blob: 1121f76e10d95c02c6e09979972ba1cdc809ce71 [file] [log] [blame]
/*
* This file is in the public domain, so clarified as of
* 1996-06-05 by Arthur David Olson.
*
* IDENTIFICATION
* src/timezone/localtime.c
*/
/*
* Leap second handling from Bradley White.
* POSIX-style TZ environment variable handling from Guy Harris.
*/
/* this file needs to build in both frontend and backend contexts */
#include "c.h"
#include <fcntl.h>
#include "private.h"
#include "pgtz.h"
#include "tzfile.h"
#ifndef WILDABBR
/*----------
* Someone might make incorrect use of a time zone abbreviation:
* 1. They might reference tzname[0] before calling tzset (explicitly
* or implicitly).
* 2. They might reference tzname[1] before calling tzset (explicitly
* or implicitly).
* 3. They might reference tzname[1] after setting to a time zone
* in which Daylight Saving Time is never observed.
* 4. They might reference tzname[0] after setting to a time zone
* in which Standard Time is never observed.
* 5. They might reference tm.TM_ZONE after calling offtime.
* What's best to do in the above cases is open to debate;
* for now, we just set things up so that in any of the five cases
* WILDABBR is used. Another possibility: initialize tzname[0] to the
* string "tzname[0] used before set", and similarly for the other cases.
* And another: initialize tzname[0] to "ERA", with an explanation in the
* manual page of what this "time zone abbreviation" means (doing this so
* that tzname[0] has the "normal" length of three characters).
*----------
*/
#define WILDABBR " "
#endif /* !defined WILDABBR */
static char wildabbr[] = WILDABBR;
static const char gmt[] = "GMT";
/*
* The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
* We default to US rules as of 1999-08-17.
* POSIX 1003.1 section 8.1.1 says that the default DST rules are
* implementation dependent; for historical reasons, US rules are a
* common default.
*/
#define TZDEFRULESTRING ",M4.1.0,M10.5.0"
struct rule
{
int r_type; /* type of rule--see below */
int r_day; /* day number of rule */
int r_week; /* week number of rule */
int r_mon; /* month number of rule */
long r_time; /* transition time of rule */
};
#define JULIAN_DAY 0 /* Jn - Julian day */
#define DAY_OF_YEAR 1 /* n - day of year */
#define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
/*
* Prototypes for static functions.
*/
static long detzcode(const char *codep);
static pg_time_t detzcode64(const char *codep);
static int differ_by_repeat(pg_time_t t1, pg_time_t t0);
static const char *getzname(const char *strp);
static const char *getqzname(const char *strp, int delim);
static const char *getnum(const char *strp, int *nump, int min, int max);
static const char *getsecs(const char *strp, long *secsp);
static const char *getoffset(const char *strp, long *offsetp);
static const char *getrule(const char *strp, struct rule * rulep);
static void gmtload(struct state * sp);
static struct pg_tm *gmtsub(const pg_time_t *timep, long offset,
struct pg_tm *tmp);
static struct pg_tm *localsub(const pg_time_t *timep, long offset,
struct pg_tm *tmp, const pg_tz *tz);
static int increment_overflow(int *number, int delta);
static pg_time_t transtime(pg_time_t janfirst, int year,
const struct rule *rulep, long offset);
static int typesequiv(const struct state *sp, int a, int b);
static struct pg_tm *timesub(const pg_time_t *timep, long offset,
const struct state *sp, struct pg_tm *tmp);
/* GMT timezone */
static struct state gmtmem;
#define gmtptr (&gmtmem)
static int gmt_is_set = 0;
/*
* Section 4.12.3 of X3.159-1989 requires that
* Except for the strftime function, these functions [asctime,
* ctime, gmtime, localtime] return values in one of two static
* objects: a broken-down time structure and an array of char.
* Thanks to Paul Eggert for noting this.
*/
static struct pg_tm tm;
static long
detzcode(const char *codep)
{
long result;
int i;
result = (codep[0] & 0x80) ? ~0L : 0;
for (i = 0; i < 4; ++i)
result = (result << 8) | (codep[i] & 0xff);
return result;
}
static pg_time_t
detzcode64(const char *codep)
{
pg_time_t result;
int i;
result = (codep[0] & 0x80) ? (~(int64) 0) : 0;
for (i = 0; i < 8; ++i)
result = result * 256 + (codep[i] & 0xff);
return result;
}
static int
differ_by_repeat(pg_time_t t1, pg_time_t t0)
{
if (TYPE_INTEGRAL(pg_time_t) &&
TYPE_BIT(pg_time_t) - TYPE_SIGNED(pg_time_t) < SECSPERREPEAT_BITS)
return 0;
return t1 - t0 == SECSPERREPEAT;
}
int
tzload(const char *name, char *canonname, struct state * sp, int doextend)
{
const char *p;
int i;
int fid;
int stored;
int nread;
union
{
struct tzhead tzhead;
char buf[2 * sizeof(struct tzhead) +
2 * sizeof *sp +
4 * TZ_MAX_TIMES];
} u;
sp->goback = sp->goahead = FALSE;
if (name == NULL && (name = TZDEFAULT) == NULL)
return -1;
if (name[0] == ':')
++name;
fid = pg_open_tzfile(name, canonname);
if (fid < 0)
return -1;
nread = read(fid, u.buf, sizeof u.buf);
if (close(fid) != 0 || nread <= 0)
return -1;
for (stored = 4; stored <= 8; stored *= 2)
{
int ttisstdcnt;
int ttisgmtcnt;
ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
return -1;
if (nread - (p - u.buf) <
sp->timecnt * stored + /* ats */
sp->timecnt + /* types */
sp->typecnt * 6 + /* ttinfos */
sp->charcnt + /* chars */
sp->leapcnt * (stored + 4) + /* lsinfos */
ttisstdcnt + /* ttisstds */
ttisgmtcnt) /* ttisgmts */
return -1;
for (i = 0; i < sp->timecnt; ++i)
{
sp->ats[i] = (stored == 4) ? detzcode(p) : detzcode64(p);
p += stored;
}
for (i = 0; i < sp->timecnt; ++i)
{
sp->types[i] = (unsigned char) *p++;
if (sp->types[i] >= sp->typecnt)
return -1;
}
for (i = 0; i < sp->typecnt; ++i)
{
struct ttinfo *ttisp;
ttisp = &sp->ttis[i];
ttisp->tt_gmtoff = detzcode(p);
p += 4;
ttisp->tt_isdst = (unsigned char) *p++;
if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
return -1;
ttisp->tt_abbrind = (unsigned char) *p++;
if (ttisp->tt_abbrind < 0 ||
ttisp->tt_abbrind > sp->charcnt)
return -1;
}
for (i = 0; i < sp->charcnt; ++i)
sp->chars[i] = *p++;
sp->chars[i] = '\0'; /* ensure '\0' at end */
for (i = 0; i < sp->leapcnt; ++i)
{
struct lsinfo *lsisp;
lsisp = &sp->lsis[i];
lsisp->ls_trans = (stored == 4) ? detzcode(p) : detzcode64(p);
p += stored;
lsisp->ls_corr = detzcode(p);
p += 4;
}
for (i = 0; i < sp->typecnt; ++i)
{
struct ttinfo *ttisp;
ttisp = &sp->ttis[i];
if (ttisstdcnt == 0)
ttisp->tt_ttisstd = FALSE;
else
{
ttisp->tt_ttisstd = *p++;
if (ttisp->tt_ttisstd != TRUE &&
ttisp->tt_ttisstd != FALSE)
return -1;
}
}
for (i = 0; i < sp->typecnt; ++i)
{
struct ttinfo *ttisp;
ttisp = &sp->ttis[i];
if (ttisgmtcnt == 0)
ttisp->tt_ttisgmt = FALSE;
else
{
ttisp->tt_ttisgmt = *p++;
if (ttisp->tt_ttisgmt != TRUE &&
ttisp->tt_ttisgmt != FALSE)
return -1;
}
}
/*
* Out-of-sort ats should mean we're running on a signed time_t system
* but using a data file with unsigned values (or vice versa).
*/
for (i = 0; i < sp->timecnt - 2; ++i)
if (sp->ats[i] > sp->ats[i + 1])
{
++i;
if (TYPE_SIGNED(pg_time_t))
{
/*
* Ignore the end (easy).
*/
sp->timecnt = i;
}
else
{
/*
* Ignore the beginning (harder).
*/
int j;
for (j = 0; j + i < sp->timecnt; ++j)
{
sp->ats[j] = sp->ats[j + i];
sp->types[j] = sp->types[j + i];
}
sp->timecnt = j;
}
break;
}
/*
* If this is an old file, we're done.
*/
if (u.tzhead.tzh_version[0] == '\0')
break;
nread -= p - u.buf;
for (i = 0; i < nread; ++i)
u.buf[i] = p[i];
/*
* If this is a narrow integer time_t system, we're done.
*/
if (stored >= (int) sizeof(pg_time_t) && TYPE_INTEGRAL(pg_time_t))
break;
}
if (doextend && nread > 2 &&
u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
sp->typecnt + 2 <= TZ_MAX_TYPES)
{
struct state ts;
int result;
u.buf[nread - 1] = '\0';
result = tzparse(&u.buf[1], &ts, FALSE);
if (result == 0 && ts.typecnt == 2 &&
sp->charcnt + ts.charcnt <= TZ_MAX_CHARS)
{
for (i = 0; i < 2; ++i)
ts.ttis[i].tt_abbrind +=
sp->charcnt;
for (i = 0; i < ts.charcnt; ++i)
sp->chars[sp->charcnt++] =
ts.chars[i];
i = 0;
while (i < ts.timecnt &&
ts.ats[i] <=
sp->ats[sp->timecnt - 1])
++i;
while (i < ts.timecnt &&
sp->timecnt < TZ_MAX_TIMES)
{
sp->ats[sp->timecnt] =
ts.ats[i];
sp->types[sp->timecnt] =
sp->typecnt +
ts.types[i];
++sp->timecnt;
++i;
}
sp->ttis[sp->typecnt++] = ts.ttis[0];
sp->ttis[sp->typecnt++] = ts.ttis[1];
}
}
if (sp->timecnt > 1)
{
for (i = 1; i < sp->timecnt; ++i)
if (typesequiv(sp, sp->types[i], sp->types[0]) &&
differ_by_repeat(sp->ats[i], sp->ats[0]))
{
sp->goback = TRUE;
break;
}
for (i = sp->timecnt - 2; i >= 0; --i)
if (typesequiv(sp, sp->types[sp->timecnt - 1],
sp->types[i]) &&
differ_by_repeat(sp->ats[sp->timecnt - 1],
sp->ats[i]))
{
sp->goahead = TRUE;
break;
}
}
return 0;
}
static int
typesequiv(const struct state *sp, int a, int b)
{
int result;
if (sp == NULL ||
a < 0 || a >= sp->typecnt ||
b < 0 || b >= sp->typecnt)
result = FALSE;
else
{
const struct ttinfo *ap = &sp->ttis[a];
const struct ttinfo *bp = &sp->ttis[b];
result = ap->tt_gmtoff == bp->tt_gmtoff &&
ap->tt_isdst == bp->tt_isdst &&
ap->tt_ttisstd == bp->tt_ttisstd &&
ap->tt_ttisgmt == bp->tt_ttisgmt &&
strcmp(&sp->chars[ap->tt_abbrind],
&sp->chars[bp->tt_abbrind]) == 0;
}
return result;
}
static const int mon_lengths[2][MONSPERYEAR] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
};
static const int year_lengths[2] = {
DAYSPERNYEAR, DAYSPERLYEAR
};
/*
* Given a pointer into a time zone string, scan until a character that is not
* a valid character in a zone name is found. Return a pointer to that
* character.
*/
static const char *
getzname(const char *strp)
{
char c;
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
c != '+')
++strp;
return strp;
}
/*
* Given a pointer into an extended time zone string, scan until the ending
* delimiter of the zone name is located. Return a pointer to the delimiter.
*
* As with getzname above, the legal character set is actually quite
* restricted, with other characters producing undefined results.
* We don't do any checking here; checking is done later in common-case code.
*/
static const char *
getqzname(const char *strp, int delim)
{
int c;
while ((c = *strp) != '\0' && c != delim)
++strp;
return strp;
}
/*
* Given a pointer into a time zone string, extract a number from that string.
* Check that the number is within a specified range; if it is not, return
* NULL.
* Otherwise, return a pointer to the first character not part of the number.
*/
static const char *
getnum(const char *strp, int *nump, int min, int max)
{
char c;
int num;
if (strp == NULL || !is_digit(c = *strp))
return NULL;
num = 0;
do
{
num = num * 10 + (c - '0');
if (num > max)
return NULL; /* illegal value */
c = *++strp;
} while (is_digit(c));
if (num < min)
return NULL; /* illegal value */
*nump = num;
return strp;
}
/*
* Given a pointer into a time zone string, extract a number of seconds,
* in hh[:mm[:ss]] form, from the string.
* If any error occurs, return NULL.
* Otherwise, return a pointer to the first character not part of the number
* of seconds.
*/
static const char *
getsecs(const char *strp, long *secsp)
{
int num;
/*
* `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
* "M10.4.6/26", which does not conform to Posix, but which specifies the
* equivalent of ``02:00 on the first Sunday on or after 23 Oct''.
*/
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
if (strp == NULL)
return NULL;
*secsp = num * (long) SECSPERHOUR;
if (*strp == ':')
{
++strp;
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
if (strp == NULL)
return NULL;
*secsp += num * SECSPERMIN;
if (*strp == ':')
{
++strp;
/* `SECSPERMIN' allows for leap seconds. */
strp = getnum(strp, &num, 0, SECSPERMIN);
if (strp == NULL)
return NULL;
*secsp += num;
}
}
return strp;
}
/*
* Given a pointer into a time zone string, extract an offset, in
* [+-]hh[:mm[:ss]] form, from the string.
* If any error occurs, return NULL.
* Otherwise, return a pointer to the first character not part of the time.
*/
static const char *
getoffset(const char *strp, long *offsetp)
{
int neg = 0;
if (*strp == '-')
{
neg = 1;
++strp;
}
else if (*strp == '+')
++strp;
strp = getsecs(strp, offsetp);
if (strp == NULL)
return NULL; /* illegal time */
if (neg)
*offsetp = -*offsetp;
return strp;
}
/*
* Given a pointer into a time zone string, extract a rule in the form
* date[/time]. See POSIX section 8 for the format of "date" and "time".
* If a valid rule is not found, return NULL.
* Otherwise, return a pointer to the first character not part of the rule.
*/
static const char *
getrule(const char *strp, struct rule * rulep)
{
if (*strp == 'J')
{
/*
* Julian day.
*/
rulep->r_type = JULIAN_DAY;
++strp;
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
}
else if (*strp == 'M')
{
/*
* Month, week, day.
*/
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
++strp;
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_week, 1, 5);
if (strp == NULL)
return NULL;
if (*strp++ != '.')
return NULL;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
}
else if (is_digit(*strp))
{
/*
* Day of year.
*/
rulep->r_type = DAY_OF_YEAR;
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
}
else
return NULL; /* invalid format */
if (strp == NULL)
return NULL;
if (*strp == '/')
{
/*
* Time specified.
*/
++strp;
strp = getsecs(strp, &rulep->r_time);
}
else
rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
return strp;
}
/*
* Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
* year, a rule, and the offset from UTC at the time that rule takes effect,
* calculate the Epoch-relative time that rule takes effect.
*/
static pg_time_t
transtime(pg_time_t janfirst, int year,
const struct rule * rulep, long offset)
{
int leapyear;
pg_time_t value = 0;
int i,
d,
m1,
yy0,
yy1,
yy2,
dow;
leapyear = isleap(year);
switch (rulep->r_type)
{
case JULIAN_DAY:
/*
* Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
* years. In non-leap years, or if the day number is 59 or less,
* just add SECSPERDAY times the day number-1 to the time of
* January 1, midnight, to get the day.
*/
value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
if (leapyear && rulep->r_day >= 60)
value += SECSPERDAY;
break;
case DAY_OF_YEAR:
/*
* n - day of year. Just add SECSPERDAY times the day number to
* the time of January 1, midnight, to get the day.
*/
value = janfirst + rulep->r_day * SECSPERDAY;
break;
case MONTH_NTH_DAY_OF_WEEK:
/*
* Mm.n.d - nth "dth day" of month m.
*/
value = janfirst;
for (i = 0; i < rulep->r_mon - 1; ++i)
value += mon_lengths[leapyear][i] * SECSPERDAY;
/*
* Use Zeller's Congruence to get day-of-week of first day of
* month.
*/
m1 = (rulep->r_mon + 9) % 12 + 1;
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
yy1 = yy0 / 100;
yy2 = yy0 % 100;
dow = ((26 * m1 - 2) / 10 +
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
if (dow < 0)
dow += DAYSPERWEEK;
/*
* "dow" is the day-of-week of the first day of the month. Get the
* day-of-month (zero-origin) of the first "dow" day of the month.
*/
d = rulep->r_day - dow;
if (d < 0)
d += DAYSPERWEEK;
for (i = 1; i < rulep->r_week; ++i)
{
if (d + DAYSPERWEEK >=
mon_lengths[leapyear][rulep->r_mon - 1])
break;
d += DAYSPERWEEK;
}
/*
* "d" is the day-of-month (zero-origin) of the day we want.
*/
value += d * SECSPERDAY;
break;
}
/*
* "value" is the Epoch-relative time of 00:00:00 UTC on the day in
* question. To get the Epoch-relative time of the specified local time
* on that day, add the transition time and the current offset from UTC.
*/
return value + rulep->r_time + offset;
}
/*
* Given a POSIX section 8-style TZ string, fill in the rule tables as
* appropriate.
*/
int
tzparse(const char *name, struct state * sp, int lastditch)
{
const char *stdname;
const char *dstname = NULL;
size_t stdlen;
size_t dstlen;
long stdoffset;
long dstoffset;
pg_time_t *atp;
unsigned char *typep;
char *cp;
int load_result;
stdname = name;
if (lastditch)
{
stdlen = strlen(name); /* length of standard zone name */
name += stdlen;
if (stdlen >= sizeof sp->chars)
stdlen = (sizeof sp->chars) - 1;
stdoffset = 0;
/*
* Unlike the original zic library, do NOT invoke tzload() here; we
* can't assume pg_open_tzfile() is sane yet, and we don't care about
* leap seconds anyway.
*/
load_result = -1;
}
else
{
if (*name == '<')
{
name++;
stdname = name;
name = getqzname(name, '>');
if (*name != '>')
return (-1);
stdlen = name - stdname;
name++;
}
else
{
name = getzname(name);
stdlen = name - stdname;
}
if (*name == '\0')
return -1;
name = getoffset(name, &stdoffset);
if (name == NULL)
return -1;
load_result = tzload(TZDEFRULES, NULL, sp, FALSE);
}
if (load_result != 0)
sp->leapcnt = 0; /* so, we're off a little */
if (*name != '\0')
{
if (*name == '<')
{
dstname = ++name;
name = getqzname(name, '>');
if (*name != '>')
return -1;
dstlen = name - dstname;
name++;
}
else
{
dstname = name;
name = getzname(name);
dstlen = name - dstname; /* length of DST zone name */
}
if (*name != '\0' && *name != ',' && *name != ';')
{
name = getoffset(name, &dstoffset);
if (name == NULL)
return -1;
}
else
dstoffset = stdoffset - SECSPERHOUR;
if (*name == '\0' && load_result != 0)
name = TZDEFRULESTRING;
if (*name == ',' || *name == ';')
{
struct rule start;
struct rule end;
int year;
pg_time_t janfirst;
pg_time_t starttime;
pg_time_t endtime;
start.r_type = 0;
start.r_day = 0;
start.r_week = 0;
start.r_mon = 0;
start.r_time = 0;
end.r_type = 0;
end.r_day = 0;
end.r_week = 0;
end.r_mon = 0;
end.r_time = 0;
++name;
if ((name = getrule(name, &start)) == NULL)
return -1;
if (*name++ != ',')
return -1;
if ((name = getrule(name, &end)) == NULL)
return -1;
if (*name != '\0')
return -1;
sp->typecnt = 2; /* standard time and DST */
/*
* Two transitions per year, from EPOCH_YEAR forward.
*/
sp->ttis[0].tt_gmtoff = -dstoffset;
sp->ttis[0].tt_isdst = 1;
sp->ttis[0].tt_abbrind = stdlen + 1;
sp->ttis[1].tt_gmtoff = -stdoffset;
sp->ttis[1].tt_isdst = 0;
sp->ttis[1].tt_abbrind = 0;
atp = sp->ats;
typep = sp->types;
janfirst = 0;
sp->timecnt = 0;
for (year = EPOCH_YEAR;
sp->timecnt + 2 <= TZ_MAX_TIMES;
++year)
{
pg_time_t newfirst;
starttime = transtime(janfirst, year, &start,
stdoffset);
endtime = transtime(janfirst, year, &end,
dstoffset);
if (starttime > endtime)
{
*atp++ = endtime;
*typep++ = 1; /* DST ends */
*atp++ = starttime;
*typep++ = 0; /* DST begins */
}
else
{
*atp++ = starttime;
*typep++ = 0; /* DST begins */
*atp++ = endtime;
*typep++ = 1; /* DST ends */
}
sp->timecnt += 2;
newfirst = janfirst;
newfirst += year_lengths[isleap(year)] *
SECSPERDAY;
if (newfirst <= janfirst)
break;
janfirst = newfirst;
}
}
else
{
long theirstdoffset;
long theirdstoffset;
long theiroffset;
int isdst;
int i;
int j;
if (*name != '\0')
return -1;
/*
* Initial values of theirstdoffset and theirdstoffset.
*/
theirstdoffset = 0;
for (i = 0; i < sp->timecnt; ++i)
{
j = sp->types[i];
if (!sp->ttis[j].tt_isdst)
{
theirstdoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
theirdstoffset = 0;
for (i = 0; i < sp->timecnt; ++i)
{
j = sp->types[i];
if (sp->ttis[j].tt_isdst)
{
theirdstoffset =
-sp->ttis[j].tt_gmtoff;
break;
}
}
/*
* Initially we're assumed to be in standard time.
*/
isdst = FALSE;
theiroffset = theirstdoffset;
/*
* Now juggle transition times and types tracking offsets as you
* do.
*/
for (i = 0; i < sp->timecnt; ++i)
{
j = sp->types[i];
sp->types[i] = sp->ttis[j].tt_isdst;
if (sp->ttis[j].tt_ttisgmt)
{
/* No adjustment to transition time */
}
else
{
/*
* If summer time is in effect, and the transition time
* was not specified as standard time, add the summer time
* offset to the transition time; otherwise, add the
* standard time offset to the transition time.
*/
/*
* Transitions from DST to DDST will effectively disappear
* since POSIX provides for only one DST offset.
*/
if (isdst && !sp->ttis[j].tt_ttisstd)
{
sp->ats[i] += dstoffset -
theirdstoffset;
}
else
{
sp->ats[i] += stdoffset -
theirstdoffset;
}
}
theiroffset = -sp->ttis[j].tt_gmtoff;
if (sp->ttis[j].tt_isdst)
theirdstoffset = theiroffset;
else
theirstdoffset = theiroffset;
}
/*
* Finally, fill in ttis. ttisstd and ttisgmt need not be handled.
*/
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = FALSE;
sp->ttis[0].tt_abbrind = 0;
sp->ttis[1].tt_gmtoff = -dstoffset;
sp->ttis[1].tt_isdst = TRUE;
sp->ttis[1].tt_abbrind = stdlen + 1;
sp->typecnt = 2;
}
}
else
{
dstlen = 0;
sp->typecnt = 1; /* only standard time */
sp->timecnt = 0;
sp->ttis[0].tt_gmtoff = -stdoffset;
sp->ttis[0].tt_isdst = 0;
sp->ttis[0].tt_abbrind = 0;
}
sp->charcnt = stdlen + 1;
if (dstlen != 0)
sp->charcnt += dstlen + 1;
if ((size_t) sp->charcnt > sizeof sp->chars)
return -1;
cp = sp->chars;
(void) strncpy(cp, stdname, stdlen);
cp += stdlen;
*cp++ = '\0';
if (dstlen != 0)
{
(void) strncpy(cp, dstname, dstlen);
*(cp + dstlen) = '\0';
}
return 0;
}
static void
gmtload(struct state * sp)
{
if (tzload(gmt, NULL, sp, TRUE) != 0)
(void) tzparse(gmt, sp, TRUE);
}
/*
* The easy way to behave "as if no library function calls" localtime
* is to not call it--so we drop its guts into "localsub", which can be
* freely called. (And no, the PANS doesn't require the above behavior--
* but it *is* desirable.)
*
* The unused offset argument is for the benefit of mktime variants.
*/
static struct pg_tm *
localsub(const pg_time_t *timep, long offset,
struct pg_tm *tmp, const pg_tz *tz)
{
const struct state *sp;
const struct ttinfo *ttisp;
int i;
struct pg_tm *result;
const pg_time_t t = *timep;
sp = &tz->state;
if ((sp->goback && t < sp->ats[0]) ||
(sp->goahead && t > sp->ats[sp->timecnt - 1]))
{
pg_time_t newt = t;
pg_time_t seconds;
pg_time_t tcycles;
int64 icycles;
if (t < sp->ats[0])
seconds = sp->ats[0] - t;
else
seconds = t - sp->ats[sp->timecnt - 1];
--seconds;
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
++tcycles;
icycles = tcycles;
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
return NULL;
seconds = icycles;
seconds *= YEARSPERREPEAT;
seconds *= AVGSECSPERYEAR;
if (t < sp->ats[0])
newt += seconds;
else
newt -= seconds;
if (newt < sp->ats[0] ||
newt > sp->ats[sp->timecnt - 1])
return NULL; /* "cannot happen" */
result = localsub(&newt, offset, tmp, tz);
if (result == tmp)
{
pg_time_t newy;
newy = tmp->tm_year;
if (t < sp->ats[0])
newy -= icycles * YEARSPERREPEAT;
else
newy += icycles * YEARSPERREPEAT;
tmp->tm_year = newy;
if (tmp->tm_year != newy)
return NULL;
}
return result;
}
if (sp->timecnt == 0 || t < sp->ats[0])
{
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt)
{
i = 0;
break;
}
}
else
{
int lo = 1;
int hi = sp->timecnt;
while (lo < hi)
{
int mid = (lo + hi) >> 1;
if (t < sp->ats[mid])
hi = mid;
else
lo = mid + 1;
}
i = (int) sp->types[lo - 1];
}
ttisp = &sp->ttis[i];
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
tmp->tm_isdst = ttisp->tt_isdst;
tmp->tm_zone = &sp->chars[ttisp->tt_abbrind];
return result;
}
struct pg_tm *
pg_localtime(const pg_time_t *timep, const pg_tz *tz)
{
return localsub(timep, 0L, &tm, tz);
}
/*
* gmtsub is to gmtime as localsub is to localtime.
*/
static struct pg_tm *
gmtsub(const pg_time_t *timep, long offset, struct pg_tm *tmp)
{
struct pg_tm *result;
if (!gmt_is_set)
{
gmt_is_set = TRUE;
gmtload(gmtptr);
}
result = timesub(timep, offset, gmtptr, tmp);
/*
* Could get fancy here and deliver something such as "UTC+xxxx" or
* "UTC-xxxx" if offset is non-zero, but this is no time for a treasure
* hunt.
*/
if (offset != 0)
tmp->tm_zone = wildabbr;
else
tmp->tm_zone = gmtptr->chars;
return result;
}
struct pg_tm *
pg_gmtime(const pg_time_t *timep)
{
return gmtsub(timep, 0L, &tm);
}
/*
* Return the number of leap years through the end of the given year
* where, to make the math easy, the answer for year zero is defined as zero.
*/
static int
leaps_thru_end_of(const int y)
{
return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
-(leaps_thru_end_of(-(y + 1)) + 1);
}
static struct pg_tm *
timesub(const pg_time_t *timep, long offset,
const struct state *sp, struct pg_tm *tmp)
{
const struct lsinfo *lp;
pg_time_t tdays;
int idays; /* unsigned would be so 2003 */
long rem;
int y;
const int *ip;
long corr;
int hit;
int i;
corr = 0;
hit = 0;
i = sp->leapcnt;
while (--i >= 0)
{
lp = &sp->lsis[i];
if (*timep >= lp->ls_trans)
{
if (*timep == lp->ls_trans)
{
hit = ((i == 0 && lp->ls_corr > 0) ||
lp->ls_corr > sp->lsis[i - 1].ls_corr);
if (hit)
while (i > 0 &&
sp->lsis[i].ls_trans ==
sp->lsis[i - 1].ls_trans + 1 &&
sp->lsis[i].ls_corr ==
sp->lsis[i - 1].ls_corr + 1)
{
++hit;
--i;
}
}
corr = lp->ls_corr;
break;
}
}
y = EPOCH_YEAR;
tdays = *timep / SECSPERDAY;
rem = *timep - tdays * SECSPERDAY;
while (tdays < 0 || tdays >= year_lengths[isleap(y)])
{
int newy;
pg_time_t tdelta;
int idelta;
int leapdays;
tdelta = tdays / DAYSPERLYEAR;
idelta = tdelta;
if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
return NULL;
if (idelta == 0)
idelta = (tdays < 0) ? -1 : 1;
newy = y;
if (increment_overflow(&newy, idelta))
return NULL;
leapdays = leaps_thru_end_of(newy - 1) -
leaps_thru_end_of(y - 1);
tdays -= ((pg_time_t) newy - y) * DAYSPERNYEAR;
tdays -= leapdays;
y = newy;
}
{
long seconds;
seconds = tdays * SECSPERDAY + 0.5;
tdays = seconds / SECSPERDAY;
rem += seconds - tdays * SECSPERDAY;
}
/*
* Given the range, we can now fearlessly cast...
*/
idays = tdays;
rem += offset - corr;
while (rem < 0)
{
rem += SECSPERDAY;
--idays;
}
while (rem >= SECSPERDAY)
{
rem -= SECSPERDAY;
++idays;
}
while (idays < 0)
{
if (increment_overflow(&y, -1))
return NULL;
idays += year_lengths[isleap(y)];
}
while (idays >= year_lengths[isleap(y)])
{
idays -= year_lengths[isleap(y)];
if (increment_overflow(&y, 1))
return NULL;
}
tmp->tm_year = y;
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
return NULL;
tmp->tm_yday = idays;
/*
* The "extra" mods below avoid overflow problems.
*/
tmp->tm_wday = EPOCH_WDAY +
((y - EPOCH_YEAR) % DAYSPERWEEK) *
(DAYSPERNYEAR % DAYSPERWEEK) +
leaps_thru_end_of(y - 1) -
leaps_thru_end_of(EPOCH_YEAR - 1) +
idays;
tmp->tm_wday %= DAYSPERWEEK;
if (tmp->tm_wday < 0)
tmp->tm_wday += DAYSPERWEEK;
tmp->tm_hour = (int) (rem / SECSPERHOUR);
rem %= SECSPERHOUR;
tmp->tm_min = (int) (rem / SECSPERMIN);
/*
* A positive leap second requires a special representation. This uses
* "... ??:59:60" et seq.
*/
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
ip = mon_lengths[isleap(y)];
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
idays -= ip[tmp->tm_mon];
tmp->tm_mday = (int) (idays + 1);
tmp->tm_isdst = 0;
tmp->tm_gmtoff = offset;
return tmp;
}
/*
* Simplified normalize logic courtesy Paul Eggert.
*/
static int
increment_overflow(int *number, int delta)
{
int number0;
number0 = *number;
*number += delta;
return (*number < number0) != (delta < 0);
}
/*
* Find the next DST transition time at or after the given time
*
* *timep is the input value, the other parameters are output values.
*
* When the function result is 1, *boundary is set to the time_t
* representation of the next DST transition time at or after *timep,
* *before_gmtoff and *before_isdst are set to the GMT offset and isdst
* state prevailing just before that boundary, and *after_gmtoff and
* *after_isdst are set to the state prevailing just after that boundary.
*
* When the function result is 0, there is no known DST transition at or
* after *timep, but *before_gmtoff and *before_isdst indicate the GMT
* offset and isdst state prevailing at *timep. (This would occur in
* DST-less time zones, for example.)
*
* A function result of -1 indicates failure (this case does not actually
* occur in our current implementation).
*/
int
pg_next_dst_boundary(const pg_time_t *timep,
long int *before_gmtoff,
int *before_isdst,
pg_time_t *boundary,
long int *after_gmtoff,
int *after_isdst,
const pg_tz *tz)
{
const struct state *sp;
const struct ttinfo *ttisp;
int i;
int j;
const pg_time_t t = *timep;
sp = &tz->state;
if (sp->timecnt == 0)
{
/* non-DST zone, use lowest-numbered standard type */
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt)
{
i = 0;
break;
}
ttisp = &sp->ttis[i];
*before_gmtoff = ttisp->tt_gmtoff;
*before_isdst = ttisp->tt_isdst;
return 0;
}
if ((sp->goback && t < sp->ats[0]) ||
(sp->goahead && t > sp->ats[sp->timecnt - 1]))
{
/* For values outside the transition table, extrapolate */
pg_time_t newt = t;
pg_time_t seconds;
pg_time_t tcycles;
int64 icycles;
int result;
if (t < sp->ats[0])
seconds = sp->ats[0] - t;
else
seconds = t - sp->ats[sp->timecnt - 1];
--seconds;
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
++tcycles;
icycles = tcycles;
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
return -1;
seconds = icycles;
seconds *= YEARSPERREPEAT;
seconds *= AVGSECSPERYEAR;
if (t < sp->ats[0])
newt += seconds;
else
newt -= seconds;
if (newt < sp->ats[0] ||
newt > sp->ats[sp->timecnt - 1])
return -1; /* "cannot happen" */
result = pg_next_dst_boundary(&newt, before_gmtoff,
before_isdst,
boundary,
after_gmtoff,
after_isdst,
tz);
if (t < sp->ats[0])
*boundary -= seconds;
else
*boundary += seconds;
return result;
}
if (t > sp->ats[sp->timecnt - 1])
{
/* No known transition >= t, so use last known segment's type */
i = sp->types[sp->timecnt - 1];
ttisp = &sp->ttis[i];
*before_gmtoff = ttisp->tt_gmtoff;
*before_isdst = ttisp->tt_isdst;
return 0;
}
if (t <= sp->ats[0])
{
/* For "before", use lowest-numbered standard type */
i = 0;
while (sp->ttis[i].tt_isdst)
if (++i >= sp->typecnt)
{
i = 0;
break;
}
ttisp = &sp->ttis[i];
*before_gmtoff = ttisp->tt_gmtoff;
*before_isdst = ttisp->tt_isdst;
*boundary = sp->ats[0];
/* And for "after", use the first segment's type */
i = sp->types[0];
ttisp = &sp->ttis[i];
*after_gmtoff = ttisp->tt_gmtoff;
*after_isdst = ttisp->tt_isdst;
return 1;
}
/* Else search to find the containing segment */
{
int lo = 1;
int hi = sp->timecnt;
while (lo < hi)
{
int mid = (lo + hi) >> 1;
if (t < sp->ats[mid])
hi = mid;
else
lo = mid + 1;
}
i = lo;
}
j = sp->types[i - 1];
ttisp = &sp->ttis[j];
*before_gmtoff = ttisp->tt_gmtoff;
*before_isdst = ttisp->tt_isdst;
*boundary = sp->ats[i];
j = sp->types[i];
ttisp = &sp->ttis[j];
*after_gmtoff = ttisp->tt_gmtoff;
*after_isdst = ttisp->tt_isdst;
return 1;
}
/*
* If the given timezone uses only one GMT offset, store that offset
* into *gmtoff and return TRUE, else return FALSE.
*/
bool
pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff)
{
/*
* The zone could have more than one ttinfo, if it's historically used
* more than one abbreviation. We return TRUE as long as they all have
* the same gmtoff.
*/
const struct state *sp;
int i;
sp = &tz->state;
for (i = 1; i < sp->typecnt; i++)
{
if (sp->ttis[i].tt_gmtoff != sp->ttis[0].tt_gmtoff)
return false;
}
*gmtoff = sp->ttis[0].tt_gmtoff;
return true;
}
/*
* Return the name of the current timezone
*/
const char *
pg_get_timezone_name(pg_tz *tz)
{
if (tz)
return tz->TZname;
return NULL;
}