| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package org.apache.hadoop.hive.ql.exec.vector.expressions.gen; |
| |
| import java.util.Arrays; |
| import java.sql.Timestamp; |
| |
| import org.apache.hadoop.hive.common.type.HiveIntervalDayTime; |
| import org.apache.hadoop.hive.ql.exec.vector.expressions.VectorExpression; |
| import org.apache.hadoop.hive.ql.exec.vector.VectorExpressionDescriptor; |
| import org.apache.hadoop.hive.ql.exec.vector.*; |
| |
| /* |
| * Because of the templatized nature of the code, either or both |
| * of these ColumnVector imports may be needed. Listing both of them |
| * rather than using ....vectorization.*; |
| */ |
| import org.apache.hadoop.hive.ql.exec.vector.TimestampColumnVector; |
| import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch; |
| import org.apache.hadoop.hive.ql.exec.vector.expressions.NullUtil; |
| import org.apache.hadoop.hive.ql.util.DateTimeMath; |
| import org.apache.hadoop.hive.ql.metadata.HiveException; |
| |
| /** |
| * Generated from template TimestampScalarArithmeticTimestampColumn.txt. |
| * Implements a vectorized arithmetic operator with a scalar on the left and a |
| * column vector on the right. The result is output to an output column vector. |
| */ |
| public class <ClassName> extends VectorExpression { |
| |
| private static final long serialVersionUID = 1L; |
| |
| private final <HiveOperandType1> value; |
| |
| private transient final DateTimeMath dtm = new DateTimeMath(); |
| |
| public <ClassName>(<HiveOperandType1> value, int colNum, int outputColumnNum) { |
| super(colNum, outputColumnNum); |
| this.value = value; |
| } |
| |
| public <ClassName>() { |
| super(); |
| |
| // Dummy final assignments. |
| value = null; |
| } |
| |
| @Override |
| /** |
| * Method to evaluate scalar-column operation in vectorized fashion. |
| * |
| * @batch a package of rows with each column stored in a vector |
| */ |
| public void evaluate(VectorizedRowBatch batch) throws HiveException { |
| |
| // return immediately if batch is empty |
| final int n = batch.size; |
| if (n == 0) { |
| return; |
| } |
| |
| if (childExpressions != null) { |
| super.evaluateChildren(batch); |
| } |
| |
| // Input #2 is type <OperandType2>. |
| <InputColumnVectorType2> inputColVector2 = (<InputColumnVectorType2>) batch.cols[inputColumnNum[0]]; |
| |
| // Output is type <ReturnType>. |
| <OutputColumnVectorType> outputColVector = (<OutputColumnVectorType>) batch.cols[outputColumnNum]; |
| |
| int[] sel = batch.selected; |
| boolean[] inputIsNull = inputColVector2.isNull; |
| boolean[] outputIsNull = outputColVector.isNull; |
| |
| // We do not need to do a column reset since we are carefully changing the output. |
| outputColVector.isRepeating = false; |
| |
| if (inputColVector2.isRepeating) { |
| if (inputColVector2.noNulls || !inputIsNull[0]) { |
| outputIsNull[0] = false; |
| dtm.<OperatorMethod>( |
| value, inputColVector2.asScratch<CamelOperandType2>(0), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(0); |
| } else { |
| outputIsNull[0] = true; |
| outputColVector.noNulls = false; |
| } |
| outputColVector.isRepeating = true; |
| NullUtil.setNullOutputEntriesColScalar(outputColVector, batch.selectedInUse, sel, n); |
| return; |
| } |
| |
| if (inputColVector2.noNulls) { |
| if (batch.selectedInUse) { |
| |
| // CONSIDER: For large n, fill n or all of isNull array and use the tighter ELSE loop. |
| |
| if (!outputColVector.noNulls) { |
| for(int j = 0; j != n; j++) { |
| final int i = sel[j]; |
| outputIsNull[i] = false; |
| dtm.<OperatorMethod>( |
| value, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } |
| } else { |
| for(int j = 0; j != n; j++) { |
| final int i = sel[j]; |
| dtm.<OperatorMethod>( |
| value, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } |
| } |
| } else { |
| if (!outputColVector.noNulls) { |
| |
| // Assume it is almost always a performance win to fill all of isNull so we can |
| // safely reset noNulls. |
| Arrays.fill(outputIsNull, false); |
| outputColVector.noNulls = true; |
| } |
| for(int i = 0; i != n; i++) { |
| dtm.<OperatorMethod>( |
| value, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } |
| } |
| } else /* there are NULLs in the inputColVector */ { |
| |
| /* |
| * Do careful maintenance of the outputColVector.noNulls flag. |
| */ |
| |
| if (batch.selectedInUse) { |
| for(int j = 0; j != n; j++) { |
| int i = sel[j]; |
| if (!inputIsNull[i]) { |
| outputIsNull[i] = false; |
| dtm.<OperatorMethod>( |
| value, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } else { |
| outputIsNull[i] = true; |
| outputColVector.noNulls = false; |
| } |
| } |
| } else { |
| for(int i = 0; i != n; i++) { |
| if (!inputIsNull[i]) { |
| outputIsNull[i] = false; |
| dtm.<OperatorMethod>( |
| value, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } else { |
| outputIsNull[i] = true; |
| outputColVector.noNulls = false; |
| } |
| } |
| } |
| } |
| |
| NullUtil.setNullOutputEntriesColScalar(outputColVector, batch.selectedInUse, sel, n); |
| } |
| |
| @Override |
| public String vectorExpressionParameters() { |
| return "val " + TimestampUtils.timestampScalarTypeToString(value) + ", " + getColumnParamString(1, inputColumnNum[0]); |
| } |
| |
| @Override |
| public VectorExpressionDescriptor.Descriptor getDescriptor() { |
| return (new VectorExpressionDescriptor.Builder()) |
| .setMode( |
| VectorExpressionDescriptor.Mode.PROJECTION) |
| .setNumArguments(2) |
| .setArgumentTypes( |
| VectorExpressionDescriptor.ArgumentType.getType("<OperandType1>"), |
| VectorExpressionDescriptor.ArgumentType.getType("<OperandType2>")) |
| .setInputExpressionTypes( |
| VectorExpressionDescriptor.InputExpressionType.SCALAR, |
| VectorExpressionDescriptor.InputExpressionType.COLUMN).build(); |
| } |
| } |