| /** |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package org.apache.hadoop.hive.ql.exec.vector.expressions.gen; |
| |
| import org.apache.hadoop.hive.ql.exec.vector.expressions.VectorExpression; |
| import org.apache.hadoop.hive.ql.exec.vector.expressions.NullUtil; |
| import org.apache.hadoop.hive.ql.exec.vector.*; |
| import org.apache.hadoop.hive.ql.exec.vector.VectorizedRowBatch; |
| import org.apache.hadoop.hive.ql.exec.vector.VectorExpressionDescriptor; |
| |
| /** |
| * Generated from template ColumnArithmeticColumn.txt, which covers binary arithmetic |
| * expressions between columns. |
| */ |
| public class <ClassName> extends VectorExpression { |
| |
| private static final long serialVersionUID = 1L; |
| |
| private int colNum1; |
| private int colNum2; |
| private int outputColumn; |
| |
| public <ClassName>(int colNum1, int colNum2, int outputColumn) { |
| this.colNum1 = colNum1; |
| this.colNum2 = colNum2; |
| this.outputColumn = outputColumn; |
| } |
| |
| public <ClassName>() { |
| } |
| |
| @Override |
| public void evaluate(VectorizedRowBatch batch) { |
| |
| if (childExpressions != null) { |
| super.evaluateChildren(batch); |
| } |
| |
| <InputColumnVectorType1> inputColVector1 = (<InputColumnVectorType1>) batch.cols[colNum1]; |
| <InputColumnVectorType2> inputColVector2 = (<InputColumnVectorType2>) batch.cols[colNum2]; |
| <OutputColumnVectorType> outputColVector = (<OutputColumnVectorType>) batch.cols[outputColumn]; |
| int[] sel = batch.selected; |
| int n = batch.size; |
| <OperandType1>[] vector1 = inputColVector1.vector; |
| <OperandType2>[] vector2 = inputColVector2.vector; |
| <ReturnType>[] outputVector = outputColVector.vector; |
| |
| // return immediately if batch is empty |
| if (n == 0) { |
| return; |
| } |
| |
| outputColVector.isRepeating = |
| inputColVector1.isRepeating && inputColVector2.isRepeating |
| || inputColVector1.isRepeating && !inputColVector1.noNulls && inputColVector1.isNull[0] |
| || inputColVector2.isRepeating && !inputColVector2.noNulls && inputColVector2.isNull[0]; |
| |
| // Handle nulls first |
| NullUtil.propagateNullsColCol( |
| inputColVector1, inputColVector2, outputColVector, sel, n, batch.selectedInUse); |
| |
| /* Disregard nulls for processing. In other words, |
| * the arithmetic operation is performed even if one or |
| * more inputs are null. This is to improve speed by avoiding |
| * conditional checks in the inner loop. |
| */ |
| if (inputColVector1.isRepeating && inputColVector2.isRepeating) { |
| outputVector[0] = vector1[0] <OperatorSymbol> vector2[0] ? 1 : 0; |
| } else if (inputColVector1.isRepeating) { |
| if (batch.selectedInUse) { |
| for(int j = 0; j != n; j++) { |
| int i = sel[j]; |
| outputVector[i] = vector1[0] <OperatorSymbol> vector2[i] ? 1 : 0; |
| } |
| } else { |
| for(int i = 0; i != n; i++) { |
| outputVector[i] = vector1[0] <OperatorSymbol> vector2[i] ? 1 : 0; |
| } |
| } |
| } else if (inputColVector2.isRepeating) { |
| if (batch.selectedInUse) { |
| for(int j = 0; j != n; j++) { |
| int i = sel[j]; |
| outputVector[i] = vector1[i] <OperatorSymbol> vector2[0] ? 1 : 0; |
| } |
| } else { |
| for(int i = 0; i != n; i++) { |
| outputVector[i] = vector1[i] <OperatorSymbol> vector2[0] ? 1 : 0; |
| } |
| } |
| } else { |
| if (batch.selectedInUse) { |
| for(int j = 0; j != n; j++) { |
| int i = sel[j]; |
| outputVector[i] = vector1[i] <OperatorSymbol> vector2[i] ? 1 : 0; |
| } |
| } else { |
| for(int i = 0; i != n; i++) { |
| outputVector[i] = vector1[i] <OperatorSymbol> vector2[i] ? 1 : 0; |
| } |
| } |
| } |
| |
| /* For the case when the output can have null values, follow |
| * the convention that the data values must be 1 for long and |
| * NaN for double. This is to prevent possible later zero-divide errors |
| * in complex arithmetic expressions like col2 / (col1 - 1) |
| * in the case when some col1 entries are null. |
| */ |
| NullUtil.setNullDataEntries<CamelReturnType>(outputColVector, batch.selectedInUse, sel, n); |
| } |
| |
| @Override |
| public int getOutputColumn() { |
| return outputColumn; |
| } |
| |
| @Override |
| public String getOutputType() { |
| return "<ReturnType>"; |
| } |
| |
| public int getColNum1() { |
| return colNum1; |
| } |
| |
| public void setColNum1(int colNum1) { |
| this.colNum1 = colNum1; |
| } |
| |
| public int getColNum2() { |
| return colNum2; |
| } |
| |
| public void setColNum2(int colNum2) { |
| this.colNum2 = colNum2; |
| } |
| |
| public void setOutputColumn(int outputColumn) { |
| this.outputColumn = outputColumn; |
| } |
| |
| @Override |
| public VectorExpressionDescriptor.Descriptor getDescriptor() { |
| return (new VectorExpressionDescriptor.Builder()) |
| .setMode( |
| VectorExpressionDescriptor.Mode.PROJECTION) |
| .setNumArguments(2) |
| .setArgumentTypes( |
| VectorExpressionDescriptor.ArgumentType.getType("<VectorExprArgType1>"), |
| VectorExpressionDescriptor.ArgumentType.getType("<VectorExprArgType2>")) |
| .setInputExpressionTypes( |
| VectorExpressionDescriptor.InputExpressionType.COLUMN, |
| VectorExpressionDescriptor.InputExpressionType.COLUMN).build(); |
| } |
| } |