc - 1) {
fprintf(stderr, "%s: Invalid or missing arguments\n", argv[0]);
usage(argv[0]);
}
if (method == NO_METH) {
method = GET;
}
if (parse_url(apr_pstrdup(cntxt, opt->argv[opt->ind++]))) {
fprintf(stderr, "%s: invalid URL\n", argv[0]);
usage(argv[0]);
}
rlimited = !tlimit || requests > 0;
if (requests == 0) {
requests = tlimit ? TIMED_REQUESTS : 1;
}
#if APR_HAS_THREADS
if (num_workers == 0) {
#ifdef _SC_NPROCESSORS_ONLN
num_workers = sysconf(_SC_NPROCESSORS_ONLN);
#else
fatal_error("-W0 not implemented on this platform\n");
#endif
}
if (num_workers > 1) {
requests = ROUND_UP(requests, num_workers);
concurrency = ROUND_UP(concurrency, num_workers);
}
else {
num_workers = 1;
}
#endif /* APR_HAS_THREADS */
if (concurrency > ROUND_UP(MAX_CONCURRENCY, num_workers)) {
fprintf(stderr, "%s: Invalid Concurrency [Range 0..%d]\n",
argv[0], ROUND_UP(MAX_CONCURRENCY, num_workers));
usage(argv[0]);
}
if (concurrency > requests) {
fprintf(stderr, "%s: Cannot use concurrency level greater than "
"total number of requests\n", argv[0]);
usage(argv[0]);
}
if (tlimit) {
/* Print line every 10% of time */
hbperiod = apr_time_from_sec(tlimit) / 10;
if (hbperiod < apr_time_from_sec(1)) {
hbperiod = apr_time_from_sec(1);
}
else if (hbperiod > apr_time_from_sec(60)) {
hbperiod = apr_time_from_sec(60);
}
}
else if ((heartbeatres) && (requests > 150)) {
heartbeatres = requests / 10; /* Print line every 10% of requests */
if (heartbeatres < 100)
heartbeatres = 100; /* but never more often than once every 100
* connections. */
}
else
heartbeatres = 0;
#ifdef USE_SSL
#ifdef RSAREF
R_malloc_init();
#else
#if OPENSSL_VERSION_NUMBER < 0x10100000L
CRYPTO_malloc_init();
#endif
#endif
SSL_load_error_strings();
SSL_library_init();
if(!(bio_out = BIO_new_fp(stdout,BIO_NOCLOSE))) {
fprintf(stderr, "%s: Cannot allocate memory", argv[0]);
exit(1);
}
if(!(bio_err = BIO_new_fp(stderr,BIO_NOCLOSE))) {
fprintf(stderr, "%s: Cannot allocate memory", argv[0]);
exit(1);
}
#if OPENSSL_VERSION_NUMBER >= 0x10101000
if (RAND_status() == 0) {
fprintf(stderr, "%s: Error: Crypto library PRNG does not contain "
"sufficient randomness.\n"
"%s: Build the library with a suitable entropy source configured.\n",
argv[0], argv[0]);
exit(1);
}
#endif
if (!(ssl_ctx = SSL_CTX_new(meth))) {
BIO_printf(bio_err, "Could not initialize SSL Context.\n");
ERR_print_errors(bio_err);
fatal_error("SSL_CTX_new failed");
}
SSL_CTX_set_options(ssl_ctx, SSL_OP_ALL);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
SSL_CTX_set_max_proto_version(ssl_ctx, max_prot);
SSL_CTX_set_min_proto_version(ssl_ctx, min_prot);
#endif
#ifdef SSL_MODE_RELEASE_BUFFERS
/* Keep memory usage as low as possible */
SSL_CTX_set_mode (ssl_ctx, SSL_MODE_RELEASE_BUFFERS);
#endif
if (ssl_cipher != NULL) {
int ok;
#if OPENSSL_VERSION_NUMBER >= 0x10101000L && defined(TLS1_3_VERSION)
if (min_prot >= TLS1_3_VERSION)
ok = SSL_CTX_set_ciphersuites(ssl_ctx, ssl_cipher);
else
#endif
ok = SSL_CTX_set_cipher_list(ssl_ctx, ssl_cipher);
if (!ok) {
BIO_printf(bio_err, "error setting ciphersuite list [%s]\n",
ssl_cipher);
ERR_print_errors(bio_err);
fatal_error("SSL_CTX_set_cipher_list failed");
}
}
if (verbosity >= 3) {
SSL_CTX_set_info_callback(ssl_ctx, ssl_state_cb);
}
if (ssl_cert != NULL) {
if (SSL_CTX_use_certificate_chain_file(ssl_ctx, ssl_cert) <= 0) {
BIO_printf(bio_err, "unable to get certificate from '%s'\n",
ssl_cert);
ERR_print_errors(bio_err);
fatal_error("SSL_CTX_use_certificate_chain_file failed");
}
if (SSL_CTX_use_PrivateKey_file(ssl_ctx, ssl_cert, SSL_FILETYPE_PEM) <= 0) {
BIO_printf(bio_err, "unable to get private key from '%s'\n",
ssl_cert);
ERR_print_errors(bio_err);
fatal_error("SSL_CTX_use_PrivateKey_file failed");
}
if (!SSL_CTX_check_private_key(ssl_ctx)) {
BIO_printf(bio_err,
"private key does not match the certificate public key in %s\n", ssl_cert);
ERR_print_errors(bio_err);
fatal_error("SSL_CTX_check_private_key failed");
}
}
#endif
#ifdef SIGPIPE
apr_signal(SIGPIPE, SIG_IGN); /* Ignore writes to connections that
* have been closed at the other end. */
#endif
if (!no_banner) {
copyright();
}
return test();
}