blob: a7392455529f7343163ab670cb3886aca8fa41cf [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hive.ql.exec.vector.expressions.gen;
import java.util.Arrays;
import java.sql.Timestamp;
import org.apache.hadoop.hive.common.type.HiveIntervalDayTime;
import org.apache.hadoop.hive.ql.exec.vector.expressions.VectorExpression;
import org.apache.hadoop.hive.ql.exec.vector.expressions.NullUtil;
import org.apache.hadoop.hive.ql.exec.vector.*;
import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch;
import org.apache.hadoop.hive.ql.exec.vector.VectorExpressionDescriptor;
import org.apache.hadoop.hive.ql.util.DateTimeMath;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.serde2.io.DateWritableV2;
/**
* Generated from template DateColumnArithmeticTimestampColumn.txt, a class
* which covers binary arithmetic expressions between a date column and timestamp column.
*/
public class <ClassName> extends VectorExpression {
private static final long serialVersionUID = 1L;
private transient final Timestamp scratchTimestamp1 = new Timestamp(0);
private transient final DateTimeMath dtm = new DateTimeMath();
public <ClassName>(int colNum1, int colNum2, int outputColumnNum) {
super(colNum1, colNum2, outputColumnNum);
}
public <ClassName>() {
super();
}
@Override
public void evaluate(VectorizedRowBatch batch) throws HiveException {
// return immediately if batch is empty
final int n = batch.size;
if (n == 0) {
return;
}
if (childExpressions != null) {
super.evaluateChildren(batch);
}
// Input #1 is type Date (days). For the math we convert it to a timestamp.
LongColumnVector inputColVector1 = (LongColumnVector) batch.cols[inputColumnNum[0]];
// Input #2 is type <OperandType2>.
<InputColumnVectorType2> inputColVector2 = (<InputColumnVectorType2>) batch.cols[inputColumnNum[1]];
// Output is type <ReturnType>.
<OutputColumnVectorType> outputColVector = (<OutputColumnVectorType>) batch.cols[outputColumnNum];
int[] sel = batch.selected;
long[] vector1 = inputColVector1.vector;
/*
* Propagate null values for a two-input operator and set isRepeating and noNulls appropriately.
*/
NullUtil.propagateNullsColCol(
inputColVector1, inputColVector2, outputColVector, sel, n, batch.selectedInUse);
/* Disregard nulls for processing. In other words,
* the arithmetic operation is performed even if one or
* more inputs are null. This is to improve speed by avoiding
* conditional checks in the inner loop.
*/
if (inputColVector1.isRepeating && inputColVector2.isRepeating) {
scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[0]));
dtm.<OperatorMethod>(
scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(0), outputColVector.getScratch<CamelReturnType>());
outputColVector.setFromScratch<CamelReturnType>(0);
} else if (inputColVector1.isRepeating) {
scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[0]));
if (batch.selectedInUse) {
for(int j = 0; j != n; j++) {
int i = sel[j];
dtm.<OperatorMethod>(
scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>());
outputColVector.setFromScratch<CamelReturnType>(i);
}
} else {
for(int i = 0; i != n; i++) {
dtm.<OperatorMethod>(
scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>());
outputColVector.setFromScratch<CamelReturnType>(i);
}
}
} else if (inputColVector2.isRepeating) {
<HiveOperandType2> value2 = inputColVector2.asScratch<CamelOperandType2>(0);
if (batch.selectedInUse) {
for(int j = 0; j != n; j++) {
int i = sel[j];
scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[i]));
dtm.<OperatorMethod>(
scratchTimestamp1, value2, outputColVector.getScratch<CamelReturnType>());
outputColVector.setFromScratch<CamelReturnType>(i);
}
} else {
for(int i = 0; i != n; i++) {
scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[i]));
dtm.<OperatorMethod>(
scratchTimestamp1, value2, outputColVector.getScratch<CamelReturnType>());
outputColVector.setFromScratch<CamelReturnType>(i);
}
}
} else {
if (batch.selectedInUse) {
for(int j = 0; j != n; j++) {
int i = sel[j];
scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[i]));
dtm.<OperatorMethod>(
scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>());
outputColVector.setFromScratch<CamelReturnType>(i);
}
} else {
for(int i = 0; i != n; i++) {
scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[i]));
dtm.<OperatorMethod>(
scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>());
outputColVector.setFromScratch<CamelReturnType>(i);
}
}
}
/* For the case when the output can have null values, follow
* the convention that the data values must be 1 for long and
* NaN for double. This is to prevent possible later zero-divide errors
* in complex arithmetic expressions like col2 / (col1 - 1)
* in the case when some col1 entries are null.
*/
NullUtil.setNullDataEntries<CamelReturnType>(outputColVector, batch.selectedInUse, sel, n);
}
@Override
public String vectorExpressionParameters() {
return getColumnParamString(0, inputColumnNum[0]) + ", " + getColumnParamString(1, inputColumnNum[1]);
}
@Override
public VectorExpressionDescriptor.Descriptor getDescriptor() {
return (new VectorExpressionDescriptor.Builder())
.setMode(
VectorExpressionDescriptor.Mode.PROJECTION)
.setNumArguments(2)
.setArgumentTypes(
VectorExpressionDescriptor.ArgumentType.getType("date"),
VectorExpressionDescriptor.ArgumentType.getType("<OperandType2>"))
.setInputExpressionTypes(
VectorExpressionDescriptor.InputExpressionType.COLUMN,
VectorExpressionDescriptor.InputExpressionType.COLUMN).build();
}
}