| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package org.apache.hadoop.hive.ql.exec.vector.expressions.gen; |
| |
| import java.util.Arrays; |
| import java.sql.Timestamp; |
| |
| import org.apache.hadoop.hive.common.type.HiveIntervalDayTime; |
| import org.apache.hadoop.hive.ql.exec.vector.expressions.VectorExpression; |
| import org.apache.hadoop.hive.ql.exec.vector.expressions.NullUtil; |
| import org.apache.hadoop.hive.ql.exec.vector.*; |
| import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch; |
| import org.apache.hadoop.hive.ql.exec.vector.VectorExpressionDescriptor; |
| import org.apache.hadoop.hive.ql.util.DateTimeMath; |
| import org.apache.hadoop.hive.ql.metadata.HiveException; |
| import org.apache.hadoop.hive.serde2.io.DateWritableV2; |
| |
| /** |
| * Generated from template DateColumnArithmeticTimestampColumn.txt, a class |
| * which covers binary arithmetic expressions between a date column and timestamp column. |
| */ |
| public class <ClassName> extends VectorExpression { |
| |
| private static final long serialVersionUID = 1L; |
| |
| private transient final Timestamp scratchTimestamp1 = new Timestamp(0); |
| private transient final DateTimeMath dtm = new DateTimeMath(); |
| |
| public <ClassName>(int colNum1, int colNum2, int outputColumnNum) { |
| super(colNum1, colNum2, outputColumnNum); |
| } |
| |
| public <ClassName>() { |
| super(); |
| } |
| |
| @Override |
| public void evaluate(VectorizedRowBatch batch) throws HiveException { |
| |
| // return immediately if batch is empty |
| final int n = batch.size; |
| if (n == 0) { |
| return; |
| } |
| |
| if (childExpressions != null) { |
| super.evaluateChildren(batch); |
| } |
| |
| // Input #1 is type Date (days). For the math we convert it to a timestamp. |
| LongColumnVector inputColVector1 = (LongColumnVector) batch.cols[inputColumnNum[0]]; |
| |
| // Input #2 is type <OperandType2>. |
| <InputColumnVectorType2> inputColVector2 = (<InputColumnVectorType2>) batch.cols[inputColumnNum[1]]; |
| |
| // Output is type <ReturnType>. |
| <OutputColumnVectorType> outputColVector = (<OutputColumnVectorType>) batch.cols[outputColumnNum]; |
| |
| int[] sel = batch.selected; |
| |
| long[] vector1 = inputColVector1.vector; |
| |
| /* |
| * Propagate null values for a two-input operator and set isRepeating and noNulls appropriately. |
| */ |
| NullUtil.propagateNullsColCol( |
| inputColVector1, inputColVector2, outputColVector, sel, n, batch.selectedInUse); |
| |
| /* Disregard nulls for processing. In other words, |
| * the arithmetic operation is performed even if one or |
| * more inputs are null. This is to improve speed by avoiding |
| * conditional checks in the inner loop. |
| */ |
| if (inputColVector1.isRepeating && inputColVector2.isRepeating) { |
| scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[0])); |
| dtm.<OperatorMethod>( |
| scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(0), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(0); |
| } else if (inputColVector1.isRepeating) { |
| scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[0])); |
| if (batch.selectedInUse) { |
| for(int j = 0; j != n; j++) { |
| int i = sel[j]; |
| dtm.<OperatorMethod>( |
| scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } |
| } else { |
| for(int i = 0; i != n; i++) { |
| dtm.<OperatorMethod>( |
| scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } |
| } |
| } else if (inputColVector2.isRepeating) { |
| <HiveOperandType2> value2 = inputColVector2.asScratch<CamelOperandType2>(0); |
| if (batch.selectedInUse) { |
| for(int j = 0; j != n; j++) { |
| int i = sel[j]; |
| scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[i])); |
| dtm.<OperatorMethod>( |
| scratchTimestamp1, value2, outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } |
| } else { |
| for(int i = 0; i != n; i++) { |
| scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[i])); |
| dtm.<OperatorMethod>( |
| scratchTimestamp1, value2, outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } |
| } |
| } else { |
| if (batch.selectedInUse) { |
| for(int j = 0; j != n; j++) { |
| int i = sel[j]; |
| scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[i])); |
| dtm.<OperatorMethod>( |
| scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } |
| } else { |
| for(int i = 0; i != n; i++) { |
| scratchTimestamp1.setTime(DateWritableV2.daysToMillis((int) vector1[i])); |
| dtm.<OperatorMethod>( |
| scratchTimestamp1, inputColVector2.asScratch<CamelOperandType2>(i), outputColVector.getScratch<CamelReturnType>()); |
| outputColVector.setFromScratch<CamelReturnType>(i); |
| } |
| } |
| } |
| |
| /* For the case when the output can have null values, follow |
| * the convention that the data values must be 1 for long and |
| * NaN for double. This is to prevent possible later zero-divide errors |
| * in complex arithmetic expressions like col2 / (col1 - 1) |
| * in the case when some col1 entries are null. |
| */ |
| NullUtil.setNullDataEntries<CamelReturnType>(outputColVector, batch.selectedInUse, sel, n); |
| } |
| |
| @Override |
| public String vectorExpressionParameters() { |
| return getColumnParamString(0, inputColumnNum[0]) + ", " + getColumnParamString(1, inputColumnNum[1]); |
| } |
| |
| @Override |
| public VectorExpressionDescriptor.Descriptor getDescriptor() { |
| return (new VectorExpressionDescriptor.Builder()) |
| .setMode( |
| VectorExpressionDescriptor.Mode.PROJECTION) |
| .setNumArguments(2) |
| .setArgumentTypes( |
| VectorExpressionDescriptor.ArgumentType.getType("date"), |
| VectorExpressionDescriptor.ArgumentType.getType("<OperandType2>")) |
| .setInputExpressionTypes( |
| VectorExpressionDescriptor.InputExpressionType.COLUMN, |
| VectorExpressionDescriptor.InputExpressionType.COLUMN).build(); |
| } |
| } |
| |