blob: c349d10e645cdd4b295db880f71114e725ad9c75 [file] [log] [blame]
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mod_cache.h"
#include "cache_util.h"
#include <ap_provider.h>
APLOG_USE_MODULE(cache);
/* -------------------------------------------------------------- */
extern APR_OPTIONAL_FN_TYPE(ap_cache_generate_key) *cache_generate_key;
extern module AP_MODULE_DECLARE_DATA cache_module;
/* Determine if "url" matches the hostname, scheme and port and path
* in "filter". All but the path comparisons are case-insensitive.
*/
static int uri_meets_conditions(const apr_uri_t *filter, const int pathlen,
const apr_uri_t *url)
{
/* Scheme, hostname port and local part. The filter URI and the
* URI we test may have the following shapes:
* /<path>
* <scheme>[:://<hostname>[:<port>][/<path>]]
* That is, if there is no scheme then there must be only the path,
* and we check only the path; if there is a scheme, we check the
* scheme for equality, and then if present we match the hostname,
* and then if present match the port, and finally the path if any.
*
* Note that this means that "/<path>" only matches local paths,
* and to match proxied paths one *must* specify the scheme.
*/
/* Is the filter is just for a local path or a proxy URI? */
if (!filter->scheme) {
if (url->scheme || url->hostname) {
return 0;
}
}
else {
/* The URI scheme must be present and identical except for case. */
if (!url->scheme || ap_cstr_casecmp(filter->scheme, url->scheme)) {
return 0;
}
/* If the filter hostname is null or empty it matches any hostname,
* if it begins with a "*" it matches the _end_ of the URI hostname
* excluding the "*", if it begins with a "." it matches the _end_
* of the URI * hostname including the ".", otherwise it must match
* the URI hostname exactly. */
if (filter->hostname && filter->hostname[0]) {
if (filter->hostname[0] == '.') {
const size_t fhostlen = strlen(filter->hostname);
const size_t uhostlen = url->hostname ? strlen(url->hostname) : 0;
if (fhostlen > uhostlen
|| (url->hostname
&& strcasecmp(filter->hostname,
url->hostname + uhostlen - fhostlen))) {
return 0;
}
}
else if (filter->hostname[0] == '*') {
const size_t fhostlen = strlen(filter->hostname + 1);
const size_t uhostlen = url->hostname ? strlen(url->hostname) : 0;
if (fhostlen > uhostlen
|| (url->hostname
&& strcasecmp(filter->hostname + 1,
url->hostname + uhostlen - fhostlen))) {
return 0;
}
}
else if (!url->hostname || strcasecmp(filter->hostname, url->hostname)) {
return 0;
}
}
/* If the filter port is empty it matches any URL port.
* If the filter or URL port are missing, or the URL port is
* empty, they default to the port for their scheme. */
if (!(filter->port_str && !filter->port_str[0])) {
/* NOTE: ap_port_of_scheme will return 0 if given NULL input */
const unsigned fport = filter->port_str ? filter->port
: apr_uri_port_of_scheme(filter->scheme);
const unsigned uport = (url->port_str && url->port_str[0])
? url->port : apr_uri_port_of_scheme(url->scheme);
if (fport != uport) {
return 0;
}
}
}
/* For HTTP caching purposes, an empty (NULL) path is equivalent to
* a single "/" path. RFCs 3986/2396
*/
if (!url->path) {
if (*filter->path == '/' && pathlen == 1) {
return 1;
}
else {
return 0;
}
}
/* Url has met all of the filter conditions so far, determine
* if the paths match.
*/
return !strncmp(filter->path, url->path, pathlen);
}
static cache_provider_list *get_provider(request_rec *r, struct cache_enable *ent,
cache_provider_list *providers)
{
/* Fetch from global config and add to the list. */
cache_provider *provider;
provider = ap_lookup_provider(CACHE_PROVIDER_GROUP, ent->type,
"0");
if (!provider) {
/* Log an error! */
}
else {
cache_provider_list *newp;
newp = apr_pcalloc(r->pool, sizeof(cache_provider_list));
newp->provider_name = ent->type;
newp->provider = provider;
if (!providers) {
providers = newp;
}
else {
cache_provider_list *last = providers;
while (last->next) {
if (last->provider == provider) {
return providers;
}
last = last->next;
}
if (last->provider == provider) {
return providers;
}
last->next = newp;
}
}
return providers;
}
cache_provider_list *cache_get_providers(request_rec *r,
cache_server_conf *conf,
apr_uri_t uri)
{
cache_dir_conf *dconf = ap_get_module_config(r->per_dir_config, &cache_module);
cache_provider_list *providers = NULL;
int i;
/* per directory cache disable */
if (dconf->disable) {
return NULL;
}
/* global cache disable */
for (i = 0; i < conf->cachedisable->nelts; i++) {
struct cache_disable *ent =
(struct cache_disable *)conf->cachedisable->elts;
if (uri_meets_conditions(&ent[i].url, ent[i].pathlen, &uri)) {
/* Stop searching now. */
return NULL;
}
}
/* loop through all the per directory cacheenable entries */
for (i = 0; i < dconf->cacheenable->nelts; i++) {
struct cache_enable *ent =
(struct cache_enable *)dconf->cacheenable->elts;
providers = get_provider(r, &ent[i], providers);
}
/* loop through all the global cacheenable entries */
for (i = 0; i < conf->cacheenable->nelts; i++) {
struct cache_enable *ent =
(struct cache_enable *)conf->cacheenable->elts;
if (uri_meets_conditions(&ent[i].url, ent[i].pathlen, &uri)) {
providers = get_provider(r, &ent[i], providers);
}
}
return providers;
}
/* do a HTTP/1.1 age calculation */
CACHE_DECLARE(apr_int64_t) ap_cache_current_age(cache_info *info,
const apr_time_t age_value,
apr_time_t now)
{
apr_time_t apparent_age, corrected_received_age, response_delay,
corrected_initial_age, resident_time, current_age,
age_value_usec;
age_value_usec = apr_time_from_sec(age_value);
/* Perform an HTTP/1.1 age calculation. (RFC2616 13.2.3) */
apparent_age = MAX(0, info->response_time - info->date);
corrected_received_age = MAX(apparent_age, age_value_usec);
response_delay = info->response_time - info->request_time;
corrected_initial_age = corrected_received_age + response_delay;
resident_time = now - info->response_time;
current_age = corrected_initial_age + resident_time;
if (current_age < 0) {
current_age = 0;
}
return apr_time_sec(current_age);
}
/**
* Try obtain a cache wide lock on the given cache key.
*
* If we return APR_SUCCESS, we obtained the lock, and we are clear to
* proceed to the backend. If we return APR_EEXIST, then the lock is
* already locked, someone else has gone to refresh the backend data
* already, so we must return stale data with a warning in the mean
* time. If we return anything else, then something has gone pear
* shaped, and we allow the request through to the backend regardless.
*
* This lock is created from the request pool, meaning that should
* something go wrong and the lock isn't deleted on return of the
* request headers from the backend for whatever reason, at worst the
* lock will be cleaned up when the request dies or finishes.
*
* If something goes truly bananas and the lock isn't deleted when the
* request dies, the lock will be trashed when its max-age is reached,
* or when a request arrives containing a Cache-Control: no-cache. At
* no point is it possible for this lock to permanently deny access to
* the backend.
*/
apr_status_t cache_try_lock(cache_server_conf *conf, cache_request_rec *cache,
request_rec *r)
{
apr_status_t status;
const char *lockname;
const char *path;
char dir[5];
apr_time_t now = apr_time_now();
apr_finfo_t finfo;
apr_file_t *lockfile;
void *dummy;
finfo.mtime = 0;
if (!conf || !conf->lock || !conf->lockpath) {
/* no locks configured, leave */
return APR_SUCCESS;
}
/* lock already obtained earlier? if so, success */
apr_pool_userdata_get(&dummy, CACHE_LOCKFILE_KEY, r->pool);
if (dummy) {
return APR_SUCCESS;
}
/* create the key if it doesn't exist */
if (!cache->key) {
cache_handle_t *h;
/*
* Try to use the key of a possible open but stale cache
* entry if we have one.
*/
if (cache->handle != NULL) {
h = cache->handle;
}
else {
h = cache->stale_handle;
}
if ((h != NULL) &&
(h->cache_obj != NULL) &&
(h->cache_obj->key != NULL)) {
cache->key = apr_pstrdup(r->pool, h->cache_obj->key);
}
else {
cache_generate_key(r, r->pool, &cache->key);
}
}
/* create a hashed filename from the key, and save it for later */
lockname = ap_cache_generate_name(r->pool, 0, 0, cache->key);
/* lock files represent discrete just-went-stale URLs "in flight", so
* we support a simple two level directory structure, more is overkill.
*/
dir[0] = '/';
dir[1] = lockname[0];
dir[2] = '/';
dir[3] = lockname[1];
dir[4] = 0;
/* make the directories */
path = apr_pstrcat(r->pool, conf->lockpath, dir, NULL);
if (APR_SUCCESS != (status = apr_dir_make_recursive(path,
APR_UREAD|APR_UWRITE|APR_UEXECUTE, r->pool))) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, status, r, APLOGNO(00778)
"Could not create a cache lock directory: %s",
path);
return status;
}
lockname = apr_pstrcat(r->pool, path, "/", lockname, NULL);
apr_pool_userdata_set(lockname, CACHE_LOCKNAME_KEY, NULL, r->pool);
/* is an existing lock file too old? */
status = apr_stat(&finfo, lockname,
APR_FINFO_MTIME | APR_FINFO_NLINK, r->pool);
if (!(APR_STATUS_IS_ENOENT(status)) && APR_SUCCESS != status) {
ap_log_rerror(APLOG_MARK, APLOG_ERR, status, r, APLOGNO(00779)
"Could not stat a cache lock file: %s",
lockname);
return status;
}
if ((status == APR_SUCCESS) && (((now - finfo.mtime) > conf->lockmaxage)
|| (now < finfo.mtime))) {
ap_log_rerror(APLOG_MARK, APLOG_INFO, status, r, APLOGNO(00780)
"Cache lock file for '%s' too old, removing: %s",
r->uri, lockname);
apr_file_remove(lockname, r->pool);
}
/* try obtain a lock on the file */
if (APR_SUCCESS == (status = apr_file_open(&lockfile, lockname,
APR_WRITE | APR_CREATE | APR_EXCL | APR_DELONCLOSE,
APR_UREAD | APR_UWRITE, r->pool))) {
apr_pool_userdata_set(lockfile, CACHE_LOCKFILE_KEY, NULL, r->pool);
}
return status;
}
/**
* Remove the cache lock, if present.
*
* First, try to close the file handle, whose delete-on-close should
* kill the file. Otherwise, just delete the file by name.
*
* If no lock name has yet been calculated, do the calculation of the
* lock name first before trying to delete the file.
*
* If an optional bucket brigade is passed, the lock will only be
* removed if the bucket brigade contains an EOS bucket.
*/
apr_status_t cache_remove_lock(cache_server_conf *conf,
cache_request_rec *cache, request_rec *r, apr_bucket_brigade *bb)
{
void *dummy;
const char *lockname;
if (!conf || !conf->lock || !conf->lockpath) {
/* no locks configured, leave */
return APR_SUCCESS;
}
if (bb) {
apr_bucket *e;
int eos_found = 0;
for (e = APR_BRIGADE_FIRST(bb);
e != APR_BRIGADE_SENTINEL(bb);
e = APR_BUCKET_NEXT(e))
{
if (APR_BUCKET_IS_EOS(e)) {
eos_found = 1;
break;
}
}
if (!eos_found) {
/* no eos found in brigade, don't delete anything just yet,
* we are not done.
*/
return APR_SUCCESS;
}
}
apr_pool_userdata_get(&dummy, CACHE_LOCKFILE_KEY, r->pool);
if (dummy) {
return apr_file_close((apr_file_t *)dummy);
}
apr_pool_userdata_get(&dummy, CACHE_LOCKNAME_KEY, r->pool);
lockname = (const char *)dummy;
if (!lockname) {
char dir[5];
/* create the key if it doesn't exist */
if (!cache->key) {
cache_generate_key(r, r->pool, &cache->key);
}
/* create a hashed filename from the key, and save it for later */
lockname = ap_cache_generate_name(r->pool, 0, 0, cache->key);
/* lock files represent discrete just-went-stale URLs "in flight", so
* we support a simple two level directory structure, more is overkill.
*/
dir[0] = '/';
dir[1] = lockname[0];
dir[2] = '/';
dir[3] = lockname[1];
dir[4] = 0;
lockname = apr_pstrcat(r->pool, conf->lockpath, dir, "/", lockname, NULL);
}
return apr_file_remove(lockname, r->pool);
}
int ap_cache_check_no_cache(cache_request_rec *cache, request_rec *r)
{
cache_server_conf *conf =
(cache_server_conf *)ap_get_module_config(r->server->module_config,
&cache_module);
/*
* At this point, we may have data cached, but the request may have
* specified that cached data may not be used in a response.
*
* This is covered under RFC2616 section 14.9.4 (Cache Revalidation and
* Reload Controls).
*
* - RFC2616 14.9.4 End to end reload, Cache-Control: no-cache, or Pragma:
* no-cache. The server MUST NOT use a cached copy when responding to such
* a request.
*/
/* This value comes from the client's initial request. */
if (!cache->control_in.parsed) {
const char *cc_req = cache_table_getm(r->pool, r->headers_in,
"Cache-Control");
const char *pragma = cache_table_getm(r->pool, r->headers_in, "Pragma");
ap_cache_control(r, &cache->control_in, cc_req, pragma, r->headers_in);
}
if (cache->control_in.no_cache) {
if (!conf->ignorecachecontrol) {
return 0;
}
else {
ap_log_rerror(APLOG_MARK, APLOG_INFO, 0, r, APLOGNO(02657)
"Incoming request is asking for an uncached version of "
"%s, but we have been configured to ignore it and serve "
"cached content anyway", r->unparsed_uri);
}
}
return 1;
}
int ap_cache_check_no_store(cache_request_rec *cache, request_rec *r)
{
cache_server_conf *conf =
(cache_server_conf *)ap_get_module_config(r->server->module_config,
&cache_module);
/*
* At this point, we may have data cached, but the request may have
* specified that cached data may not be used in a response.
*
* - RFC2616 14.9.2 What May be Stored by Caches. If Cache-Control:
* no-store arrives, do not serve from or store to the cache.
*/
/* This value comes from the client's initial request. */
if (!cache->control_in.parsed) {
const char *cc_req = cache_table_getm(r->pool, r->headers_in,
"Cache-Control");
const char *pragma = cache_table_getm(r->pool, r->headers_in, "Pragma");
ap_cache_control(r, &cache->control_in, cc_req, pragma, r->headers_in);
}
if (cache->control_in.no_store) {
if (!conf->ignorecachecontrol) {
/* We're not allowed to serve a cached copy */
return 0;
}
else {
ap_log_rerror(APLOG_MARK, APLOG_INFO, 0, r, APLOGNO(02658)
"Incoming request is asking for a no-store version of "
"%s, but we have been configured to ignore it and serve "
"cached content anyway", r->unparsed_uri);
}
}
return 1;
}
int cache_check_freshness(cache_handle_t *h, cache_request_rec *cache,
request_rec *r)
{
apr_status_t status;
apr_int64_t age, maxage_req, maxage_cresp, maxage, smaxage, maxstale;
apr_int64_t minfresh;
const char *cc_req;
const char *pragma;
const char *agestr = NULL;
apr_time_t age_c = 0;
cache_info *info = &(h->cache_obj->info);
const char *warn_head;
cache_server_conf *conf =
(cache_server_conf *)ap_get_module_config(r->server->module_config,
&cache_module);
/*
* We now want to check if our cached data is still fresh. This depends
* on a few things, in this order:
*
* - RFC2616 14.9.4 End to end reload, Cache-Control: no-cache. no-cache
* in either the request or the cached response means that we must
* perform the request unconditionally, and ignore cached content. We
* should never reach here, but if we do, mark the content as stale,
* as this is the best we can do.
*
* - RFC2616 14.32 Pragma: no-cache This is treated the same as
* Cache-Control: no-cache.
*
* - RFC2616 14.9.3 Cache-Control: max-stale, must-revalidate,
* proxy-revalidate if the max-stale request header exists, modify the
* stale calculations below so that an object can be at most <max-stale>
* seconds stale before we request a revalidation, _UNLESS_ a
* must-revalidate or proxy-revalidate cached response header exists to
* stop us doing this.
*
* - RFC2616 14.9.3 Cache-Control: s-maxage the origin server specifies the
* maximum age an object can be before it is considered stale. This
* directive has the effect of proxy|must revalidate, which in turn means
* simple ignore any max-stale setting.
*
* - RFC2616 14.9.4 Cache-Control: max-age this header can appear in both
* requests and responses. If both are specified, the smaller of the two
* takes priority.
*
* - RFC2616 14.21 Expires: if this request header exists in the cached
* entity, and it's value is in the past, it has expired.
*
*/
/* This value comes from the client's initial request. */
cc_req = apr_table_get(r->headers_in, "Cache-Control");
pragma = apr_table_get(r->headers_in, "Pragma");
ap_cache_control(r, &cache->control_in, cc_req, pragma, r->headers_in);
if (cache->control_in.no_cache) {
if (!conf->ignorecachecontrol) {
/* Treat as stale, causing revalidation */
return 0;
}
ap_log_rerror(APLOG_MARK, APLOG_INFO, 0, r, APLOGNO(00781)
"Incoming request is asking for a uncached version of "
"%s, but we have been configured to ignore it and "
"serve a cached response anyway",
r->unparsed_uri);
}
/* These come from the cached entity. */
if (h->cache_obj->info.control.no_cache
|| h->cache_obj->info.control.invalidated) {
/*
* The cached entity contained Cache-Control: no-cache, or a
* no-cache with a header present, or a private with a header
* present, or the cached entity has been invalidated in the
* past, so treat as stale causing revalidation.
*/
return 0;
}
if ((agestr = apr_table_get(h->resp_hdrs, "Age"))) {
char *endp;
apr_off_t offt;
if (!apr_strtoff(&offt, agestr, &endp, 10)
&& endp > agestr && !*endp) {
age_c = offt;
}
}
/* calculate age of object */
age = ap_cache_current_age(info, age_c, r->request_time);
/* extract s-maxage */
smaxage = h->cache_obj->info.control.s_maxage_value;
/* extract max-age from request */
maxage_req = -1;
if (!conf->ignorecachecontrol) {
maxage_req = cache->control_in.max_age_value;
}
/*
* extract max-age from response, if both s-maxage and max-age, s-maxage
* takes priority
*/
if (smaxage != -1) {
maxage_cresp = smaxage;
}
else {
maxage_cresp = h->cache_obj->info.control.max_age_value;
}
/*
* if both maxage request and response, the smaller one takes priority
*/
if (maxage_req == -1) {
maxage = maxage_cresp;
}
else if (maxage_cresp == -1) {
maxage = maxage_req;
}
else {
maxage = MIN(maxage_req, maxage_cresp);
}
/* extract max-stale */
if (cache->control_in.max_stale) {
if(cache->control_in.max_stale_value != -1) {
maxstale = cache->control_in.max_stale_value;
}
else {
/*
* If no value is assigned to max-stale, then the client is willing
* to accept a stale response of any age (RFC2616 14.9.3). We will
* set it to one year in this case as this situation is somewhat
* similar to a "never expires" Expires header (RFC2616 14.21)
* which is set to a date one year from the time the response is
* sent in this case.
*/
maxstale = APR_INT64_C(86400*365);
}
}
else {
maxstale = 0;
}
/* extract min-fresh */
if (!conf->ignorecachecontrol && cache->control_in.min_fresh) {
minfresh = cache->control_in.min_fresh_value;
}
else {
minfresh = 0;
}
/* override maxstale if must-revalidate, proxy-revalidate or s-maxage */
if (maxstale && (h->cache_obj->info.control.must_revalidate
|| h->cache_obj->info.control.proxy_revalidate || smaxage != -1)) {
maxstale = 0;
}
/* handle expiration */
if (((maxage != -1) && (age < (maxage + maxstale - minfresh))) ||
((smaxage == -1) && (maxage == -1) &&
(info->expire != APR_DATE_BAD) &&
(age < (apr_time_sec(info->expire - info->date) + maxstale - minfresh)))) {
warn_head = apr_table_get(h->resp_hdrs, "Warning");
/* it's fresh darlings... */
/* set age header on response */
apr_table_set(h->resp_hdrs, "Age",
apr_psprintf(r->pool, "%lu", (unsigned long)age));
/* add warning if maxstale overrode freshness calculation */
if (!(((maxage != -1) && age < maxage) ||
(info->expire != APR_DATE_BAD &&
(apr_time_sec(info->expire - info->date)) > age))) {
/* make sure we don't stomp on a previous warning */
if ((warn_head == NULL) ||
((warn_head != NULL) && (ap_strstr_c(warn_head, "110") == NULL))) {
apr_table_mergen(h->resp_hdrs, "Warning",
"110 Response is stale");
}
}
/*
* If none of Expires, Cache-Control: max-age, or Cache-Control:
* s-maxage appears in the response, and the response header age
* calculated is more than 24 hours add the warning 113
*/
if ((maxage_cresp == -1) && (smaxage == -1) && (apr_table_get(
h->resp_hdrs, "Expires") == NULL) && (age > 86400)) {
/* Make sure we don't stomp on a previous warning, and don't dup
* a 113 marning that is already present. Also, make sure to add
* the new warning to the correct *headers_out location.
*/
if ((warn_head == NULL) ||
((warn_head != NULL) && (ap_strstr_c(warn_head, "113") == NULL))) {
apr_table_mergen(h->resp_hdrs, "Warning",
"113 Heuristic expiration");
}
}
return 1; /* Cache object is fresh (enough) */
}
/*
* At this point we are stale, but: if we are under load, we may let
* a significant number of stale requests through before the first
* stale request successfully revalidates itself, causing a sudden
* unexpected thundering herd which in turn brings angst and drama.
*
* So.
*
* We want the first stale request to go through as normal. But the
* second and subsequent request, we must pretend to be fresh until
* the first request comes back with either new content or confirmation
* that the stale content is still fresh.
*
* To achieve this, we create a very simple file based lock based on
* the key of the cached object. We attempt to open the lock file with
* exclusive write access. If we succeed, woohoo! we're first, and we
* follow the stale path to the backend server. If we fail, oh well,
* we follow the fresh path, and avoid being a thundering herd.
*
* The lock lives only as long as the stale request that went on ahead.
* If the request succeeds, the lock is deleted. If the request fails,
* the lock is deleted, and another request gets to make a new lock
* and try again.
*
* At any time, a request marked "no-cache" will force a refresh,
* ignoring the lock, ensuring an extended lockout is impossible.
*
* A lock that exceeds a maximum age will be deleted, and another
* request gets to make a new lock and try again.
*/
status = cache_try_lock(conf, cache, r);
if (APR_SUCCESS == status) {
/* we obtained a lock, follow the stale path */
ap_log_rerror(APLOG_MARK, APLOG_DEBUG, 0, r, APLOGNO(00782)
"Cache lock obtained for stale cached URL, "
"revalidating entry: %s",
r->unparsed_uri);
return 0;
}
else if (APR_STATUS_IS_EEXIST(status)) {
/* lock already exists, return stale data anyway, with a warning */
ap_log_rerror(APLOG_MARK, APLOG_DEBUG, status, r, APLOGNO(00783)
"Cache already locked for stale cached URL, "
"pretend it is fresh: %s",
r->unparsed_uri);
/* make sure we don't stomp on a previous warning */
warn_head = apr_table_get(h->resp_hdrs, "Warning");
if ((warn_head == NULL) ||
((warn_head != NULL) && (ap_strstr_c(warn_head, "110") == NULL))) {
apr_table_mergen(h->resp_hdrs, "Warning",
"110 Response is stale");
}
return 1;
}
else {
/* some other error occurred, just treat the object as stale */
ap_log_rerror(APLOG_MARK, APLOG_DEBUG, status, r, APLOGNO(00784)
"Attempt to obtain a cache lock for stale "
"cached URL failed, revalidating entry anyway: %s",
r->unparsed_uri);
return 0;
}
}
/* return each comma separated token, one at a time */
CACHE_DECLARE(const char *)ap_cache_tokstr(apr_pool_t *p, const char *list,
const char **str)
{
apr_size_t i;
const char *s;
s = ap_strchr_c(list, ',');
if (s != NULL) {
i = s - list;
do
s++;
while (apr_isspace(*s))
; /* noop */
}
else
i = strlen(list);
while (i > 0 && apr_isspace(list[i - 1]))
i--;
*str = s;
if (i)
return apr_pstrndup(p, list, i);
else
return NULL;
}
/*
* Converts apr_time_t expressed as hex digits to
* a true apr_time_t.
*/
CACHE_DECLARE(apr_time_t) ap_cache_hex2usec(const char *x)
{
int i, ch;
apr_time_t j;
for (i = 0, j = 0; i < sizeof(j) * 2; i++) {
ch = x[i];
j <<= 4;
if (apr_isdigit(ch))
j |= ch - '0';
else if (apr_isupper(ch))
j |= ch - ('A' - 10);
else
j |= ch - ('a' - 10);
}
return j;
}
/*
* Converts apr_time_t to apr_time_t expressed as hex digits.
*/
CACHE_DECLARE(void) ap_cache_usec2hex(apr_time_t j, char *y)
{
int i, ch;
for (i = (sizeof(j) * 2)-1; i >= 0; i--) {
ch = (int)(j & 0xF);
j >>= 4;
if (ch >= 10)
y[i] = ch + ('A' - 10);
else
y[i] = ch + '0';
}
y[sizeof(j) * 2] = '\0';
}
static void cache_hash(const char *it, char *val, int ndepth, int nlength)
{
apr_md5_ctx_t context;
unsigned char digest[16];
char tmp[22];
int i, k, d;
unsigned int x;
static const char enc_table[64] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_@";
apr_md5_init(&context);
apr_md5_update(&context, (const unsigned char *) it, strlen(it));
apr_md5_final(digest, &context);
/* encode 128 bits as 22 characters, using a modified uuencoding
* the encoding is 3 bytes -> 4 characters* i.e. 128 bits is
* 5 x 3 bytes + 1 byte -> 5 * 4 characters + 2 characters
*/
for (i = 0, k = 0; i < 15; i += 3) {
x = (digest[i] << 16) | (digest[i + 1] << 8) | digest[i + 2];
tmp[k++] = enc_table[x >> 18];
tmp[k++] = enc_table[(x >> 12) & 0x3f];
tmp[k++] = enc_table[(x >> 6) & 0x3f];
tmp[k++] = enc_table[x & 0x3f];
}
/* one byte left */
x = digest[15];
tmp[k++] = enc_table[x >> 2]; /* use up 6 bits */
tmp[k++] = enc_table[(x << 4) & 0x3f];
/* now split into directory levels */
for (i = k = d = 0; d < ndepth; ++d) {
memcpy(&val[i], &tmp[k], nlength);
k += nlength;
val[i + nlength] = '/';
i += nlength + 1;
}
memcpy(&val[i], &tmp[k], 22 - k);
val[i + 22 - k] = '\0';
}
CACHE_DECLARE(char *)ap_cache_generate_name(apr_pool_t *p, int dirlevels,
int dirlength, const char *name)
{
char hashfile[66];
cache_hash(name, hashfile, dirlevels, dirlength);
return apr_pstrdup(p, hashfile);
}
/**
* String tokenizer that ignores separator characters within quoted strings
* and escaped characters, as per RFC2616 section 2.2.
*/
char *cache_strqtok(char *str, const char *sep, char **last)
{
char *token;
int quoted = 0;
if (!str) { /* subsequent call */
str = *last; /* start where we left off */
}
if (!str) { /* no more tokens */
return NULL;
}
/* skip characters in sep (will terminate at '\0') */
while (*str && ap_strchr_c(sep, *str)) {
++str;
}
if (!*str) { /* no more tokens */
return NULL;
}
token = str;
/* skip valid token characters to terminate token and
* prepare for the next call (will terminate at '\0)
* on the way, ignore all quoted strings, and within
* quoted strings, escaped characters.
*/
*last = token;
while (**last) {
if (!quoted) {
if (**last == '\"' && !ap_strchr_c(sep, '\"')) {
quoted = 1;
++*last;
}
else if (!ap_strchr_c(sep, **last)) {
++*last;
}
else {
break;
}
}
else {
if (**last == '\"') {
quoted = 0;
++*last;
}
else if (**last == '\\') {
++*last;
if (**last) {
++*last;
}
}
else {
++*last;
}
}
}
if (**last) {
**last = '\0';
++*last;
}
return token;
}
/**
* Parse the Cache-Control and Pragma headers in one go, marking
* which tokens appear within the header. Populate the structure
* passed in.
*/
int ap_cache_control(request_rec *r, cache_control_t *cc,
const char *cc_header, const char *pragma_header, apr_table_t *headers)
{
char *last;
if (cc->parsed) {
return cc->cache_control || cc->pragma;
}
cc->parsed = 1;
cc->max_age_value = -1;
cc->max_stale_value = -1;
cc->min_fresh_value = -1;
cc->s_maxage_value = -1;
if (pragma_header) {
char *header = apr_pstrdup(r->pool, pragma_header);
const char *token = cache_strqtok(header, CACHE_SEPARATOR, &last);
while (token) {
if (!ap_cstr_casecmp(token, "no-cache")) {
cc->no_cache = 1;
}
token = cache_strqtok(NULL, CACHE_SEPARATOR, &last);
}
cc->pragma = 1;
}
if (cc_header) {
char *endp;
apr_off_t offt;
char *header = apr_pstrdup(r->pool, cc_header);
const char *token = cache_strqtok(header, CACHE_SEPARATOR, &last);
while (token) {
switch (token[0]) {
case 'n':
case 'N': {
if (!ap_cstr_casecmpn(token, "no-cache", 8)) {
if (token[8] == '=') {
cc->no_cache_header = 1;
}
else if (!token[8]) {
cc->no_cache = 1;
}
}
else if (!ap_cstr_casecmp(token, "no-store")) {
cc->no_store = 1;
}
else if (!ap_cstr_casecmp(token, "no-transform")) {
cc->no_transform = 1;
}
break;
}
case 'm':
case 'M': {
if (!ap_cstr_casecmpn(token, "max-age", 7)) {
if (token[7] == '='
&& !apr_strtoff(&offt, token + 8, &endp, 10)
&& endp > token + 8 && !*endp) {
cc->max_age = 1;
cc->max_age_value = offt;
}
}
else if (!ap_cstr_casecmp(token, "must-revalidate")) {
cc->must_revalidate = 1;
}
else if (!ap_cstr_casecmpn(token, "max-stale", 9)) {
if (token[9] == '='
&& !apr_strtoff(&offt, token + 10, &endp, 10)
&& endp > token + 10 && !*endp) {
cc->max_stale = 1;
cc->max_stale_value = offt;
}
else if (!token[9]) {
cc->max_stale = 1;
cc->max_stale_value = -1;
}
}
else if (!ap_cstr_casecmpn(token, "min-fresh", 9)) {
if (token[9] == '='
&& !apr_strtoff(&offt, token + 10, &endp, 10)
&& endp > token + 10 && !*endp) {
cc->min_fresh = 1;
cc->min_fresh_value = offt;
}
}
break;
}
case 'o':
case 'O': {
if (!ap_cstr_casecmp(token, "only-if-cached")) {
cc->only_if_cached = 1;
}
break;
}
case 'p':
case 'P': {
if (!ap_cstr_casecmp(token, "public")) {
cc->public = 1;
}
else if (!ap_cstr_casecmpn(token, "private", 7)) {
if (token[7] == '=') {
cc->private_header = 1;
}
else if (!token[7]) {
cc->private = 1;
}
}
else if (!ap_cstr_casecmp(token, "proxy-revalidate")) {
cc->proxy_revalidate = 1;
}
break;
}
case 's':
case 'S': {
if (!ap_cstr_casecmpn(token, "s-maxage", 8)) {
if (token[8] == '='
&& !apr_strtoff(&offt, token + 9, &endp, 10)
&& endp > token + 9 && !*endp) {
cc->s_maxage = 1;
cc->s_maxage_value = offt;
}
}
break;
}
}
token = cache_strqtok(NULL, CACHE_SEPARATOR, &last);
}
cc->cache_control = 1;
}
return (cc_header != NULL || pragma_header != NULL);
}
/**
* Parse the Cache-Control, identifying and removing headers that
* exist as tokens after the no-cache and private tokens.
*/
static int cache_control_remove(request_rec *r, const char *cc_header,
apr_table_t *headers)
{
char *last, *slast;
int found = 0;
if (cc_header) {
char *header = apr_pstrdup(r->pool, cc_header);
char *token = cache_strqtok(header, CACHE_SEPARATOR, &last);
while (token) {
switch (token[0]) {
case 'n':
case 'N': {
if (!ap_cstr_casecmpn(token, "no-cache", 8)) {
if (token[8] == '=') {
const char *header = cache_strqtok(token + 9,
CACHE_SEPARATOR "\"", &slast);
while (header) {
apr_table_unset(headers, header);
header = cache_strqtok(NULL, CACHE_SEPARATOR "\"",
&slast);
}
found = 1;
}
break;
}
break;
}
case 'p':
case 'P': {
if (!ap_cstr_casecmpn(token, "private", 7)) {
if (token[7] == '=') {
const char *header = cache_strqtok(token + 8,
CACHE_SEPARATOR "\"", &slast);
while (header) {
apr_table_unset(headers, header);
header = cache_strqtok(NULL, CACHE_SEPARATOR "\"",
&slast);
}
found = 1;
}
}
break;
}
}
token = cache_strqtok(NULL, CACHE_SEPARATOR, &last);
}
}
return found;
}
/*
* Create a new table consisting of those elements from an
* headers table that are allowed to be stored in a cache.
*/
CACHE_DECLARE(apr_table_t *)ap_cache_cacheable_headers(apr_pool_t *pool,
apr_table_t *t,
server_rec *s)
{
cache_server_conf *conf;
char **header;
int i;
apr_table_t *headers_out;
/* Short circuit the common case that there are not
* (yet) any headers populated.
*/
if (t == NULL) {
return apr_table_make(pool, 10);
};
/* Make a copy of the headers, and remove from
* the copy any hop-by-hop headers, as defined in Section
* 13.5.1 of RFC 2616
*/
headers_out = apr_table_copy(pool, t);
apr_table_unset(headers_out, "Connection");
apr_table_unset(headers_out, "Keep-Alive");
apr_table_unset(headers_out, "Proxy-Authenticate");
apr_table_unset(headers_out, "Proxy-Authorization");
apr_table_unset(headers_out, "TE");
apr_table_unset(headers_out, "Trailers");
apr_table_unset(headers_out, "Transfer-Encoding");
apr_table_unset(headers_out, "Upgrade");
conf = (cache_server_conf *)ap_get_module_config(s->module_config,
&cache_module);
/* Remove the user defined headers set with CacheIgnoreHeaders.
* This may break RFC 2616 compliance on behalf of the administrator.
*/
header = (char **)conf->ignore_headers->elts;
for (i = 0; i < conf->ignore_headers->nelts; i++) {
apr_table_unset(headers_out, header[i]);
}
return headers_out;
}
/*
* Create a new table consisting of those elements from an input
* headers table that are allowed to be stored in a cache.
*/
CACHE_DECLARE(apr_table_t *)ap_cache_cacheable_headers_in(request_rec *r)
{
return ap_cache_cacheable_headers(r->pool, r->headers_in, r->server);
}
/*
* Create a new table consisting of those elements from an output
* headers table that are allowed to be stored in a cache;
* ensure there is a content type and capture any errors.
*/
CACHE_DECLARE(apr_table_t *)ap_cache_cacheable_headers_out(request_rec *r)
{
apr_table_t *headers_out;
headers_out = ap_cache_cacheable_headers(r->pool,
cache_merge_headers_out(r),
r->server);
cache_control_remove(r,
cache_table_getm(r->pool, headers_out, "Cache-Control"),
headers_out);
return headers_out;
}
apr_table_t *cache_merge_headers_out(request_rec *r)
{
apr_table_t *headers_out;
headers_out = apr_table_overlay(r->pool, r->headers_out,
r->err_headers_out);
if (r->content_type
&& !apr_table_get(headers_out, "Content-Type")) {
const char *ctype = ap_make_content_type(r, r->content_type);
if (ctype) {
apr_table_setn(headers_out, "Content-Type", ctype);
}
}
if (r->content_encoding
&& !apr_table_get(headers_out, "Content-Encoding")) {
apr_table_setn(headers_out, "Content-Encoding",
r->content_encoding);
}
return headers_out;
}
typedef struct
{
apr_pool_t *p;
const char *first;
apr_array_header_t *merged;
} cache_table_getm_t;
static int cache_table_getm_do(void *v, const char *key, const char *val)
{
cache_table_getm_t *state = (cache_table_getm_t *) v;
if (!state->first) {
/**
* The most common case is a single header, and this is covered by
* a fast path that doesn't allocate any memory. On the second and
* subsequent header, an array is created and the array concatenated
* together to form the final value.
*/
state->first = val;
}
else {
const char **elt;
if (!state->merged) {
state->merged = apr_array_make(state->p, 10, sizeof(const char *));
elt = apr_array_push(state->merged);
*elt = state->first;
}
elt = apr_array_push(state->merged);
*elt = val;
}
return 1;
}
const char *cache_table_getm(apr_pool_t *p, const apr_table_t *t,
const char *key)
{
cache_table_getm_t state;
state.p = p;
state.first = NULL;
state.merged = NULL;
apr_table_do(cache_table_getm_do, &state, t, key, NULL);
if (!state.first) {
return NULL;
}
else if (!state.merged) {
return state.first;
}
else {
return apr_array_pstrcat(p, state.merged, ',');
}
}