blob: 80bda83537278f724c69ce748c7c421d834f1d60 [file] [log] [blame]
/**********************************************************************
* plpython.c - python as a procedural language for PostgreSQL
*
* src/pl/plpython/plpython.c
*
*********************************************************************
*/
#if defined(_MSC_VER) && defined(_DEBUG)
/* Python uses #pragma to bring in a non-default libpython on VC++ if
* _DEBUG is defined */
#undef _DEBUG
/* Also hide away errcode, since we load Python.h before postgres.h */
#define errcode __msvc_errcode
#include <Python.h>
#undef errcode
#define _DEBUG
#elif defined (_MSC_VER)
#define errcode __msvc_errcode
#include <Python.h>
#undef errcode
#else
#include <Python.h>
#endif
/*
* Py_ssize_t compat for Python <= 2.4
*/
#if PY_VERSION_HEX < 0x02050000 && !defined(PY_SSIZE_T_MIN)
typedef int Py_ssize_t;
#define PY_SSIZE_T_MAX INT_MAX
#define PY_SSIZE_T_MIN INT_MIN
#endif
/*
* PyBool_FromLong is supported from 2.3.
*/
#if PY_VERSION_HEX < 0x02030000
#define PyBool_FromLong(x) PyInt_FromLong(x)
#endif
/*
* Python 2/3 strings/unicode/bytes handling. Python 2 has strings
* and unicode, Python 3 has strings, which are unicode on the C
* level, and bytes. The porting convention, which is similarly used
* in Python 2.6, is that "Unicode" is always unicode, and "Bytes" are
* bytes in Python 3 and strings in Python 2. Since we keep
* supporting Python 2 and its usual strings, we provide a
* compatibility layer for Python 3 that when asked to convert a C
* string to a Python string it converts the C string from the
* PostgreSQL server encoding to a Python Unicode object.
*/
#if PY_VERSION_HEX < 0x02060000
/* This is exactly the compatibility layer that Python 2.6 uses. */
#define PyBytes_AsString PyString_AsString
#define PyBytes_FromStringAndSize PyString_FromStringAndSize
#define PyBytes_Size PyString_Size
#define PyObject_Bytes PyObject_Str
#endif
#if PY_MAJOR_VERSION >= 3
#define PyString_Check(x) 0
#define PyString_AsString(x) PLyUnicode_AsString(x)
#define PyString_FromString(x) PLyUnicode_FromString(x)
#endif
/*
* Python 3 only has long.
*/
#if PY_MAJOR_VERSION >= 3
#define PyInt_FromLong(x) PyLong_FromLong(x)
#define PyInt_AsLong(x) PyLong_AsLong(x)
#endif
/*
* PyVarObject_HEAD_INIT was added in Python 2.6. Its use is
* necessary to handle both Python 2 and 3. This replacement
* definition is for Python <=2.5
*/
#ifndef PyVarObject_HEAD_INIT
#define PyVarObject_HEAD_INIT(type, size) \
PyObject_HEAD_INIT(type) size,
#endif
#include "postgres.h"
/* system stuff */
#include <unistd.h>
#include <fcntl.h>
/* postgreSQL stuff */
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "commands/trigger.h"
#include "executor/spi.h"
#include "funcapi.h"
#include "fmgr.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "parser/parse_type.h"
#include "tcop/tcopprot.h"
#include "access/transam.h"
#include "access/xact.h"
#include "utils/builtins.h"
#include "utils/hsearch.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
/* define our text domain for translations */
#undef TEXTDOMAIN
#define TEXTDOMAIN PG_TEXTDOMAIN("plpython")
/* Python header files beyond the basic Python.h */
#include <compile.h>
#include <eval.h>
#ifdef PLPYTHON_SHOW_DEBUG_INFO
#define pyelog(...) elog(__VA_ARGS__)
#else
#define pyelog(...)
#endif
PG_MODULE_MAGIC;
/* convert Postgresql Datum or tuple into a PyObject.
* input to Python. Tuples are converted to dictionary
* objects.
*/
struct PLyDatumToOb;
typedef PyObject *(*PLyDatumToObFunc) (struct PLyDatumToOb *, Datum);
typedef struct PLyDatumToOb
{
PLyDatumToObFunc func;
FmgrInfo typfunc; /* The type's output function */
Oid typoid; /* The OID of the type */
int32 typmod; /* The typmod of the type */
Oid typioparam;
bool typbyval;
int16 typlen;
char typalign;
struct PLyDatumToOb *elm;
} PLyDatumToOb;
typedef struct PLyTupleToOb
{
PLyDatumToOb *atts;
int natts;
} PLyTupleToOb;
typedef union PLyTypeInput
{
PLyDatumToOb d;
PLyTupleToOb r;
} PLyTypeInput;
/* convert PyObject to a Postgresql Datum or tuple.
* output from Python
*/
struct PLyObToDatum;
typedef Datum (*PLyObToDatumFunc) (struct PLyObToDatum *, int32 typmod,
PyObject *);
typedef struct PLyObToDatum
{
PLyObToDatumFunc func;
FmgrInfo typfunc; /* The type's input function */
Oid typoid; /* The OID of the type */
int32 typmod; /* The typmod of the type */
Oid typioparam;
bool typbyval;
int16 typlen;
char typalign;
struct PLyObToDatum *elm;
} PLyObToDatum;
typedef struct PLyObToTuple
{
PLyObToDatum *atts;
int natts;
} PLyObToTuple;
typedef union PLyTypeOutput
{
PLyObToDatum d;
PLyObToTuple r;
} PLyTypeOutput;
/* all we need to move Postgresql data to Python objects,
* and vice versa
*/
typedef struct PLyTypeInfo
{
PLyTypeInput in;
PLyTypeOutput out;
/*
* is_rowtype can be: -1 = not known yet (initial state); 0 = scalar
* datatype; 1 = rowtype; 2 = rowtype, but I/O functions not set up yet
*/
int is_rowtype;
/* used to check if the type has been modified */
Oid typ_relid;
TransactionId typrel_xmin;
ItemPointerData typrel_tid;
} PLyTypeInfo;
/* cached procedure data */
typedef struct PLyProcedure
{
char *proname; /* SQL name of procedure */
char *pyname; /* Python name of procedure */
TransactionId fn_xmin;
ItemPointerData fn_tid;
bool fn_readonly;
PLyTypeInfo result; /* also used to store info for trigger tuple
* type */
char *src; /* textual procedure code, after mangling */
char **argnames; /* Argument names */
PLyTypeInfo args[FUNC_MAX_ARGS];
int nargs;
PyObject *code; /* compiled procedure code */
PyObject *statics; /* data saved across calls, local scope */
PyObject *globals; /* data saved across calls, global scope */
} PLyProcedure;
/* the procedure cache entry */
typedef struct PLyProcedureEntry
{
Oid fn_oid; /* hash key */
PLyProcedure *proc;
} PLyProcedureEntry;
/* explicit subtransaction data */
typedef struct PLySubtransactionData
{
MemoryContext oldcontext;
ResourceOwner oldowner;
} PLySubtransactionData;
/* Python objects */
typedef struct PLyPlanObject
{
PyObject_HEAD
void *plan; /* return of an SPI_saveplan */
int nargs;
Oid *types;
Datum *values;
PLyTypeInfo *args;
} PLyPlanObject;
typedef struct PLyResultObject
{
PyObject_HEAD
/* HeapTuple *tuples; */
PyObject *nrows; /* number of rows returned by query */
PyObject *rows; /* data rows, or None if no data returned */
PyObject *status; /* query status, SPI_OK_*, or SPI_ERR_* */
} PLyResultObject;
typedef struct PLySubtransactionObject
{
PyObject_HEAD
bool started;
bool exited;
} PLySubtransactionObject;
/* A list of all known exceptions, generated from backend/utils/errcodes.txt */
typedef struct ExceptionMap
{
char *name;
char *classname;
int sqlstate;
} ExceptionMap;
static const ExceptionMap exception_map[] = {
{NULL, NULL, 0}
};
/* A hash table mapping sqlstates to exceptions, for speedy lookup */
static HTAB *PLy_spi_exceptions;
typedef struct PLyExceptionEntry
{
int sqlstate; /* hash key, must be first */
PyObject *exc; /* corresponding exception */
} PLyExceptionEntry;
/* function declarations */
#if PY_MAJOR_VERSION >= 3
/* Use separate names to avoid clash in pg_pltemplate */
#define plpython_validator plpython3_validator
#define plpython_call_handler plpython3_call_handler
#endif
/* exported functions */
Datum plpython_validator(PG_FUNCTION_ARGS);
Datum plpython_call_handler(PG_FUNCTION_ARGS);
void _PG_init(void);
PG_FUNCTION_INFO_V1(plpython_validator);
PG_FUNCTION_INFO_V1(plpython_call_handler);
/* most of the remaining of the declarations, all static */
/*
* These should only be called once from _PG_init. Initialize the
* Python interpreter and global data.
*/
static void PLy_init_interp(void);
static void PLy_init_plpy(void);
/* call PyErr_SetString with a vprint interface and translation support */
static void
PLy_exception_set(PyObject *, const char *,...)
__attribute__((format(printf, 2, 3)));
/* same, with pluralized message */
static void
PLy_exception_set_plural(PyObject *, const char *, const char *,
unsigned long n,...)
__attribute__((format(printf, 2, 5)))
__attribute__((format(printf, 3, 5)));
/* like PLy_exception_set, but conserve more fields from ErrorData */
static void PLy_spi_exception_set(PyObject *excclass, ErrorData *edata);
/* Get the innermost python procedure called from the backend */
static char *PLy_procedure_name(PLyProcedure *);
/* some utility functions */
static void
PLy_elog(int, const char *,...)
__attribute__((format(printf, 2, 3)));
static void PLy_get_spi_error_data(PyObject *exc, char **detail, char **hint, char **query, int *position);
static void PLy_traceback(char **, char **, int *);
static void *PLy_malloc(size_t);
static void *PLy_malloc0(size_t);
static char *PLy_strdup(const char *);
static void PLy_free(void *);
static PyObject *PLyUnicode_Bytes(PyObject *unicode);
static char *PLyUnicode_AsString(PyObject *unicode);
#if PY_MAJOR_VERSION >= 3
static PyObject *PLyUnicode_FromString(const char *s);
#endif
/* sub handlers for functions and triggers */
static Datum PLy_function_handler(FunctionCallInfo fcinfo, PLyProcedure *);
static HeapTuple PLy_trigger_handler(FunctionCallInfo fcinfo, PLyProcedure *);
static PyObject *PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *);
static void PLy_function_delete_args(PLyProcedure *);
static PyObject *PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *,
HeapTuple *);
static HeapTuple PLy_modify_tuple(PLyProcedure *, PyObject *,
TriggerData *, HeapTuple);
static PyObject *PLy_procedure_call(PLyProcedure *, char *, PyObject *);
static PLyProcedure *PLy_procedure_get(Oid fn_oid, bool is_trigger);
static PLyProcedure *PLy_procedure_create(HeapTuple procTup,
Oid fn_oid, bool is_trigger);
static void PLy_procedure_compile(PLyProcedure *, const char *);
static char *PLy_procedure_munge_source(const char *, const char *);
static void PLy_procedure_delete(PLyProcedure *);
static void PLy_typeinfo_init(PLyTypeInfo *);
static void PLy_typeinfo_dealloc(PLyTypeInfo *);
static void PLy_output_datum_func(PLyTypeInfo *, HeapTuple);
static void PLy_output_datum_func2(PLyObToDatum *, HeapTuple);
static void PLy_input_datum_func(PLyTypeInfo *, Oid, HeapTuple);
static void PLy_input_datum_func2(PLyDatumToOb *, Oid, HeapTuple);
static void PLy_output_tuple_funcs(PLyTypeInfo *, TupleDesc);
static void PLy_input_tuple_funcs(PLyTypeInfo *, TupleDesc);
static void PLy_output_record_funcs(PLyTypeInfo *, TupleDesc);
/* conversion functions */
static PyObject *PLyBool_FromBool(PLyDatumToOb *arg, Datum d);
static PyObject *PLyFloat_FromFloat4(PLyDatumToOb *arg, Datum d);
static PyObject *PLyFloat_FromFloat8(PLyDatumToOb *arg, Datum d);
static PyObject *PLyFloat_FromNumeric(PLyDatumToOb *arg, Datum d);
static PyObject *PLyInt_FromInt16(PLyDatumToOb *arg, Datum d);
static PyObject *PLyInt_FromInt32(PLyDatumToOb *arg, Datum d);
static PyObject *PLyLong_FromInt64(PLyDatumToOb *arg, Datum d);
static PyObject *PLyBytes_FromBytea(PLyDatumToOb *arg, Datum d);
static PyObject *PLyString_FromDatum(PLyDatumToOb *arg, Datum d);
static PyObject *PLyList_FromArray(PLyDatumToOb *arg, Datum d);
static PyObject *PLyDict_FromTuple(PLyTypeInfo *, HeapTuple, TupleDesc);
static Datum PLyObject_ToBool(PLyObToDatum *, int32, PyObject *);
static Datum PLyObject_ToBytea(PLyObToDatum *, int32, PyObject *);
static Datum PLyObject_ToComposite(PLyObToDatum *, int32, PyObject *);
static Datum PLyObject_ToDatum(PLyObToDatum *, int32, PyObject *);
static Datum PLySequence_ToArray(PLyObToDatum *, int32, PyObject *);
static HeapTuple PLyObject_ToTuple(PLyTypeInfo *, TupleDesc, PyObject *);
static HeapTuple PLyMapping_ToTuple(PLyTypeInfo *, TupleDesc, PyObject *);
static HeapTuple PLySequence_ToTuple(PLyTypeInfo *, TupleDesc, PyObject *);
static HeapTuple PLyGenericObject_ToTuple(PLyTypeInfo *, TupleDesc, PyObject *);
/*
* Currently active plpython function
*/
static PLyProcedure *PLy_curr_procedure = NULL;
/* list of explicit subtransaction data */
static List *explicit_subtransactions = NIL;
static PyObject *PLy_interp_globals = NULL;
static PyObject *PLy_interp_safe_globals = NULL;
static HTAB *PLy_procedure_cache = NULL;
static HTAB *PLy_trigger_cache = NULL;
/* Python exceptions */
static PyObject *PLy_exc_error = NULL;
static PyObject *PLy_exc_fatal = NULL;
static PyObject *PLy_exc_spi_error = NULL;
/* some globals for the python module */
static char PLy_plan_doc[] = {
"Store a PostgreSQL plan"
};
static char PLy_result_doc[] = {
"Results of a PostgreSQL query"
};
static char PLy_subtransaction_doc[] = {
"PostgreSQL subtransaction context manager"
};
/*
* the function definitions
*/
/*
* This routine is a crock, and so is everyplace that calls it. The problem
* is that the cached form of plpython functions/queries is allocated permanently
* (mostly via malloc()) and never released until backend exit. Subsidiary
* data structures such as fmgr info records therefore must live forever
* as well. A better implementation would store all this stuff in a per-
* function memory context that could be reclaimed at need. In the meantime,
* fmgr_info_cxt must be called specifying TopMemoryContext so that whatever
* it might allocate, and whatever the eventual function might allocate using
* fn_mcxt, will live forever too.
*/
static void
perm_fmgr_info(Oid functionId, FmgrInfo *finfo)
{
fmgr_info_cxt(functionId, finfo, TopMemoryContext);
}
static void
plpython_error_callback(void *arg)
{
if (PLy_curr_procedure)
errcontext("PL/Python function \"%s\"",
PLy_procedure_name(PLy_curr_procedure));
}
static void
plpython_trigger_error_callback(void *arg)
{
if (PLy_curr_procedure)
errcontext("while modifying trigger row");
}
static void
plpython_return_error_callback(void *arg)
{
if (PLy_curr_procedure)
errcontext("while creating return value");
}
static bool
PLy_procedure_is_trigger(Form_pg_proc procStruct)
{
return (procStruct->prorettype == TRIGGEROID ||
(procStruct->prorettype == OPAQUEOID &&
procStruct->pronargs == 0));
}
Datum
plpython_validator(PG_FUNCTION_ARGS)
{
Oid funcoid = PG_GETARG_OID(0);
HeapTuple tuple;
Form_pg_proc procStruct;
bool is_trigger;
if (!CheckFunctionValidatorAccess(fcinfo->flinfo->fn_oid, funcoid))
PG_RETURN_VOID();
if (!check_function_bodies)
{
PG_RETURN_VOID();
}
/* Get the new function's pg_proc entry */
tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcoid));
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for function %u", funcoid);
procStruct = (Form_pg_proc) GETSTRUCT(tuple);
is_trigger = PLy_procedure_is_trigger(procStruct);
ReleaseSysCache(tuple);
PLy_procedure_get(funcoid, is_trigger);
PG_RETURN_VOID();
}
Datum
plpython_call_handler(PG_FUNCTION_ARGS)
{
Datum retval;
PLyProcedure *save_curr_proc;
ErrorContextCallback plerrcontext;
if (SPI_connect() != SPI_OK_CONNECT)
elog(ERROR, "SPI_connect failed");
pyelog(LOG, "Entering call handler with PLy_curr_procedure: %p", PLy_curr_procedure);
save_curr_proc = PLy_curr_procedure;
/*
* Setup error traceback support for ereport()
*/
plerrcontext.callback = plpython_error_callback;
plerrcontext.previous = error_context_stack;
error_context_stack = &plerrcontext;
PG_TRY();
{
PLyProcedure *proc;
if (CALLED_AS_TRIGGER(fcinfo))
{
HeapTuple trv;
proc = PLy_procedure_get(fcinfo->flinfo->fn_oid, true);
pyelog(LOG, "Calling python proc @ address: %p", proc);
PLy_curr_procedure = proc;
trv = PLy_trigger_handler(fcinfo, proc);
retval = PointerGetDatum(trv);
}
else
{
proc = PLy_procedure_get(fcinfo->flinfo->fn_oid, false);
pyelog(LOG, "Calling python proc @ address: %p", proc);
PLy_curr_procedure = proc;
retval = PLy_function_handler(fcinfo, proc);
}
}
PG_CATCH();
{
PLy_curr_procedure = save_curr_proc;
PyErr_Clear();
PG_RE_THROW();
}
PG_END_TRY();
/* Pop the error context stack */
error_context_stack = plerrcontext.previous;
PLy_curr_procedure = save_curr_proc;
return retval;
}
/* trigger and function sub handlers
*
* the python function is expected to return Py_None if the tuple is
* acceptable and unmodified. Otherwise it should return a PyString
* object who's value is SKIP, or MODIFY. SKIP means don't perform
* this action. MODIFY means the tuple has been modified, so update
* tuple and perform action. SKIP and MODIFY assume the trigger fires
* BEFORE the event and is ROW level. postgres expects the function
* to take no arguments and return an argument of type trigger.
*/
static HeapTuple
PLy_trigger_handler(FunctionCallInfo fcinfo, PLyProcedure *proc)
{
HeapTuple rv = NULL;
PyObject *volatile plargs = NULL;
PyObject *volatile plrv = NULL;
TriggerData *tdata;
Assert(CALLED_AS_TRIGGER(fcinfo));
/*
* Input/output conversion for trigger tuples. Use the result TypeInfo
* variable to store the tuple conversion info. We do this over again on
* each call to cover the possibility that the relation's tupdesc changed
* since the trigger was last called. PLy_input_tuple_funcs and
* PLy_output_tuple_funcs are responsible for not doing repetitive work.
*/
tdata = (TriggerData *) fcinfo->context;
PLy_input_tuple_funcs(&(proc->result), tdata->tg_relation->rd_att);
PLy_output_tuple_funcs(&(proc->result), tdata->tg_relation->rd_att);
PG_TRY();
{
plargs = PLy_trigger_build_args(fcinfo, proc, &rv);
plrv = PLy_procedure_call(proc, "TD", plargs);
Assert(plrv != NULL);
/*
* Disconnect from SPI manager
*/
if (SPI_finish() != SPI_OK_FINISH)
elog(ERROR, "SPI_finish failed");
/*
* return of None means we're happy with the tuple
*/
if (plrv != Py_None)
{
char *srv;
if (PyString_Check(plrv))
srv = PyString_AsString(plrv);
else if (PyUnicode_Check(plrv))
srv = PLyUnicode_AsString(plrv);
else
{
ereport(ERROR,
(errcode(ERRCODE_DATA_EXCEPTION),
errmsg("unexpected return value from trigger procedure"),
errdetail("Expected None or a string.")));
srv = NULL; /* keep compiler quiet */
}
if (pg_strcasecmp(srv, "SKIP") == 0)
rv = NULL;
else if (pg_strcasecmp(srv, "MODIFY") == 0)
{
TriggerData *tdata = (TriggerData *) fcinfo->context;
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event) ||
TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
rv = PLy_modify_tuple(proc, plargs, tdata, rv);
else
ereport(WARNING,
(errmsg("PL/Python trigger function returned \"MODIFY\" in a DELETE trigger -- ignored")));
}
else if (pg_strcasecmp(srv, "OK") != 0)
{
/*
* accept "OK" as an alternative to None; otherwise, raise an
* error
*/
ereport(ERROR,
(errcode(ERRCODE_DATA_EXCEPTION),
errmsg("unexpected return value from trigger procedure"),
errdetail("Expected None, \"OK\", \"SKIP\", or \"MODIFY\".")));
}
}
}
PG_CATCH();
{
Py_XDECREF(plargs);
Py_XDECREF(plrv);
PG_RE_THROW();
}
PG_END_TRY();
Py_DECREF(plargs);
Py_DECREF(plrv);
return rv;
}
static HeapTuple
PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd, TriggerData *tdata,
HeapTuple otup)
{
PyObject *volatile plntup;
PyObject *volatile plkeys;
PyObject *volatile platt;
PyObject *volatile plval;
PyObject *volatile plstr;
HeapTuple rtup;
int natts,
i,
attn,
atti;
int *volatile modattrs;
Datum *volatile modvalues;
char *volatile modnulls;
TupleDesc tupdesc;
ErrorContextCallback plerrcontext;
plerrcontext.callback = plpython_trigger_error_callback;
plerrcontext.previous = error_context_stack;
error_context_stack = &plerrcontext;
plntup = plkeys = platt = plval = plstr = NULL;
modattrs = NULL;
modvalues = NULL;
modnulls = NULL;
PG_TRY();
{
if ((plntup = PyDict_GetItemString(pltd, "new")) == NULL)
ereport(ERROR,
(errmsg("TD[\"new\"] deleted, cannot modify row")));
if (!PyDict_Check(plntup))
ereport(ERROR,
(errmsg("TD[\"new\"] is not a dictionary")));
Py_INCREF(plntup);
plkeys = PyDict_Keys(plntup);
natts = PyList_Size(plkeys);
modattrs = (int *) palloc(natts * sizeof(int));
modvalues = (Datum *) palloc(natts * sizeof(Datum));
modnulls = (char *) palloc(natts * sizeof(char));
tupdesc = tdata->tg_relation->rd_att;
for (i = 0; i < natts; i++)
{
char *plattstr;
platt = PyList_GetItem(plkeys, i);
if (PyString_Check(platt))
plattstr = PyString_AsString(platt);
else if (PyUnicode_Check(platt))
plattstr = PLyUnicode_AsString(platt);
else
{
ereport(ERROR,
(errmsg("TD[\"new\"] dictionary key at ordinal position %d is not a string", i)));
plattstr = NULL; /* keep compiler quiet */
}
attn = SPI_fnumber(tupdesc, plattstr);
if (attn == SPI_ERROR_NOATTRIBUTE)
ereport(ERROR,
(errmsg("key \"%s\" found in TD[\"new\"] does not exist as a column in the triggering row",
plattstr)));
atti = attn - 1;
plval = PyDict_GetItem(plntup, platt);
if (plval == NULL)
elog(FATAL, "Python interpreter is probably corrupted");
Py_INCREF(plval);
modattrs[i] = attn;
if (tupdesc->attrs[atti]->attisdropped)
{
modvalues[i] = (Datum) 0;
modnulls[i] = 'n';
}
else if (plval != Py_None)
{
PLyObToDatum *att = &proc->result.out.r.atts[atti];
modvalues[i] = (att->func) (att,
tupdesc->attrs[atti]->atttypmod,
plval);
modnulls[i] = ' ';
}
else
{
modvalues[i] =
InputFunctionCall(&proc->result.out.r.atts[atti].typfunc,
NULL,
proc->result.out.r.atts[atti].typioparam,
tupdesc->attrs[atti]->atttypmod);
modnulls[i] = 'n';
}
Py_DECREF(plval);
plval = NULL;
}
rtup = SPI_modifytuple(tdata->tg_relation, otup, natts,
modattrs, modvalues, modnulls);
if (rtup == NULL)
elog(ERROR, "SPI_modifytuple failed: error %d", SPI_result);
}
PG_CATCH();
{
Py_XDECREF(plntup);
Py_XDECREF(plkeys);
Py_XDECREF(plval);
Py_XDECREF(plstr);
if (modnulls)
pfree(modnulls);
if (modvalues)
pfree(modvalues);
if (modattrs)
pfree(modattrs);
PG_RE_THROW();
}
PG_END_TRY();
Py_DECREF(plntup);
Py_DECREF(plkeys);
pfree(modattrs);
pfree(modvalues);
pfree(modnulls);
error_context_stack = plerrcontext.previous;
return rtup;
}
static PyObject *
PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc, HeapTuple *rv)
{
TriggerData *tdata = (TriggerData *) fcinfo->context;
PyObject *pltname,
*pltevent,
*pltwhen,
*pltlevel,
*pltrelid,
*plttablename,
*plttableschema;
PyObject *pltargs,
*pytnew,
*pytold;
PyObject *volatile pltdata = NULL;
char *stroid;
PG_TRY();
{
pltdata = PyDict_New();
if (!pltdata)
PLy_elog(ERROR, "could not create new dictionary while building trigger arguments");
pltname = PyString_FromString(tdata->tg_trigger->tgname);
PyDict_SetItemString(pltdata, "name", pltname);
Py_DECREF(pltname);
stroid = DatumGetCString(DirectFunctionCall1(oidout,
ObjectIdGetDatum(tdata->tg_relation->rd_id)));
pltrelid = PyString_FromString(stroid);
PyDict_SetItemString(pltdata, "relid", pltrelid);
Py_DECREF(pltrelid);
pfree(stroid);
stroid = SPI_getrelname(tdata->tg_relation);
plttablename = PyString_FromString(stroid);
PyDict_SetItemString(pltdata, "table_name", plttablename);
Py_DECREF(plttablename);
pfree(stroid);
stroid = SPI_getnspname(tdata->tg_relation);
plttableschema = PyString_FromString(stroid);
PyDict_SetItemString(pltdata, "table_schema", plttableschema);
Py_DECREF(plttableschema);
pfree(stroid);
if (TRIGGER_FIRED_BEFORE(tdata->tg_event))
pltwhen = PyString_FromString("BEFORE");
else if (TRIGGER_FIRED_AFTER(tdata->tg_event))
pltwhen = PyString_FromString("AFTER");
else
{
elog(ERROR, "unrecognized WHEN tg_event: %u", tdata->tg_event);
pltwhen = NULL; /* keep compiler quiet */
}
PyDict_SetItemString(pltdata, "when", pltwhen);
Py_DECREF(pltwhen);
if (TRIGGER_FIRED_FOR_ROW(tdata->tg_event))
{
pltlevel = PyString_FromString("ROW");
PyDict_SetItemString(pltdata, "level", pltlevel);
Py_DECREF(pltlevel);
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event))
{
pltevent = PyString_FromString("INSERT");
PyDict_SetItemString(pltdata, "old", Py_None);
pytnew = PLyDict_FromTuple(&(proc->result), tdata->tg_trigtuple,
tdata->tg_relation->rd_att);
PyDict_SetItemString(pltdata, "new", pytnew);
Py_DECREF(pytnew);
*rv = tdata->tg_trigtuple;
}
else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event))
{
pltevent = PyString_FromString("DELETE");
PyDict_SetItemString(pltdata, "new", Py_None);
pytold = PLyDict_FromTuple(&(proc->result), tdata->tg_trigtuple,
tdata->tg_relation->rd_att);
PyDict_SetItemString(pltdata, "old", pytold);
Py_DECREF(pytold);
*rv = tdata->tg_trigtuple;
}
else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
{
pltevent = PyString_FromString("UPDATE");
pytnew = PLyDict_FromTuple(&(proc->result), tdata->tg_newtuple,
tdata->tg_relation->rd_att);
PyDict_SetItemString(pltdata, "new", pytnew);
Py_DECREF(pytnew);
pytold = PLyDict_FromTuple(&(proc->result), tdata->tg_trigtuple,
tdata->tg_relation->rd_att);
PyDict_SetItemString(pltdata, "old", pytold);
Py_DECREF(pytold);
*rv = tdata->tg_newtuple;
}
else
{
elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event);
pltevent = NULL; /* keep compiler quiet */
}
PyDict_SetItemString(pltdata, "event", pltevent);
Py_DECREF(pltevent);
}
else if (TRIGGER_FIRED_FOR_STATEMENT(tdata->tg_event))
{
pltlevel = PyString_FromString("STATEMENT");
PyDict_SetItemString(pltdata, "level", pltlevel);
Py_DECREF(pltlevel);
PyDict_SetItemString(pltdata, "old", Py_None);
PyDict_SetItemString(pltdata, "new", Py_None);
*rv = NULL;
if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event))
pltevent = PyString_FromString("INSERT");
else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event))
pltevent = PyString_FromString("DELETE");
else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event))
pltevent = PyString_FromString("UPDATE");
else
{
elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event);
pltevent = NULL; /* keep compiler quiet */
}
PyDict_SetItemString(pltdata, "event", pltevent);
Py_DECREF(pltevent);
}
else
elog(ERROR, "unrecognized LEVEL tg_event: %u", tdata->tg_event);
if (tdata->tg_trigger->tgnargs)
{
/*
* all strings...
*/
int i;
PyObject *pltarg;
pltargs = PyList_New(tdata->tg_trigger->tgnargs);
for (i = 0; i < tdata->tg_trigger->tgnargs; i++)
{
pltarg = PyString_FromString(tdata->tg_trigger->tgargs[i]);
/*
* stolen, don't Py_DECREF
*/
PyList_SetItem(pltargs, i, pltarg);
}
}
else
{
Py_INCREF(Py_None);
pltargs = Py_None;
}
PyDict_SetItemString(pltdata, "args", pltargs);
Py_DECREF(pltargs);
}
PG_CATCH();
{
Py_XDECREF(pltdata);
PG_RE_THROW();
}
PG_END_TRY();
return pltdata;
}
/* function handler and friends */
static Datum
PLy_function_handler(FunctionCallInfo fcinfo, PLyProcedure *proc)
{
Datum rv;
FuncCallContext *volatile funcctx = NULL;
PyObject *volatile plargs = NULL;
PyObject *volatile plrv = NULL;
bool bFirstTimeCall = false;
ErrorContextCallback plerrcontext;
PG_TRY();
{
pyelog(INFO, "fcinfo->flinfo->fn_retset: %d", fcinfo->flinfo->fn_retset);
if (fcinfo->flinfo->fn_retset)
{
/* First Call setup */
if (SRF_IS_FIRSTCALL())
{
funcctx = SRF_FIRSTCALL_INIT();
bFirstTimeCall = true;
/*
* Clear all previous left-over exceptions due to some (unknow) reasons
* so that this call will have a fresh start
*/
PyErr_Clear();
pyelog(INFO, "The funcctx pointer returned by SRF_FIRSTCALL_INIT() is: %p", funcctx);
}
/* Every call setup */
funcctx = SRF_PERCALL_SETUP();
pyelog(INFO, "The funcctx pointer returned by SRF_PERCALL_SETUP() is: %p", funcctx);
Assert(funcctx != NULL);
}
if ( !fcinfo->flinfo->fn_retset || bFirstTimeCall )
{
/*
* Simple type returning function or first time for SETOF
* function: actually execute the function.
*/
plargs = PLy_function_build_args(fcinfo, proc);
plrv = PLy_procedure_call(proc, "args", plargs);
pyelog(INFO, "The python procedure is called for the first time");
if (!fcinfo->flinfo->fn_retset)
{
/*
* SETOF function parameters will be deleted when last row is
* returned
*/
PLy_function_delete_args(proc);
}
Assert(plrv != NULL);
}
/*
* If it returns a set, call the iterator to get the next return item.
* We stay in the SPI context while doing this, because PyIter_Next()
* calls back into Python code which might contain SPI calls.
*/
if (fcinfo->flinfo->fn_retset)
{
bool has_error = false;
ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo;
if (funcctx->user_fctx == NULL)
{
pyelog(INFO, "first time call, preparing the result set...");
/* first time -- do checks and setup */
if (!rsi || !IsA(rsi, ReturnSetInfo) ||
(rsi->allowedModes & SFRM_ValuePerCall) == 0)
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unsupported set function return mode"),
errdetail("PL/Python set-returning functions only support returning only value per call.")));
}
rsi->returnMode = SFRM_ValuePerCall;
/* Make iterator out of returned object */
funcctx->user_fctx = (void*) PyObject_GetIter(plrv);
Py_DECREF(plrv);
plrv = NULL;
if (funcctx->user_fctx == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("returned object cannot be iterated"),
errdetail("PL/Python set-returning functions must return an iterable object.")));
}
pyelog(INFO, "Now ready to call PyIter_Next on %p", funcctx->user_fctx);
/* Fetch next from iterator */
plrv = PyIter_Next( (PyObject*) funcctx->user_fctx );
if (plrv)
rsi->isDone = ExprMultipleResult;
else
{
rsi->isDone = ExprEndResult;
PyObject * perr = PyErr_Occurred();
has_error = (perr != NULL);
#ifdef PLPYTHON_SHOW_DEBUG_INFO
if (has_error)
{
/*
* Somehow PyObject_Str/Repr/PyString_AsString don't work as expected. Looks like they always return "(null)"
* for whatever non-null PyObject passed in. Will need to check why.
*/
elog( INFO,
"Python Error Occurred, type: %s test: %s",
PyString_AsString(PyObject_Str(perr)),
PyString_AsString(PyObject_Repr(PyExc_MemoryError)) );
PyObject *ptype, *pvalue, *ptraceback;
PyErr_Fetch(&ptype, &pvalue, &ptraceback);
PyErr_NormalizeException(&ptype, &pvalue, &ptraceback);
elog(INFO,
"A Python error occurred while calling the PyIter_Next: type: %s value: %s traceback: %s",
(ptype != NULL ? PyString_AsString(PyObject_Str(ptype)): "(NULL)"),
(pvalue!= NULL ? PyString_AsString(PyObject_Str(pvalue)): "(NULL)"),
(ptraceback!= NULL? PyString_AsString(PyObject_Str(ptraceback)): "(NULL)")
);
}
#endif
}
if (rsi->isDone == ExprEndResult)
{
/* Iterator is exhausted or error happened */
Py_DECREF( (PyObject*) funcctx->user_fctx);
funcctx->user_fctx = NULL;
Py_XDECREF(plargs);
Py_XDECREF(plrv);
PLy_function_delete_args(proc);
if (has_error)
PLy_elog(ERROR, "function \"%s\" error fetching next item from iterator", proc->proname);
/* Disconnect from the SPI manager before returning */
if (SPI_finish() != SPI_OK_FINISH)
elog(ERROR, "SPI_finish failed");
SRF_RETURN_DONE(funcctx);
}
}
/*
* Disconnect from SPI manager and then create the return values datum
* (if the input function does a palloc for it this must not be
* allocated in the SPI memory context because SPI_finish would free
* it).
*/
if (SPI_finish() != SPI_OK_FINISH)
elog(ERROR, "SPI_finish failed");
plerrcontext.callback = plpython_return_error_callback;
plerrcontext.previous = error_context_stack;
error_context_stack = &plerrcontext;
/*
* If the function is declared to return void, the Python return value
* must be None. For void-returning functions, we also treat a None
* return value as a special "void datum" rather than NULL (as is the
* case for non-void-returning functions).
*/
if (proc->result.out.d.typoid == VOIDOID)
{
if (plrv != Py_None)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("PL/Python function with return type \"void\" did not return None")));
fcinfo->isnull = false;
rv = (Datum) 0;
}
else if (plrv == Py_None)
{
fcinfo->isnull = true;
if (proc->result.is_rowtype < 1)
rv = InputFunctionCall(&proc->result.out.d.typfunc,
NULL,
proc->result.out.d.typioparam,
-1);
else
/* Tuple as None */
rv = (Datum) 0;
}
else if (proc->result.is_rowtype >= 1)
{
TupleDesc desc;
HeapTuple tuple = NULL;
/* make sure it's not an unnamed record */
Assert((proc->result.out.d.typoid == RECORDOID &&
proc->result.out.d.typmod != -1) ||
(proc->result.out.d.typoid != RECORDOID &&
proc->result.out.d.typmod == -1));
desc = lookup_rowtype_tupdesc(proc->result.out.d.typoid,
proc->result.out.d.typmod);
tuple = PLyObject_ToTuple(&proc->result, desc, plrv);
if (tuple != NULL)
{
fcinfo->isnull = false;
rv = HeapTupleGetDatum(tuple);
}
else
{
fcinfo->isnull = true;
rv = (Datum) 0;
}
}
else
{
fcinfo->isnull = false;
rv = (proc->result.out.d.func) (&proc->result.out.d, -1, plrv);
}
}
PG_CATCH();
{
Py_XDECREF(plargs);
Py_XDECREF(plrv);
/*
* If there was an error the iterator might have not been exhausted
* yet. Set it to NULL so the next invocation of the function will
* start the iteration again.
*/
if (fcinfo->flinfo->fn_retset && funcctx->user_fctx != NULL)
{
Py_XDECREF( (PyObject*) funcctx->user_fctx );
funcctx->user_fctx = NULL;
}
PG_RE_THROW();
}
PG_END_TRY();
error_context_stack = plerrcontext.previous;
Py_XDECREF(plargs);
Py_DECREF(plrv);
if (fcinfo->flinfo->fn_retset)
SRF_RETURN_NEXT(funcctx, rv);
else
return rv;
}
/*
* Abort lingering subtransactions that have been explicitly started
* by plpy.subtransaction().start() and not properly closed.
*/
static void
PLy_abort_open_subtransactions(int save_subxact_level)
{
Assert(save_subxact_level >= 0);
while (list_length(explicit_subtransactions) > save_subxact_level)
{
PLySubtransactionData *subtransactiondata;
Assert(explicit_subtransactions != NIL);
ereport(WARNING,
(errmsg("forcibly aborting a subtransaction that has not been exited")));
RollbackAndReleaseCurrentSubTransaction();
SPI_restore_connection();
subtransactiondata = (PLySubtransactionData *) linitial(explicit_subtransactions);
explicit_subtransactions = list_delete_first(explicit_subtransactions);
MemoryContextSwitchTo(subtransactiondata->oldcontext);
CurrentResourceOwner = subtransactiondata->oldowner;
PLy_free(subtransactiondata);
}
}
static PyObject *
PLy_procedure_call(PLyProcedure *proc, char *kargs, PyObject *vargs)
{
PyObject *rv;
int volatile save_subxact_level = list_length(explicit_subtransactions);
PyDict_SetItemString(proc->globals, kargs, vargs);
PG_TRY();
{
#if PY_VERSION_HEX >= 0x03020000
rv = PyEval_EvalCode(proc->code,
proc->globals, proc->globals);
#else
rv = PyEval_EvalCode((PyCodeObject *) proc->code,
proc->globals, proc->globals);
#endif
/*
* Since plpy will only let you close subtransactions that you
* started, you cannot *unnest* subtransactions, only *nest* them
* without closing.
*/
Assert(list_length(explicit_subtransactions) >= save_subxact_level);
}
PG_CATCH();
{
PLy_abort_open_subtransactions(save_subxact_level);
PG_RE_THROW();
}
PG_END_TRY();
PLy_abort_open_subtransactions(save_subxact_level);
/* If the Python code returned an error, propagate it */
if (rv == NULL)
PLy_elog(ERROR, NULL);
return rv;
}
static PyObject *
PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc)
{
PyObject *volatile arg = NULL;
PyObject *volatile args = NULL;
int i;
PG_TRY();
{
args = PyList_New(proc->nargs);
for (i = 0; i < proc->nargs; i++)
{
if (proc->args[i].is_rowtype > 0)
{
if (fcinfo->argnull[i])
arg = NULL;
else
{
HeapTupleHeader td;
Oid tupType;
int32 tupTypmod;
TupleDesc tupdesc;
HeapTupleData tmptup;
td = DatumGetHeapTupleHeader(fcinfo->arg[i]);
/* Extract rowtype info and find a tupdesc */
tupType = HeapTupleHeaderGetTypeId(td);
tupTypmod = HeapTupleHeaderGetTypMod(td);
tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
/* Set up I/O funcs if not done yet */
if (proc->args[i].is_rowtype != 1)
PLy_input_tuple_funcs(&(proc->args[i]), tupdesc);
/* Build a temporary HeapTuple control structure */
tmptup.t_len = HeapTupleHeaderGetDatumLength(td);
tmptup.t_data = td;
arg = PLyDict_FromTuple(&(proc->args[i]), &tmptup, tupdesc);
ReleaseTupleDesc(tupdesc);
}
}
else
{
if (fcinfo->argnull[i])
arg = NULL;
else
{
arg = (proc->args[i].in.d.func) (&(proc->args[i].in.d),
fcinfo->arg[i]);
}
}
if (arg == NULL)
{
Py_INCREF(Py_None);
arg = Py_None;
}
if (PyList_SetItem(args, i, arg) == -1)
PLy_elog(ERROR, "PyList_SetItem() failed, while setting up arguments");
if (proc->argnames && proc->argnames[i] &&
PyDict_SetItemString(proc->globals, proc->argnames[i], arg) == -1)
PLy_elog(ERROR, "PyDict_SetItemString() failed, while setting up arguments");
arg = NULL;
}
/* Set up output conversion for functions returning RECORD */
if (proc->result.out.d.typoid == RECORDOID)
{
TupleDesc desc;
if (get_call_result_type(fcinfo, NULL, &desc) != TYPEFUNC_COMPOSITE)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("function returning record called in context "
"that cannot accept type record")));
/* cache the output conversion functions */
PLy_output_record_funcs(&(proc->result), desc);
}
}
PG_CATCH();
{
Py_XDECREF(arg);
Py_XDECREF(args);
PG_RE_THROW();
}
PG_END_TRY();
return args;
}
static void
PLy_function_delete_args(PLyProcedure *proc)
{
int i;
PyObject *arg;
if (!proc->argnames)
return;
for (i = 0; i < proc->nargs; i++)
{
if (proc->argnames[i])
{
arg = PyString_FromString(proc->argnames[i]);
/* Deleting the item only if it exists in the dictionaty */
if (PyDict_Contains(proc->globals, arg))
{
PyDict_DelItem(proc->globals, arg);
}
Py_DECREF(arg);
}
}
}
/*
* Decide whether a cached PLyProcedure struct is still valid
*/
static bool
PLy_procedure_valid(PLyProcedure *proc, HeapTuple procTup)
{
int i;
bool valid;
Assert(proc != NULL);
/* If the pg_proc tuple has changed, it's not valid */
if (!(proc->fn_xmin == HeapTupleHeaderGetXmin(procTup->t_data) &&
ItemPointerEquals(&proc->fn_tid, &procTup->t_self)))
return false;
valid = true;
/* If there are composite input arguments, they might have changed */
for (i = 0; i < proc->nargs; i++)
{
Oid relid;
HeapTuple relTup;
/* Short-circuit on first changed argument */
if (!valid)
break;
/* Only check input arguments that are composite */
if (proc->args[i].is_rowtype != 1)
continue;
Assert(OidIsValid(proc->args[i].typ_relid));
Assert(TransactionIdIsValid(proc->args[i].typrel_xmin));
Assert(ItemPointerIsValid(&proc->args[i].typrel_tid));
/* Get the pg_class tuple for the argument type */
relid = proc->args[i].typ_relid;
relTup = SearchSysCache1(RELOID, ObjectIdGetDatum(relid));
if (!HeapTupleIsValid(relTup))
elog(ERROR, "cache lookup failed for relation %u", relid);
/* If it has changed, the function is not valid */
if (!(proc->args[i].typrel_xmin == HeapTupleHeaderGetXmin(relTup->t_data) &&
ItemPointerEquals(&proc->args[i].typrel_tid, &relTup->t_self)))
valid = false;
ReleaseSysCache(relTup);
}
return valid;
}
/*
* PLyProcedure functions
*/
/* PLy_procedure_get: returns a cached PLyProcedure, or creates, stores and
* returns a new PLyProcedure. fcinfo is the call info, tgreloid is the
* relation OID when calling a trigger, or InvalidOid (zero) for ordinary
* function calls.
*/
static PLyProcedure *
PLy_procedure_get(Oid fn_oid, bool is_trigger)
{
HeapTuple procTup;
PLyProcedureEntry *volatile entry;
bool found;
procTup = SearchSysCache1(PROCOID, ObjectIdGetDatum(fn_oid));
if (!HeapTupleIsValid(procTup))
elog(ERROR, "cache lookup failed for function %u", fn_oid);
/* Look for the function in the corresponding cache */
if (is_trigger)
entry = hash_search(PLy_trigger_cache,
&fn_oid, HASH_ENTER, &found);
else
entry = hash_search(PLy_procedure_cache,
&fn_oid, HASH_ENTER, &found);
PG_TRY();
{
if (!found)
{
/* Haven't found it, create a new cache entry */
entry->proc = PLy_procedure_create(procTup, fn_oid, is_trigger);
}
else if (!PLy_procedure_valid(entry->proc, procTup))
{
/* Found it, but it's invalid, free and reuse the cache entry */
PLy_procedure_delete(entry->proc);
PLy_free(entry->proc);
entry->proc = PLy_procedure_create(procTup, fn_oid, is_trigger);
}
/* Found it and it's valid, it's fine to use it */
}
PG_CATCH();
{
/* Do not leave an uninitialised entry in the cache */
if (is_trigger)
hash_search(PLy_trigger_cache,
&fn_oid, HASH_REMOVE, NULL);
else
hash_search(PLy_procedure_cache,
&fn_oid, HASH_REMOVE, NULL);
PG_RE_THROW();
}
PG_END_TRY();
ReleaseSysCache(procTup);
return entry->proc;
}
/*
* Create a new PLyProcedure structure
*/
static PLyProcedure *
PLy_procedure_create(HeapTuple procTup, Oid fn_oid, bool is_trigger)
{
char procName[NAMEDATALEN + 256];
Form_pg_proc procStruct;
PLyProcedure *volatile proc;
char *volatile procSource = NULL;
Datum prosrcdatum;
bool isnull;
int i,
rv;
procStruct = (Form_pg_proc) GETSTRUCT(procTup);
rv = snprintf(procName, sizeof(procName),
"__plpython_procedure_%s_%u",
NameStr(procStruct->proname),
fn_oid);
if (rv >= (int)sizeof(procName) || rv < 0)
elog(ERROR, "procedure name would overrun buffer");
proc = PLy_malloc(sizeof(PLyProcedure));
proc->proname = PLy_strdup(NameStr(procStruct->proname));
proc->pyname = PLy_strdup(procName);
proc->fn_xmin = HeapTupleHeaderGetXmin(procTup->t_data);
proc->fn_tid = procTup->t_self;
/* Remember if function is STABLE/IMMUTABLE */
proc->fn_readonly =
(procStruct->provolatile != PROVOLATILE_VOLATILE);
PLy_typeinfo_init(&proc->result);
for (i = 0; i < FUNC_MAX_ARGS; i++)
PLy_typeinfo_init(&proc->args[i]);
proc->nargs = 0;
proc->code = proc->statics = NULL;
proc->globals = NULL;
proc->src = NULL;
proc->argnames = NULL;
PG_TRY();
{
/*
* get information required for output conversion of the return value,
* but only if this isn't a trigger.
*/
if (!is_trigger)
{
HeapTuple rvTypeTup;
Form_pg_type rvTypeStruct;
rvTypeTup = SearchSysCache1(TYPEOID,
ObjectIdGetDatum(procStruct->prorettype));
if (!HeapTupleIsValid(rvTypeTup))
elog(ERROR, "cache lookup failed for type %u",
procStruct->prorettype);
rvTypeStruct = (Form_pg_type) GETSTRUCT(rvTypeTup);
/* Disallow pseudotype result, except for void or record */
if (rvTypeStruct->typtype == TYPTYPE_PSEUDO)
{
if (procStruct->prorettype == TRIGGEROID)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("trigger functions can only be called as triggers")));
else if (procStruct->prorettype != VOIDOID &&
procStruct->prorettype != RECORDOID)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("PL/Python functions cannot return type %s",
format_type_be(procStruct->prorettype))));
}
if (rvTypeStruct->typtype == TYPTYPE_COMPOSITE ||
procStruct->prorettype == RECORDOID)
{
/*
* Tuple: set up later, during first call to
* PLy_function_handler
*/
proc->result.out.d.typoid = procStruct->prorettype;
proc->result.out.d.typmod = -1;
proc->result.is_rowtype = 2;
}
else
{
/* do the real work */
PLy_output_datum_func(&proc->result, rvTypeTup);
}
ReleaseSysCache(rvTypeTup);
}
/*
* Now get information required for input conversion of the
* procedure's arguments. Note that we ignore pure output arguments here.
*/
if (procStruct->pronargs)
{
Oid *types;
char **names,
*modes;
int i,
pos,
total;
/* extract argument type info from the pg_proc tuple */
total = get_func_arg_info(procTup, &types, &names, &modes);
/* count number of in+inout args into proc->nargs */
if (modes == NULL)
proc->nargs = total;
else
{
/* proc->nargs was initialized to 0 above */
for (i = 0; i < total; i++)
{
if (modes[i] != PROARGMODE_OUT &&
modes[i] != PROARGMODE_TABLE)
(proc->nargs)++;
}
}
proc->argnames = (char **) PLy_malloc0(sizeof(char *) * proc->nargs);
for (i = pos = 0; i < total; i++)
{
HeapTuple argTypeTup;
Form_pg_type argTypeStruct;
if (modes &&
(modes[i] == PROARGMODE_OUT ||
modes[i] == PROARGMODE_TABLE))
continue; /* skip OUT arguments */
Assert(types[i] == procStruct->proargtypes.values[pos]);
argTypeTup = SearchSysCache1(TYPEOID,
ObjectIdGetDatum(types[i]));
if (!HeapTupleIsValid(argTypeTup))
elog(ERROR, "cache lookup failed for type %u", types[i]);
argTypeStruct = (Form_pg_type) GETSTRUCT(argTypeTup);
/* check argument type is OK, set up I/O function info */
switch (argTypeStruct->typtype)
{
case TYPTYPE_PSEUDO:
/* Disallow pseudotype argument */
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("PL/Python functions cannot accept type %s",
format_type_be(types[i]))));
break;
case TYPTYPE_COMPOSITE:
/* we'll set IO funcs at first call */
proc->args[pos].is_rowtype = 2;
break;
default:
PLy_input_datum_func(&(proc->args[pos]),
types[i],
argTypeTup);
break;
}
/* get argument name */
proc->argnames[pos] = names ? PLy_strdup(names[i]) : NULL;
ReleaseSysCache(argTypeTup);
pos++;
}
}
/*
* get the text of the function.
*/
prosrcdatum = SysCacheGetAttr(PROCOID, procTup,
Anum_pg_proc_prosrc, &isnull);
if (isnull)
elog(ERROR, "null prosrc");
procSource = TextDatumGetCString(prosrcdatum);
PLy_procedure_compile(proc, procSource);
pfree(procSource);
procSource = NULL;
}
PG_CATCH();
{
PLy_procedure_delete(proc);
if (procSource)
pfree(procSource);
PG_RE_THROW();
}
PG_END_TRY();
return proc;
}
/*
* Insert the procedure into the Python interpreter
*/
static void
PLy_procedure_compile(PLyProcedure *proc, const char *src)
{
PyObject *crv = NULL;
char *msrc;
proc->globals = PyDict_Copy(PLy_interp_globals);
/*
* SD is private preserved data between calls. GD is global data shared by
* all functions
*/
proc->statics = PyDict_New();
PyDict_SetItemString(proc->globals, "SD", proc->statics);
/*
* insert the function code into the interpreter
*/
pyelog(INFO, "original plpython code:\n%s", src);
msrc = PLy_procedure_munge_source(proc->pyname, src);
pyelog(INFO, "munged plpython code:\n%s", msrc);
/* Save the mangled source for later inclusion in tracebacks */
proc->src = PLy_strdup(msrc);
crv = PyRun_String(msrc, Py_file_input, proc->globals, NULL);
pfree(msrc);
if (crv != NULL)
{
int clen;
char call[NAMEDATALEN + 256];
Py_DECREF(crv);
/*
* compile a call to the function
*/
clen = snprintf(call, sizeof(call), "%s()", proc->pyname);
if (clen < 0 || clen >= (int) sizeof(call))
elog(ERROR, "string would overflow buffer");
proc->code = Py_CompileString(call, "<string>", Py_eval_input);
if (proc->code != NULL)
return;
}
if (proc->proname)
PLy_elog(ERROR, "could not compile PL/Python function \"%s\"",
proc->proname);
else
PLy_elog(ERROR, "could not compile anonymous PL/Python code block");
}
/* six different cases for defining a Python string, both single line or multiple line */
#define STRING_BEGIN_SINGLE_DOUBLE_QUOTE 0 /* a string begins with a " */
#define STRING_BEGIN_TRIPLE_DOUBLE_QUOTE 1 /* a string begins with a """ */
#define STRING_BEGIN_SINGLE_SINGLE_QUOTE 2 /* a string begins with a ' */
#define STRING_BEGIN_TRIPLE_SINGLE_QUOTE 3 /* a string begins with a ''' */
#define STRING_BEGIN_NOT_YET -1 /* we haven't seen a string yet */
#define STRING_SEEN_END -2
#define BOUNDED_PTR_ASSIGN_INC(ptr, boundptr, value) \
do \
{ \
if (ptr + 1 < (boundptr)) \
*ptr++ = (value); \
else \
elog(FATAL, "buffer overrun in PLy_munge_source"); \
} \
while(0);
static char *
PLy_procedure_munge_source(const char *name, const char *src)
{
char *mrc,
*mp,
cendquote = '\0';
size_t mlen,
plen,
olen,
i;
short sf = STRING_BEGIN_NOT_YET; /* a string begin flag */
bool bInComment = false; /* we are currently in a comment? */
/*
* Special processing is needed for multiple-line strings. Python supports 3 different ways for
* defining multiple-line strings, as follows:
*
* Method#1:
* hello = "This is a rather long string containing\n\
* several lines of text just as you would do in C.\n\
* Note that whitespace at the beginning of the line is\
* significant."
*
* Method#2:
* hello = r"This is a rather long string containing\n\
* several lines of text much as you would do in C."
*
* Method#3:
* hello = """
* Usage: thingy [OPTIONS]
* -h Display this usage message
* -H hostname Hostname to connect to
* """
*
* Here " (a double quote) can be replaced with ' (a single quote)
* For these multiple line strings, NO NEED to add a leading tab(\t) there.
* We will deal with all different ways for defining string. However we don't deal with
* definition errors here (i.e. string without enclosing quote). Instead, we will rely on
* Python compiler to discover that when the string is compiled.
*/
olen = strlen(src);
mlen = (olen * 2) + strlen(name) + 16;
mrc = palloc(mlen);
plen = snprintf(mrc, mlen, "def %s():\n\t", name);
Assert(plen >= 0 && plen < mlen);
mp = mrc + plen;
i = 0;
while (i < olen)
{
cendquote = '\0';
if (src[i] == '#')
{
bInComment = true;
}
if (sf == STRING_BEGIN_NOT_YET && !bInComment)
{
/*
* A # outside of a string begins a comment. We will need to copy all characters all the way to
* to the end of the current line to the output buffer, regardless of whether there is any
* quote marks inside or not.
*/
if (src[i] == '\'' && i + 1 < olen)
{
if (src[i + 1] == '\'')
{
if (i + 2 < olen && src[i + 2] == '\'' )
{
sf = STRING_BEGIN_TRIPLE_SINGLE_QUOTE;
cendquote = '\'';
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i ]);
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i + 1]);
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i + 2]);
i += 3;
}
else
{ /* we have seen a '' in the input source */
sf = STRING_SEEN_END;
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i ]);
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i + 1]);
i += 2;
}
}
else
{
sf = STRING_BEGIN_SINGLE_SINGLE_QUOTE;
cendquote = '\'';
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i]);
i++;
}
}
else
if (src[i] == '"' && i + 1 < olen )
{
if (src[i + 1] == '"')
{
if (i + 2 < olen && src[i + 2] == '"')
{
sf = STRING_BEGIN_TRIPLE_DOUBLE_QUOTE;
cendquote = '"';
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i ]);
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i + 1]);
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i + 2]);
i += 3;
}
else
{ /* we have seen a "" in the input source */
sf = STRING_SEEN_END;
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i ]);
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i + 1]);
i += 2;
}
}
else
{
sf = STRING_BEGIN_SINGLE_DOUBLE_QUOTE;
cendquote = '"';
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i]);
i++;
}
}
pyelog(INFO, "After searching the start of the string, index is: %d sf is: %d endquote is: %c", (int)i, sf, cendquote);
/* now copy all characters to the destination buffer if we see the beginning of a string */
while (sf != STRING_BEGIN_NOT_YET && sf != STRING_SEEN_END && i < olen)
{
pyelog(INFO, "copying src[%d]=%c", (int)i, src[i]);
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i]);
switch (sf)
{
case STRING_BEGIN_SINGLE_DOUBLE_QUOTE:
case STRING_BEGIN_SINGLE_SINGLE_QUOTE:
if (src[i] == cendquote && src[i - 1] != '\\')
{
sf = STRING_SEEN_END; /* "..." or '...' */
}
break;
case STRING_BEGIN_TRIPLE_DOUBLE_QUOTE:
case STRING_BEGIN_TRIPLE_SINGLE_QUOTE:
if ( i + 2 < olen && src[i] == cendquote && src[i + 1] == cendquote && src[i + 2] == cendquote)
{
sf = STRING_SEEN_END; /* """...""" or '''...''' */
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i + 1]);
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i + 2]);
i += 2;
}
break;
default:
break;
}
i++;
}
pyelog(INFO, "After searching the END of the string, index is: %d sf is: %d", (int)i, sf);
if (i == olen)
break;
if (sf == STRING_SEEN_END)
{ /* we have successfully seen and copied a string, now ready to process characters after that string */
sf = STRING_BEGIN_NOT_YET;
continue;
}
} /* end of if (sf != STRING_BEGIN_NOT_YET) */
/* skip one if both present */
if (src[i] == '\r' && i + 1 < olen && src[i + 1] == '\n')
i++;
if (src[i] == '\n' || src[i] == '\r')
{
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, '\n');
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, '\t');
/* If we are in a comment and have come to the end of line, we need to terminate the in-comment mode */
if (bInComment)
bInComment = false;
}
else
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, src[i]);
i++;
}
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, '\n');
BOUNDED_PTR_ASSIGN_INC(mp, mrc + mlen, '\n');
*mp = '\0';
return mrc;
}
static void
PLy_procedure_delete(PLyProcedure *proc)
{
int i;
Py_XDECREF(proc->code);
Py_XDECREF(proc->statics);
Py_XDECREF(proc->globals);
if (proc->proname)
PLy_free(proc->proname);
if (proc->pyname)
PLy_free(proc->pyname);
for (i = 0; i < proc->nargs; i++)
{
if (proc->args[i].is_rowtype == 1)
{
if (proc->args[i].in.r.atts)
PLy_free(proc->args[i].in.r.atts);
if (proc->args[i].out.r.atts)
PLy_free(proc->args[i].out.r.atts);
}
if (proc->argnames && proc->argnames[i])
PLy_free(proc->argnames[i]);
}
if (proc->src)
PLy_free(proc->src);
if (proc->argnames)
PLy_free(proc->argnames);
}
/*
* Conversion functions. Remember output from Python is input to
* PostgreSQL, and vice versa.
*/
static void
PLy_input_tuple_funcs(PLyTypeInfo *arg, TupleDesc desc)
{
int i;
if (arg->is_rowtype == 0)
elog(ERROR, "PLyTypeInfo struct is initialized for a Datum");
arg->is_rowtype = 1;
if (arg->in.r.natts != desc->natts)
{
if (arg->in.r.atts)
PLy_free(arg->in.r.atts);
arg->in.r.natts = desc->natts;
arg->in.r.atts = PLy_malloc0(desc->natts * sizeof(PLyDatumToOb));
}
pyelog(LOG, "Done with malloc, typmod:%d tdtypeid:%d", desc->tdtypmod, desc->tdtypeid);
/* Can this be an unnamed tuple? If not, then an Assert would be enough */
if (desc->tdtypmod != -1)
{
pyelog(LOG, "received unnamed record type as input");
//elog(ERROR, "received unnamed record type as input");
}
pyelog(LOG, "Checking oid: %d", desc->tdtypeid);
Assert(OidIsValid(desc->tdtypeid));
/*
* RECORDOID means we got called to create input functions for a tuple
* fetched by plpy.execute or for an anonymous record type
*/
if (desc->tdtypeid != RECORDOID && !TransactionIdIsValid(arg->typrel_xmin))
{
HeapTuple relTup;
/* Get the pg_class tuple corresponding to the type of the input */
arg->typ_relid = typeidTypeRelid(desc->tdtypeid);
relTup = SearchSysCache1(RELOID, ObjectIdGetDatum(arg->typ_relid));
if (!HeapTupleIsValid(relTup))
elog(ERROR, "cache lookup failed for relation %u", arg->typ_relid);
/* Extract the XMIN value to later use it in PLy_procedure_valid */
arg->typrel_xmin = HeapTupleHeaderGetXmin(relTup->t_data);
arg->typrel_tid = relTup->t_self;
ReleaseSysCache(relTup);
}
for (i = 0; i < desc->natts; i++)
{
HeapTuple typeTup;
if (desc->attrs[i]->attisdropped)
continue;
if (arg->in.r.atts[i].typoid == desc->attrs[i]->atttypid)
continue; /* already set up this entry */
typeTup = SearchSysCache1(TYPEOID,
ObjectIdGetDatum(desc->attrs[i]->atttypid));
if (!HeapTupleIsValid(typeTup))
elog(ERROR, "cache lookup failed for type %u",
desc->attrs[i]->atttypid);
PLy_input_datum_func2(&(arg->in.r.atts[i]),
desc->attrs[i]->atttypid,
typeTup);
ReleaseSysCache(typeTup);
}
}
static void
PLy_output_record_funcs(PLyTypeInfo *arg, TupleDesc desc)
{
/*
* If the output record functions are already set, we just have to check
* if the record descriptor has not changed
*/
if ((arg->is_rowtype == 1) &&
(arg->out.d.typmod != -1) &&
(arg->out.d.typmod == desc->tdtypmod))
return;
/* bless the record to make it known to the typcache lookup code */
BlessTupleDesc(desc);
/* save the freshly generated typmod */
arg->out.d.typmod = desc->tdtypmod;
/* proceed with normal I/O function caching */
PLy_output_tuple_funcs(arg, desc);
/*
* it should change is_rowtype to 1, so we won't go through this again
* unless the the output record description changes
*/
Assert(arg->is_rowtype == 1);
}
static void
PLy_output_tuple_funcs(PLyTypeInfo *arg, TupleDesc desc)
{
int i;
if (arg->is_rowtype == 0)
elog(ERROR, "PLyTypeInfo struct is initialized for a Datum");
arg->is_rowtype = 1;
if (arg->out.r.natts != desc->natts)
{
if (arg->out.r.atts)
PLy_free(arg->out.r.atts);
arg->out.r.natts = desc->natts;
arg->out.r.atts = PLy_malloc0(desc->natts * sizeof(PLyDatumToOb));
}
for (i = 0; i < desc->natts; i++)
{
HeapTuple typeTup;
if (desc->attrs[i]->attisdropped)
continue;
if (arg->out.r.atts[i].typoid == desc->attrs[i]->atttypid)
continue; /* already set up this entry */
typeTup = SearchSysCache1(TYPEOID,
ObjectIdGetDatum(desc->attrs[i]->atttypid));
if (!HeapTupleIsValid(typeTup))
elog(ERROR, "cache lookup failed for type %u",
desc->attrs[i]->atttypid);
PLy_output_datum_func2(&(arg->out.r.atts[i]), typeTup);
ReleaseSysCache(typeTup);
}
}
static void
PLy_output_datum_func(PLyTypeInfo *arg, HeapTuple typeTup)
{
if (arg->is_rowtype > 0)
elog(ERROR, "PLyTypeInfo struct is initialized for a Tuple");
arg->is_rowtype = 0;
PLy_output_datum_func2(&(arg->out.d), typeTup);
}
static void
PLy_output_datum_func2(PLyObToDatum *arg, HeapTuple typeTup)
{
Form_pg_type typeStruct = (Form_pg_type) GETSTRUCT(typeTup);
Oid element_type;
perm_fmgr_info(typeStruct->typinput, &arg->typfunc);
arg->typoid = HeapTupleGetOid(typeTup);
arg->typmod = -1;
arg->typioparam = getTypeIOParam(typeTup);
arg->typbyval = typeStruct->typbyval;
element_type = get_element_type(arg->typoid);
/*
* Select a conversion function to convert Python objects to PostgreSQL
* datums. Most data types can go through the generic function.
*/
switch (getBaseType(element_type ? element_type : arg->typoid))
{
case BOOLOID:
arg->func = PLyObject_ToBool;
break;
case BYTEAOID:
arg->func = PLyObject_ToBytea;
break;
default:
arg->func = PLyObject_ToDatum;
break;
}
/* Composite types need their own input routine, though */
if (typeStruct->typtype == TYPTYPE_COMPOSITE)
{
arg->func = PLyObject_ToComposite;
}
if (element_type)
{
char dummy_delim;
Oid funcid;
if (type_is_rowtype(element_type))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("PL/Python functions cannot return type %s",
format_type_be(arg->typoid)),
errdetail("PL/Python does not support conversion to arrays of row types.")));
arg->elm = PLy_malloc0(sizeof(*arg->elm));
arg->elm->func = arg->func;
arg->func = PLySequence_ToArray;
arg->elm->typoid = element_type;
arg->elm->typmod = -1;
get_type_io_data(element_type, IOFunc_input,
&arg->elm->typlen, &arg->elm->typbyval, &arg->elm->typalign, &dummy_delim,
&arg->elm->typioparam, &funcid);
perm_fmgr_info(funcid, &arg->elm->typfunc);
}
}
static void
PLy_input_datum_func(PLyTypeInfo *arg, Oid typeOid, HeapTuple typeTup)
{
if (arg->is_rowtype > 0)
elog(ERROR, "PLyTypeInfo struct is initialized for Tuple");
arg->is_rowtype = 0;
PLy_input_datum_func2(&(arg->in.d), typeOid, typeTup);
}
static void
PLy_input_datum_func2(PLyDatumToOb *arg, Oid typeOid, HeapTuple typeTup)
{
Form_pg_type typeStruct = (Form_pg_type) GETSTRUCT(typeTup);
Oid element_type = get_element_type(typeOid);
/* Get the type's conversion information */
perm_fmgr_info(typeStruct->typoutput, &arg->typfunc);
arg->typoid = HeapTupleGetOid(typeTup);
arg->typmod = -1;
arg->typioparam = getTypeIOParam(typeTup);
arg->typbyval = typeStruct->typbyval;
arg->typlen = typeStruct->typlen;
arg->typalign = typeStruct->typalign;
/* Determine which kind of Python object we will convert to */
switch (getBaseType(element_type ? element_type : typeOid))
{
case BOOLOID:
arg->func = PLyBool_FromBool;
break;
case FLOAT4OID:
arg->func = PLyFloat_FromFloat4;
break;
case FLOAT8OID:
arg->func = PLyFloat_FromFloat8;
break;
case NUMERICOID:
arg->func = PLyFloat_FromNumeric;
break;
case INT2OID:
arg->func = PLyInt_FromInt16;
break;
case INT4OID:
arg->func = PLyInt_FromInt32;
break;
case INT8OID:
arg->func = PLyLong_FromInt64;
break;
case BYTEAOID:
arg->func = PLyBytes_FromBytea;
break;
default:
arg->func = PLyString_FromDatum;
break;
}
if (element_type)
{
char dummy_delim;
Oid funcid;
arg->elm = PLy_malloc0(sizeof(*arg->elm));
arg->elm->func = arg->func;
arg->func = PLyList_FromArray;
arg->elm->typoid = element_type;
arg->elm->typmod = -1;
get_type_io_data(element_type, IOFunc_output,
&arg->elm->typlen, &arg->elm->typbyval, &arg->elm->typalign, &dummy_delim,
&arg->elm->typioparam, &funcid);
perm_fmgr_info(funcid, &arg->elm->typfunc);
}
}
static void
PLy_typeinfo_init(PLyTypeInfo *arg)
{
arg->is_rowtype = -1;
arg->in.r.natts = arg->out.r.natts = 0;
arg->in.r.atts = NULL;
arg->out.r.atts = NULL;
arg->typ_relid = InvalidOid;
arg->typrel_xmin = InvalidTransactionId;
ItemPointerSetInvalid(&arg->typrel_tid);
}
static void
PLy_typeinfo_dealloc(PLyTypeInfo *arg)
{
if (arg->is_rowtype == 1)
{
if (arg->in.r.atts)
PLy_free(arg->in.r.atts);
if (arg->out.r.atts)
PLy_free(arg->out.r.atts);
}
}
static PyObject *
PLyBool_FromBool(PLyDatumToOb *arg, Datum d)
{
/*
* We would like to use Py_RETURN_TRUE and Py_RETURN_FALSE here for
* generating SQL from trigger functions, but those are only supported in
* Python >= 2.3, and we support older versions.
* http://docs.python.org/api/boolObjects.html
*/
if (DatumGetBool(d))
return PyBool_FromLong(1);
return PyBool_FromLong(0);
}
static PyObject *
PLyFloat_FromFloat4(PLyDatumToOb *arg, Datum d)
{
return PyFloat_FromDouble(DatumGetFloat4(d));
}
static PyObject *
PLyFloat_FromFloat8(PLyDatumToOb *arg, Datum d)
{
return PyFloat_FromDouble(DatumGetFloat8(d));
}
static PyObject *
PLyFloat_FromNumeric(PLyDatumToOb *arg, Datum d)
{
/*
* Numeric is cast to a PyFloat: This results in a loss of precision Would
* it be better to cast to PyString?
*/
Datum f = DirectFunctionCall1(numeric_float8, d);
double x = DatumGetFloat8(f);
return PyFloat_FromDouble(x);
}
static PyObject *
PLyInt_FromInt16(PLyDatumToOb *arg, Datum d)
{
return PyInt_FromLong(DatumGetInt16(d));
}
static PyObject *
PLyInt_FromInt32(PLyDatumToOb *arg, Datum d)
{
return PyInt_FromLong(DatumGetInt32(d));
}
static PyObject *
PLyLong_FromInt64(PLyDatumToOb *arg, Datum d)
{
/* on 32 bit platforms "long" may be too small */
if (sizeof(int64) > sizeof(long))
return PyLong_FromLongLong(DatumGetInt64(d));
else
return PyLong_FromLong(DatumGetInt64(d));
}
static PyObject *
PLyBytes_FromBytea(PLyDatumToOb *arg, Datum d)
{
text *txt = DatumGetByteaP(d);
char *str = VARDATA(txt);
size_t size = VARSIZE(txt) - VARHDRSZ;
return PyBytes_FromStringAndSize(str, size);
}
static PyObject *
PLyString_FromDatum(PLyDatumToOb *arg, Datum d)
{
char *x = OutputFunctionCall(&arg->typfunc, d);
PyObject *r = PyString_FromString(x);
pfree(x);
return r;
}
static PyObject *
PLyList_FromArray(PLyDatumToOb *arg, Datum d)
{
ArrayType *array = DatumGetArrayTypeP(d);
PLyDatumToOb *elm = arg->elm;
PyObject *list;
int length;
int lbound;
int i;
if (ARR_NDIM(array) == 0)
return PyList_New(0);
if (ARR_NDIM(array) != 1)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot convert multidimensional array to Python list"),
errdetail("PL/Python only supports one-dimensional arrays.")));
length = ARR_DIMS(array)[0];
lbound = ARR_LBOUND(array)[0];
list = PyList_New(length);
for (i = 0; i < length; i++)
{
Datum elem;
bool isnull;
int offset;
offset = lbound + i;
elem = array_ref(array, 1, &offset, arg->typlen,
elm->typlen, elm->typbyval, elm->typalign,
&isnull);
if (isnull)
{
Py_INCREF(Py_None);
PyList_SET_ITEM(list, i, Py_None);
}
else
PyList_SET_ITEM(list, i, elm->func(elm, elem));
}
return list;
}
static PyObject *
PLyDict_FromTuple(PLyTypeInfo *info, HeapTuple tuple, TupleDesc desc)
{
PyObject *volatile dict;
int i;
if (info->is_rowtype != 1)
elog(ERROR, "PLyTypeInfo structure describes a datum");
dict = PyDict_New();
if (dict == NULL)
PLy_elog(ERROR, "could not create new dictionary");
PG_TRY();
{
for (i = 0; i < info->in.r.natts; i++)
{
char *key;
Datum vattr;
bool is_null;
PyObject *value;
if (desc->attrs[i]->attisdropped)
continue;
key = NameStr(desc->attrs[i]->attname);
vattr = heap_getattr(tuple, (i + 1), desc, &is_null);
if (is_null || info->in.r.atts[i].func == NULL)
{
PyDict_SetItemString(dict, key, Py_None);
}
else
{
value = (info->in.r.atts[i].func) (&info->in.r.atts[i], vattr);
PyDict_SetItemString(dict, key, value);
Py_DECREF(value);
}
}
}
PG_CATCH();
{
Py_DECREF(dict);
PG_RE_THROW();
}
PG_END_TRY();
return dict;
}
/*
* Convert a Python object to a PostgreSQL tuple, using all supported
* conversion methods: tuple as a sequence, as a mapping or as an object that
* has __getattr__ support.
*/
static HeapTuple
PLyObject_ToTuple(PLyTypeInfo *info, TupleDesc desc, PyObject *plrv)
{
HeapTuple tuple;
if (PySequence_Check(plrv))
/* composite type as sequence (tuple, list etc) */
tuple = PLySequence_ToTuple(info, desc, plrv);
else if (PyMapping_Check(plrv))
/* composite type as mapping (currently only dict) */
tuple = PLyMapping_ToTuple(info, desc, plrv);
else
/* returned as smth, must provide method __getattr__(name) */
tuple = PLyGenericObject_ToTuple(info, desc, plrv);
return tuple;
}
/*
* Convert a Python object to a PostgreSQL bool datum. This can't go
* through the generic conversion function, because Python attaches a
* Boolean value to everything, more things than the PostgreSQL bool
* type can parse.
*/
static Datum
PLyObject_ToBool(PLyObToDatum *arg, int32 typmod, PyObject *plrv)
{
Datum rv;
Assert(plrv != Py_None);
rv = BoolGetDatum(PyObject_IsTrue(plrv));
//if (get_typtype(arg->typoid) == TYPTYPE_DOMAIN)
// domain_check(rv, false, arg->typoid, &arg->typfunc.fn_extra, arg->typfunc.fn_mcxt);
return rv;
}
/*
* Convert a Python object to a PostgreSQL bytea datum. This doesn't
* go through the generic conversion function to circumvent problems
* with embedded nulls. And it's faster this way.
*/
static Datum
PLyObject_ToBytea(PLyObToDatum *arg, int32 typmod, PyObject *plrv)
{
PyObject *volatile plrv_so = NULL;
Datum rv;
Assert(plrv != Py_None);
plrv_so = PyObject_Bytes(plrv);
if (!plrv_so)
PLy_elog(ERROR, "could not create bytes representation of Python object");
PG_TRY();
{
char *plrv_sc = PyBytes_AsString(plrv_so);
size_t len = PyBytes_Size(plrv_so);
size_t size = len + VARHDRSZ;
bytea *result = palloc(size);
SET_VARSIZE(result, size);
memcpy(VARDATA(result), plrv_sc, len);
rv = PointerGetDatum(result);
}
PG_CATCH();
{
Py_XDECREF(plrv_so);
PG_RE_THROW();
}
PG_END_TRY();
Py_XDECREF(plrv_so);
//if (get_typtype(arg->typoid) == TYPTYPE_DOMAIN)
// domain_check(rv, false, arg->typoid, &arg->typfunc.fn_extra, arg->typfunc.fn_mcxt);
return rv;
}
/*
* Convert a Python object to a composite type. First look up the type's
* description, then route the Python object through the conversion function
* for obtaining PostgreSQL tuples.
*/
static Datum
PLyObject_ToComposite(PLyObToDatum *arg, int32 typmod, PyObject *plrv)
{
HeapTuple tuple = NULL;
Datum rv;
PLyTypeInfo info;
TupleDesc desc;
if (typmod != -1)
elog(ERROR, "received unnamed record type as input");
/* Create a dummy PLyTypeInfo */
MemSet(&info, 0, sizeof(PLyTypeInfo));
PLy_typeinfo_init(&info);
/* Mark it as needing output routines lookup */
info.is_rowtype = 2;
desc = lookup_rowtype_tupdesc(arg->typoid, arg->typmod);
/*
* This will set up the dummy PLyTypeInfo's output conversion routines,
* since we left is_rowtype as 2. A future optimisation could be caching
* that info instead of looking it up every time a tuple is returned from
* the function.
*/
tuple = PLyObject_ToTuple(&info, desc, plrv);
PLy_typeinfo_dealloc(&info);
if (tuple != NULL)
rv = HeapTupleGetDatum(tuple);
else
rv = (Datum) 0;
return rv;
}
/*
* Generic conversion function: Convert PyObject to cstring and
* cstring into PostgreSQL type.
*/
static Datum
PLyObject_ToDatum(PLyObToDatum *arg, int32 typmod, PyObject *plrv)
{
PyObject *volatile plrv_bo = NULL;
Datum rv;
Assert(plrv != Py_None);
if (PyUnicode_Check(plrv))
plrv_bo = PLyUnicode_Bytes(plrv);
else
{
#if PY_MAJOR_VERSION >= 3
PyObject *s = PyObject_Str(plrv);
plrv_bo = PLyUnicode_Bytes(s);
Py_XDECREF(s);
#else
plrv_bo = PyObject_Str(plrv);
#endif
}
if (!plrv_bo)
PLy_elog(ERROR, "could not create string representation of Python object");
PG_TRY();
{
char *plrv_sc = PyBytes_AsString(plrv_bo);
size_t plen = PyBytes_Size(plrv_bo);
size_t slen = strlen(plrv_sc);
if (slen < plen)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("could not convert Python object into cstring: Python string representation appears to contain null bytes")));
else if (slen > plen)
elog(ERROR, "could not convert Python object into cstring: Python string longer than reported length");
pg_verifymbstr(plrv_sc, slen, false);
rv = InputFunctionCall(&arg->typfunc,
plrv_sc,
arg->typioparam,
typmod);
}
PG_CATCH();
{
Py_XDECREF(plrv_bo);
PG_RE_THROW();
}
PG_END_TRY();
Py_XDECREF(plrv_bo);
return rv;
}
static Datum
PLySequence_ToArray(PLyObToDatum *arg, int32 typmod, PyObject *plrv)
{
ArrayType *array;
int i;
Datum *elems;
bool *nulls;
int len;
int lbs;
Assert(plrv != Py_None);
if (!PySequence_Check(plrv))
PLy_elog(ERROR, "return value of function with array return type is not a Python sequence");
len = PySequence_Length(plrv);
elems = palloc(sizeof(*elems) * len);
nulls = palloc(sizeof(*nulls) * len);
for (i = 0; i < len; i++)
{
PyObject *obj = PySequence_GetItem(plrv, i);
if (obj == Py_None)
nulls[i] = true;
else
{
nulls[i] = false;
/*
* We don't support arrays of row types yet, so the first argument
* can be NULL.
*/
elems[i] = arg->elm->func(arg->elm, -1, obj);
}
Py_XDECREF(obj);
}
lbs = 1;
array = construct_md_array(elems, nulls, 1, &len, &lbs,
get_element_type(arg->typoid), arg->elm->typlen, arg->elm->typbyval, arg->elm->typalign);
return PointerGetDatum(array);
}
static HeapTuple
PLyMapping_ToTuple(PLyTypeInfo *info, TupleDesc desc, PyObject *mapping)
{
HeapTuple tuple;
Datum *values;
bool *nulls;
volatile int i;
Assert(PyMapping_Check(mapping));
if (info->is_rowtype == 2)
PLy_output_tuple_funcs(info, desc);
Assert(info->is_rowtype == 1);
/* Build tuple */
values = palloc(sizeof(Datum) * desc->natts);
nulls = palloc(sizeof(bool) * desc->natts);
for (i = 0; i < desc->natts; ++i)
{
char *key;
PyObject *volatile value;
PLyObToDatum *att;
if (desc->attrs[i]->attisdropped)
continue;
key = NameStr(desc->attrs[i]->attname);
value = NULL;
att = &info->out.r.atts[i];
PG_TRY();
{
value = PyMapping_GetItemString(mapping, key);
if (value == Py_None)
{
values[i] = (Datum) 0;
nulls[i] = true;
}
else if (value)
{
values[i] = (att->func) (att, -1, value);
nulls[i] = false;
}
else
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("key \"%s\" not found in mapping", key),
errhint("To return null in a column, "
"add the value None to the mapping with the key named after the column.")));
Py_XDECREF(value);
value = NULL;
}
PG_CATCH();
{
Py_XDECREF(value);
PG_RE_THROW();
}
PG_END_TRY();
}
tuple = heap_form_tuple(desc, values, nulls);
ReleaseTupleDesc(desc);
pfree(values);
pfree(nulls);
return tuple;
}
static HeapTuple
PLySequence_ToTuple(PLyTypeInfo *info, TupleDesc desc, PyObject *sequence)
{
HeapTuple tuple;
Datum *values;
bool *nulls;
volatile int idx;
volatile int i;
Assert(PySequence_Check(sequence));
/*
* Check that sequence length is exactly same as PG tuple's. We actually
* can ignore exceeding items or assume missing ones as null but to avoid
* plpython developer's errors we are strict here
*/
idx = 0;
for (i = 0; i < desc->natts; i++)
{
if (!desc->attrs[i]->attisdropped)
idx++;
}
if (PySequence_Length(sequence) != idx)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("length of returned sequence did not match number of columns in row")));
if (info->is_rowtype == 2)
PLy_output_tuple_funcs(info, desc);
Assert(info->is_rowtype == 1);
/* Build tuple */
values = palloc(sizeof(Datum) * desc->natts);
nulls = palloc(sizeof(bool) * desc->natts);
idx = 0;
for (i = 0; i < desc->natts; ++i)
{
PyObject *volatile value;
PLyObToDatum *att;
if (desc->attrs[i]->attisdropped)
continue;
value = NULL;
att = &info->out.r.atts[i];
PG_TRY();
{
value = PySequence_GetItem(sequence, idx);
Assert(value);
if (value == Py_None)
{
values[i] = (Datum) 0;
nulls[i] = true;
}
else if (value)
{
values[i] = (att->func) (att, -1, value);
nulls[i] = false;
}
Py_XDECREF(value);
value = NULL;
}
PG_CATCH();
{
Py_XDECREF(value);
PG_RE_THROW();
}
PG_END_TRY();
idx++;
}
tuple = heap_form_tuple(desc, values, nulls);
ReleaseTupleDesc(desc);
pfree(values);
pfree(nulls);
return tuple;
}
static HeapTuple
PLyGenericObject_ToTuple(PLyTypeInfo *info, TupleDesc desc, PyObject *object)
{
HeapTuple tuple;
Datum *values;
bool *nulls;
volatile int i;
if (info->is_rowtype == 2)
PLy_output_tuple_funcs(info, desc);
Assert(info->is_rowtype == 1);
/* Build tuple */
values = palloc(sizeof(Datum) * desc->natts);
nulls = palloc(sizeof(bool) * desc->natts);
for (i = 0; i < desc->natts; ++i)
{
char *key;
PyObject *volatile value;
PLyObToDatum *att;
if (desc->attrs[i]->attisdropped)
continue;
key = NameStr(desc->attrs[i]->attname);
value = NULL;
att = &info->out.r.atts[i];
PG_TRY();
{
value = PyObject_GetAttrString(object, key);
if (value == Py_None)
{
values[i] = (Datum) 0;
nulls[i] = true;
}
else if (value)
{
values[i] = (att->func) (att, -1, value);
nulls[i] = false;
}
else
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("attribute \"%s\" does not exist in Python object", key),
errhint("To return null in a column, "
"let the returned object have an attribute named "
"after column with value None.")));
Py_XDECREF(value);
value = NULL;
}
PG_CATCH();
{
Py_XDECREF(value);
PG_RE_THROW();
}
PG_END_TRY();
}
tuple = heap_form_tuple(desc, values, nulls);
ReleaseTupleDesc(desc);
pfree(values);
pfree(nulls);
return tuple;
}
/* initialization, some python variables function declared here */
/* interface to postgresql elog */
static PyObject *PLy_debug(PyObject *, PyObject *);
static PyObject *PLy_log(PyObject *, PyObject *);
static PyObject *PLy_info(PyObject *, PyObject *);
static PyObject *PLy_notice(PyObject *, PyObject *);
static PyObject *PLy_warning(PyObject *, PyObject *);
static PyObject *PLy_error(PyObject *, PyObject *);
static PyObject *PLy_fatal(PyObject *, PyObject *);
/* PLyPlanObject, PLyResultObject and SPI interface */
#define is_PLyPlanObject(x) ((x)->ob_type == &PLy_PlanType)
static PyObject *PLy_plan_new(void);
static void PLy_plan_dealloc(PyObject *);
static PyObject *PLy_plan_status(PyObject *, PyObject *);
static PyObject *PLy_result_new(void);
static void PLy_result_dealloc(PyObject *);
static PyObject *PLy_result_nrows(PyObject *, PyObject *);
static PyObject *PLy_result_status(PyObject *, PyObject *);
static Py_ssize_t PLy_result_length(PyObject *);
static PyObject *PLy_result_item(PyObject *, Py_ssize_t);
static PyObject *PLy_result_slice(PyObject *, Py_ssize_t, Py_ssize_t);
static int PLy_result_ass_item(PyObject *, Py_ssize_t, PyObject *);
static int PLy_result_ass_slice(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
static PyObject *PLy_spi_prepare(PyObject *, PyObject *);
static PyObject *PLy_spi_execute(PyObject *, PyObject *);
static PyObject *PLy_spi_execute_query(char *query, long limit);
static PyObject *PLy_spi_execute_plan(PyObject *, PyObject *, long);
static PyObject *PLy_spi_execute_fetch_result(SPITupleTable *, int, int);
//static PyObject *PLy_quote_literal(PyObject *self, PyObject *args);
//static PyObject *PLy_quote_nullable(PyObject *self, PyObject *args);
//static PyObject *PLy_quote_ident(PyObject *self, PyObject *args);
static PyObject *PLy_subtransaction(PyObject *, PyObject *);
static PyObject *PLy_subtransaction_new(void);
static void PLy_subtransaction_dealloc(PyObject *);
static PyObject *PLy_subtransaction_enter(PyObject *, PyObject *);
static PyObject *PLy_subtransaction_exit(PyObject *, PyObject *);
static PyMethodDef PLy_plan_methods[] = {
{"status", PLy_plan_status, METH_VARARGS, NULL},
{NULL, NULL, 0, NULL}
};
static PyTypeObject PLy_PlanType = {
PyVarObject_HEAD_INIT(NULL, 0)
"PLyPlan", /* tp_name */
sizeof(PLyPlanObject), /* tp_size */
0, /* tp_itemsize */
/*
* methods
*/
PLy_plan_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
PLy_plan_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
PLy_plan_methods, /* tp_tpmethods */
};
static PySequenceMethods PLy_result_as_sequence = {
PLy_result_length, /* sq_length */
NULL, /* sq_concat */
NULL, /* sq_repeat */
PLy_result_item, /* sq_item */
PLy_result_slice, /* sq_slice */
PLy_result_ass_item, /* sq_ass_item */
PLy_result_ass_slice, /* sq_ass_slice */
};
static PyMethodDef PLy_result_methods[] = {
{"nrows", PLy_result_nrows, METH_VARARGS, NULL},
{"status", PLy_result_status, METH_VARARGS, NULL},
{NULL, NULL, 0, NULL}
};
static PyTypeObject PLy_ResultType = {
PyVarObject_HEAD_INIT(NULL, 0)
"PLyResult", /* tp_name */
sizeof(PLyResultObject), /* tp_size */
0, /* tp_itemsize */
/*
* methods
*/
PLy_result_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
&PLy_result_as_sequence, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
PLy_result_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
PLy_result_methods, /* tp_tpmethods */
};
static PyMethodDef PLy_subtransaction_methods[] = {
{"__enter__", PLy_subtransaction_enter, METH_VARARGS, NULL},
{"__exit__", PLy_subtransaction_exit, METH_VARARGS, NULL},
/* user-friendly names for Python <2.6 */
{"enter", PLy_subtransaction_enter, METH_VARARGS, NULL},
{"exit", PLy_subtransaction_exit, METH_VARARGS, NULL},
{NULL, NULL, 0, NULL}
};
static PyTypeObject PLy_SubtransactionType = {
PyVarObject_HEAD_INIT(NULL, 0)
"PLySubtransaction", /* tp_name */
sizeof(PLySubtransactionObject), /* tp_size */
0, /* tp_itemsize */
/*
* methods
*/
PLy_subtransaction_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
PLy_subtransaction_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
PLy_subtransaction_methods, /* tp_tpmethods */
};
static PyMethodDef PLy_methods[] = {
/*
* logging methods
*/
{"debug", PLy_debug, METH_VARARGS, NULL},
{"log", PLy_log, METH_VARARGS, NULL},
{"info", PLy_info, METH_VARARGS, NULL},
{"notice", PLy_notice, METH_VARARGS, NULL},
{"warning", PLy_warning, METH_VARARGS, NULL},
{"error", PLy_error, METH_VARARGS, NULL},
{"fatal", PLy_fatal, METH_VARARGS, NULL},
/*
* create a stored plan
*/
{"prepare", PLy_spi_prepare, METH_VARARGS, NULL},
/*
* execute a plan or query
*/
{"execute", PLy_spi_execute, METH_VARARGS, NULL},
/*
* escaping strings
*/
/* The following functions needs some new utilities in PG 9.1. We don't have them in PG 8.2.
* Therefore we will not support them in GP.
*/
/*
{"quote_literal", PLy_quote_literal, METH_VARARGS, NULL},
{"quote_nullable", PLy_quote_nullable, METH_VARARGS, NULL},
{"quote_ident", PLy_quote_ident, METH_VARARGS, NULL},
*/
/*
* create the subtransaction context manager
*/
{"subtransaction", PLy_subtransaction, METH_NOARGS, NULL},
{NULL, NULL, 0, NULL}
};
static PyMethodDef PLy_exc_methods[] = {
{NULL, NULL, 0, NULL}
};
#if PY_MAJOR_VERSION >= 3
static PyModuleDef PLy_module = {
PyModuleDef_HEAD_INIT, /* m_base */
"plpy", /* m_name */
NULL, /* m_doc */
-1, /* m_size */
PLy_methods, /* m_methods */
};
static PyModuleDef PLy_exc_module = {
PyModuleDef_HEAD_INIT, /* m_base */
"spiexceptions", /* m_name */
NULL, /* m_doc */
-1, /* m_size */
PLy_exc_methods, /* m_methods */
NULL, /* m_reload */
NULL, /* m_traverse */
NULL, /* m_clear */
NULL /* m_free */
};
#endif
/* plan object methods */
static PyObject *
PLy_plan_new(void)
{
PLyPlanObject *ob;
if ((ob = PyObject_New(PLyPlanObject, &PLy_PlanType)) == NULL)
return NULL;
ob->plan = NULL;
ob->nargs = 0;
ob->types = NULL;
ob->values = NULL;
ob->args = NULL;
return (PyObject *) ob;
}
static void
PLy_plan_dealloc(PyObject *arg)
{
PLyPlanObject *ob = (PLyPlanObject *) arg;
if (ob->plan)
SPI_freeplan(ob->plan);
if (ob->types)
PLy_free(ob->types);
if (ob->values)
PLy_free(ob->values);
if (ob->args)
{
int i;
for (i = 0; i < ob->nargs; i++)
PLy_typeinfo_dealloc(&ob->args[i]);
PLy_free(ob->args);
}
arg->ob_type->tp_free(arg);
}
static PyObject *
PLy_plan_status(PyObject *self __attribute__((unused)), PyObject *args)
{
if (PyArg_ParseTuple(args, ""))
{
Py_INCREF(Py_True);
return Py_True;
/* return PyInt_FromLong(self->status); */
}
PLy_exception_set(PLy_exc_error, "plan.status takes no arguments");
return NULL;
}
/* result object methods */
static PyObject *
PLy_result_new(void)
{
PLyResultObject *ob;
if ((ob = PyObject_New(PLyResultObject, &PLy_ResultType)) == NULL)
return NULL;
/* ob->tuples = NULL; */
Py_INCREF(Py_None);
ob->status = Py_None;
ob->nrows = PyInt_FromLong(-1);
ob->rows = PyList_New(0);
return (PyObject *) ob;
}
static void
PLy_result_dealloc(PyObject *arg)
{
PLyResultObject *ob = (PLyResultObject *) arg;
Py_XDECREF(ob->nrows);
Py_XDECREF(ob->rows);
Py_XDECREF(ob->status);
arg->ob_type->tp_free(arg);
}
static PyObject *
PLy_result_nrows(PyObject *self, PyObject *args __attribute__((unused)))
{
PLyResultObject *ob = (PLyResultObject *) self;
Py_INCREF(ob->nrows);
return ob->nrows;
}
static PyObject *
PLy_result_status(PyObject *self, PyObject *args __attribute__((unused)))
{
PLyResultObject *ob = (PLyResultObject *) self;
Py_INCREF(ob->status);
return ob->status;
}
static Py_ssize_t
PLy_result_length(PyObject *arg)
{
PLyResultObject *ob = (PLyResultObject *) arg;
return PyList_Size(ob->rows);
}
static PyObject *
PLy_result_item(PyObject *arg, Py_ssize_t idx)
{
PyObject *rv;
PLyResultObject *ob = (PLyResultObject *) arg;
rv = PyList_GetItem(ob->rows, idx);
if (rv != NULL)
Py_INCREF(rv);
return rv;
}
static int
PLy_result_ass_item(PyObject *arg, Py_ssize_t idx, PyObject *item)
{
int rv;
PLyResultObject *ob = (PLyResultObject *) arg;
Py_INCREF(item);
rv = PyList_SetItem(ob->rows, idx, item);
return rv;
}
static PyObject *
PLy_result_slice(PyObject *arg, Py_ssize_t lidx, Py_ssize_t hidx)
{
PLyResultObject *ob = (PLyResultObject *) arg;
return PyList_GetSlice(ob->rows, lidx, hidx);
}
static int
PLy_result_ass_slice(PyObject *arg, Py_ssize_t lidx, Py_ssize_t hidx, PyObject *slice)
{
int rv;
PLyResultObject *ob = (PLyResultObject *) arg;
rv = PyList_SetSlice(ob->rows, lidx, hidx, slice);
return rv;
}
/* SPI interface */
static PyObject *
PLy_spi_prepare(PyObject *self __attribute__((unused)), PyObject *args)
{
PLyPlanObject *plan;
PyObject *list = NULL;
PyObject *volatile optr = NULL;
char *query;
void *tmpplan;
volatile MemoryContext oldcontext;
volatile ResourceOwner oldowner;
volatile int nargs;
if (!PyArg_ParseTuple(args, "s|O", &query, &list))
return NULL;
if (list && (!PySequence_Check(list)))
{
PLy_exception_set(PyExc_TypeError,
"second argument of plpy.prepare must be a sequence");
return NULL;
}
if ((plan = (PLyPlanObject *) PLy_plan_new()) == NULL)
return NULL;
nargs = list ? PySequence_Length(list) : 0;
plan->nargs = nargs;
plan->types = nargs ? PLy_malloc(sizeof(Oid) * nargs) : NULL;
plan->values = nargs ? PLy_malloc(sizeof(Datum) * nargs) : NULL;
plan->args = nargs ? PLy_malloc(sizeof(PLyTypeInfo) * nargs) : NULL;
oldcontext = CurrentMemoryContext;
oldowner = CurrentResourceOwner;
BeginInternalSubTransaction(NULL);
MemoryContextSwitchTo(oldcontext);
PG_TRY();
{
int i;
/*
* the other loop might throw an exception, if PLyTypeInfo member
* isn't properly initialized the Py_DECREF(plan) will go boom
*/
for (i = 0; i < nargs; i++)
{
PLy_typeinfo_init(&plan->args[i]);
plan->values[i] = PointerGetDatum(NULL);
}
for (i = 0; i < nargs; i++)
{
char *sptr;
HeapTuple typeTup;
Oid typeId;
int32 typmod;
Form_pg_type typeStruct;
optr = PySequence_GetItem(list, i);
if (PyString_Check(optr))
sptr = PyString_AsString(optr);
else if (PyUnicode_Check(optr))
sptr = PLyUnicode_AsString(optr);
else
{
ereport(ERROR,
(errmsg("plpy.prepare: type name at ordinal position %d is not a string", i)));
sptr = NULL; /* keep compiler quiet */
}
/********************************************************
* Resolve argument type names and then look them up by
* oid in the system cache, and remember the required
*information for input conversion.
********************************************************/
parseTypeString(sptr, &typeId, &typmod);
typeTup = SearchSysCache1(TYPEOID,
ObjectIdGetDatum(typeId));
if (!HeapTupleIsValid(typeTup))
elog(ERROR, "cache lookup failed for type %u", typeId);
Py_DECREF(optr);
/*
* set optr to NULL, so we won't try to unref it again in case of
* an error
*/
optr = NULL;
plan->types[i] = typeId;
typeStruct = (Form_pg_type) GETSTRUCT(typeTup);
if (typeStruct->typtype != TYPTYPE_COMPOSITE)
PLy_output_datum_func(&plan->args[i], typeTup);
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("plpy.prepare does not support composite types")));
ReleaseSysCache(typeTup);
}
pg_verifymbstr(query, strlen(query), false);
plan->plan = SPI_prepare(query, plan->nargs, plan->types);
if (plan->plan == NULL)
elog(ERROR, "SPI_prepare failed: %s",
SPI_result_code_string(SPI_result));
/* transfer plan from procCxt to topCxt */
tmpplan = plan->plan;
plan->plan = SPI_saveplan(tmpplan);
SPI_freeplan(tmpplan);
if (plan->plan == NULL)
elog(ERROR, "SPI_saveplan failed: %s",
SPI_result_code_string(SPI_result));
/* Commit the inner transaction, return to outer xact context */
ReleaseCurrentSubTransaction();
MemoryContextSwitchTo(oldcontext);
CurrentResourceOwner = oldowner;
/*
* AtEOSubXact_SPI() should not have popped any SPI context, but just
* in case it did, make sure we remain connected.
*/
SPI_restore_connection();
}
PG_CATCH();
{
ErrorData *edata;
PLyExceptionEntry *entry;
PyObject *exc;
/* Save error info */
MemoryContextSwitchTo(oldcontext);
edata = CopyErrorData();
FlushErrorState();
Py_DECREF(plan);
Py_XDECREF(optr);
/* Abort the inner transaction */
RollbackAndReleaseCurrentSubTransaction();
MemoryContextSwitchTo(oldcontext);
CurrentResourceOwner = oldowner;
/*
* If AtEOSubXact_SPI() popped any SPI context of the subxact, it will
* have left us in a disconnected state. We need this hack to return
* to connected state.
*/
SPI_restore_connection();
/* Look up the correct exception */
entry = hash_search(PLy_spi_exceptions, &(edata->sqlerrcode),
HASH_FIND, NULL);
/* We really should find it, but just in case have a fallback */
//Assert(entry != NULL);
exc = entry ? entry->exc : PLy_exc_spi_error;
/* Make Python raise the exception */
PLy_spi_exception_set(exc, edata);
return NULL;
}
PG_END_TRY();
Assert(plan->plan != NULL);
return (PyObject *) plan;
}
/* execute(query="select * from foo", limit=5)
* execute(plan=plan, values=(foo, bar), limit=5)
*/
static PyObject *
PLy_spi_execute(PyObject *self __attribute__((unused)), PyObject *args)
{
char *query;
PyObject *plan;
PyObject *list = NULL;
long limit = 0;
if (PyArg_ParseTuple(args, "s|l", &query, &limit))
return PLy_spi_execute_query(query, limit);
PyErr_Clear();
if (PyArg_ParseTuple(args, "O|Ol", &plan, &list, &limit) &&
is_PLyPlanObject(plan))
return PLy_spi_execute_plan(plan, list, limit);
PLy_exception_set(PLy_exc_error, "plpy.execute expected a query or a plan");
return NULL;
}
static PyObject *
PLy_spi_execute_plan(PyObject *ob, PyObject *list, long limit)
{
volatile int nargs;
int i,
rv;
PLyPlanObject *plan;
volatile MemoryContext oldcontext;
volatile ResourceOwner oldowner;
PyObject *ret;
if (list != NULL)
{
if (!PySequence_Check(list) || PyString_Check(list) || PyUnicode_Check(list))
{
PLy_exception_set(PyExc_TypeError, "plpy.execute takes a sequence as its second argument");
return NULL;
}
nargs = PySequence_Length(list);
}
else
nargs = 0;
plan = (PLyPlanObject *) ob;
if (nargs != plan->nargs)
{
char *sv;
PyObject *so = PyObject_Str(list);
if (!so)
PLy_elog(ERROR, "could not execute plan");
sv = PyString_AsString(so);
PLy_exception_set_plural(PyExc_TypeError,
"Expected sequence of %d argument, got %d: %s",
"Expected sequence of %d arguments, got %d: %s",
plan->nargs,
plan->nargs, nargs, sv);
Py_DECREF(so);
return NULL;
}
oldcontext = CurrentMemoryContext;
oldowner = CurrentResourceOwner;
BeginInternalSubTransaction(NULL);
/* Want to run inside function's memory context */
MemoryContextSwitchTo(oldcontext);
PG_TRY();
{
char *volatile nulls;
volatile int j;
if (nargs > 0)
nulls = palloc(nargs * sizeof(char));
else
nulls = NULL;
for (j = 0; j < nargs; j++)
{
PyObject *elem;
elem = PySequence_GetItem(list, j);
if (elem != Py_None)
{
PG_TRY();
{
plan->values[j] =
plan->args[j].out.d.func(&(plan->args[j].out.d),
-1,
elem);
}
PG_CATCH();
{
Py_DECREF(elem);
PG_RE_THROW();
}
PG_END_TRY();
Py_DECREF(elem);
nulls[j] = ' ';
}
else
{
Py_DECREF(elem);
plan->values[j] =
InputFunctionCall(&(plan->args[j].out.d.typfunc),
NULL,
plan->args[j].out.d.typioparam,
-1);
nulls[j] = 'n';
}
}
rv = SPI_execute_plan(plan->plan, plan->values, nulls,
PLy_curr_procedure->fn_readonly, limit);
ret = PLy_spi_execute_fetch_result(SPI_tuptable, SPI_processed, rv);
if (nargs > 0)
pfree(nulls);
/* Commit the inner transaction, return to outer xact context */
ReleaseCurrentSubTransaction();
MemoryContextSwitchTo(oldcontext);
CurrentResourceOwner = oldowner;
/*
* AtEOSubXact_SPI() should not have popped any SPI context, but just
* in case it did, make sure we remain connected.
*/
SPI_restore_connection();
}
PG_CATCH();
{
int k;
ErrorData *edata;
PLyExceptionEntry *entry;
PyObject *exc;
/* Save error info */
MemoryContextSwitchTo(oldcontext);
edata = CopyErrorData();
FlushErrorState();
/*
* cleanup plan->values array
*/
for (k = 0; k < nargs; k++)
{
if (!plan->args[k].out.d.typbyval &&
(plan->values[k] != PointerGetDatum(NULL)))
{
pfree(DatumGetPointer(plan->values[k]));
plan->values[k] = PointerGetDatum(NULL);
}
}
/* Abort the inner transaction */
RollbackAndReleaseCurrentSubTransaction();
MemoryContextSwitchTo(oldcontext);
CurrentResourceOwner = oldowner;
/*
* If AtEOSubXact_SPI() popped any SPI context of the subxact, it will
* have left us in a disconnected state. We need this hack to return
* to connected state.
*/
SPI_restore_connection();
/* Look up the correct exception */
entry = hash_search(PLy_spi_exceptions, &(edata->sqlerrcode),
HASH_FIND, NULL);
/* We really should find it, but just in case have a fallback */
//Assert(entry != NULL);
exc = entry ? entry->exc : PLy_exc_spi_error;
/* Make Python raise the exception */
PLy_spi_exception_set(exc, edata);
return NULL;
}
PG_END_TRY();
for (i = 0; i < nargs; i++)
{
if (!plan->args[i].out.d.typbyval &&
(plan->values[i] != PointerGetDatum(NULL)))
{
pfree(DatumGetPointer(plan->values[i]));
plan->values[i] = PointerGetDatum(NULL);
}
}
if (rv < 0)
{
PLy_exception_set(PLy_exc_spi_error,
"SPI_execute_plan failed: %s",
SPI_result_code_string(rv));
return NULL;
}
return ret;
}
static PyObject *
PLy_spi_execute_query(char *query, long limit)
{
int rv;
volatile MemoryContext oldcontext;
volatile ResourceOwner oldowner;
PyObject *ret;
oldcontext = CurrentMemoryContext;
oldowner = CurrentResourceOwner;
BeginInternalSubTransaction(NULL);
/* Want to run inside function's memory context */
MemoryContextSwitchTo(oldcontext);
PG_TRY();
{
pg_verifymbstr(query, strlen(query), false);
rv = SPI_execute(query, PLy_curr_procedure->fn_readonly, limit);
ret = PLy_spi_execute_fetch_result(SPI_tuptable, SPI_processed, rv);
/* Commit the inner transaction, return to outer xact context */
ReleaseCurrentSubTransaction();
MemoryContextSwitchTo(oldcontext);
CurrentResourceOwner = oldowner;
/*
* AtEOSubXact_SPI() should not have popped any SPI context, but just
* in case it did, make sure we remain connected.
*/
SPI_restore_connection();
}
PG_CATCH();
{
ErrorData *edata;
PLyExceptionEntry *entry;
PyObject *exc;
/* Save error info */
MemoryContextSwitchTo(oldcontext);
edata = CopyErrorData();
FlushErrorState();
/* Abort the inner transaction */
RollbackAndReleaseCurrentSubTransaction();
MemoryContextSwitchTo(oldcontext);
CurrentResourceOwner = oldowner;
/*
* If AtEOSubXact_SPI() popped any SPI context of the subxact, it will
* have left us in a disconnected state. We need this hack to return
* to connected state.
*/
SPI_restore_connection();
/* Look up the correct exception */
entry = hash_search(PLy_spi_exceptions, &edata->sqlerrcode,
HASH_FIND, NULL);
/* We really should find it, but just in case have a fallback */
//Assert(entry != NULL);
exc = entry ? entry->exc : PLy_exc_spi_error;
/* Make Python raise the exception */
PLy_spi_exception_set(exc, edata);
return NULL;
}
PG_END_TRY();
if (rv < 0)
{
PLy_exception_set(PLy_exc_spi_error,
"SPI_execute failed: %s",
SPI_result_code_string(rv));
return NULL;
}
return ret;
}
static PyObject *
PLy_spi_execute_fetch_result(SPITupleTable *tuptable, int rows, int status)
{
PLyResultObject *result;
volatile MemoryContext oldcontext;
result = (PLyResultObject *) PLy_result_new();
Py_DECREF(result->status);
result->status = PyInt_FromLong(status);
if (status > 0 && tuptable == NULL)
{
Py_DECREF(result->nrows);
result->nrows = PyInt_FromLong(rows);
}
else if (status > 0 && tuptable != NULL)
{
PLyTypeInfo args;
int i;
Py_DECREF(result->nrows);
result->nrows = PyInt_FromLong(rows);
PLy_typeinfo_init(&args);
oldcontext = CurrentMemoryContext;
PG_TRY();
{
if (rows)
{
Py_DECREF(result->rows);
result->rows = PyList_New(rows);
PLy_input_tuple_funcs(&args, tuptable->tupdesc);
for (i = 0; i < rows; i++)
{
PyObject *row = PLyDict_FromTuple(&args, tuptable->vals[i],
tuptable->tupdesc);
PyList_SetItem(result->rows, i, row);
}
}
}
PG_CATCH();
{
MemoryContextSwitchTo(oldcontext);
if (!PyErr_Occurred())
PLy_exception_set(PLy_exc_error,
"unrecognized error in PLy_spi_execute_fetch_result");
PLy_typeinfo_dealloc(&args);
SPI_freetuptable(tuptable);
Py_DECREF(result);
return NULL;
}
PG_END_TRY();
PLy_typeinfo_dealloc(&args);
SPI_freetuptable(tuptable);
}
return (PyObject *) result;
}
/* s = plpy.subtransaction() */
static PyObject *
PLy_subtransaction(PyObject *self, PyObject *unused)
{
return PLy_subtransaction_new();
}
/* Allocate and initialize a PLySubtransactionObject */
static PyObject *
PLy_subtransaction_new(void)
{
PLySubtransactionObject *ob;
ob = PyObject_New(PLySubtransactionObject, &PLy_SubtransactionType);
if (ob == NULL)
return NULL;
ob->started = false;
ob->exited = false;
return (PyObject *) ob;
}
/* Python requires a dealloc function to be defined */
static void
PLy_subtransaction_dealloc(PyObject *subxact)
{
}
/*
* subxact.__enter__() or subxact.enter()
*
* Start an explicit subtransaction. SPI calls within an explicit
* subtransaction will not start another one, so you can atomically
* execute many SPI calls and still get a controllable exception if
* one of them fails.
*/
static PyObject *
PLy_subtransaction_enter(PyObject *self, PyObject *unused)
{
PLySubtransactionData *subxactdata;
MemoryContext oldcontext;
PLySubtransactionObject *subxact = (PLySubtransactionObject *) self;
if (subxact->started)
{
PLy_exception_set(PyExc_ValueError, "this subtransaction has already been entered");
return NULL;
}
if (subxact->exited)
{
PLy_exception_set(PyExc_ValueError, "this subtransaction has already been exited");
return NULL;
}
subxact->started = true;
oldcontext = CurrentMemoryContext;
subxactdata = PLy_malloc(sizeof(*subxactdata));
subxactdata->oldcontext = oldcontext;
subxactdata->oldowner = CurrentResourceOwner;
BeginInternalSubTransaction(NULL);
/* Do not want to leave the previous memory context */
MemoryContextSwitchTo(oldcontext);
explicit_subtransactions = lcons(subxactdata, explicit_subtransactions);
Py_INCREF(self);
return self;
}
/*
* subxact.__exit__(exc_type, exc, tb) or subxact.exit(exc_type, exc, tb)
*
* Exit an explicit subtransaction. exc_type is an exception type, exc
* is the exception object, tb is the traceback. If exc_type is None,
* commit the subtransactiony, if not abort it.
*
* The method signature is chosen to allow subtransaction objects to
* be used as context managers as described in
* <http://www.python.org/dev/peps/pep-0343/>.
*/
static PyObject *
PLy_subtransaction_exit(PyObject *self, PyObject *args)
{
PyObject *type;
PyObject *value;
PyObject *traceback;
PLySubtransactionData *subxactdata;
PLySubtransactionObject *subxact = (PLySubtransactionObject *) self;
if (!PyArg_ParseTuple(args, "OOO", &type, &value, &traceback))
return NULL;
if (!subxact->started)
{
PLy_exception_set(PyExc_ValueError, "this subtransaction has not been entered");
return NULL;
}
if (subxact->exited)
{
PLy_exception_set(PyExc_ValueError, "this subtransaction has already been exited");
return NULL;
}
if (explicit_subtransactions == NIL)
{
PLy_exception_set(PyExc_ValueError, "there is no subtransaction to exit from");
return NULL;
}
subxact->exited = true;
if (type != Py_None)
{
/* Abort the inner transaction */
RollbackAndReleaseCurrentSubTransaction();
}
else
{
ReleaseCurrentSubTransaction();
}
subxactdata = (PLySubtransactionData *) linitial(explicit_subtransactions);
explicit_subtransactions = list_delete_first(explicit_subtransactions);
MemoryContextSwitchTo(subxactdata->oldcontext);
CurrentResourceOwner = subxactdata->oldowner;
PLy_free(subxactdata);
/*
* AtEOSubXact_SPI() should not have popped any SPI context, but just in
* case it did, make sure we remain connected.
*/
SPI_restore_connection();
Py_INCREF(Py_None);
return Py_None;
}
/*
* language handler and interpreter initialization
*/
/*
* Add exceptions to the plpy module
*/
/*
* Add all the autogenerated exceptions as subclasses of SPIError
*/
static void
PLy_generate_spi_exceptions(PyObject *mod, PyObject *base)
{
int i;
for (i = 0; exception_map[i].name != NULL; i++)
{
bool found;
PyObject *exc;
PLyExceptionEntry *entry;
PyObject *sqlstate;
PyObject *dict = PyDict_New();
sqlstate = PyString_FromString(unpack_sql_state(exception_map[i].sqlstate));
PyDict_SetItemString(dict, "sqlstate", sqlstate);
Py_DECREF(sqlstate);
exc = PyErr_NewException(exception_map[i].name, base, dict);
PyModule_AddObject(mod, exception_map[i].classname, exc);
entry = hash_search(PLy_spi_exceptions, &exception_map[i].sqlstate,
HASH_ENTER, &found);
entry->exc = exc;
Assert(!found);
}
}
static void
PLy_add_exceptions(PyObject *plpy)
{
PyObject *excmod;
HASHCTL hash_ctl;
#if PY_MAJOR_VERSION < 3
excmod = Py_InitModule("spiexceptions", PLy_exc_methods);
#else
excmod = PyModule_Create(&PLy_exc_module);
#endif
if (PyModule_AddObject(plpy, "spiexceptions", excmod) < 0)
PLy_elog(ERROR, "failed to add the spiexceptions module");
/*
* XXX it appears that in some circumstances the reference count of the
* spiexceptions module drops to zero causing a Python assert failure when
* the garbage collector visits the module. This has been observed on the
* buildfarm. To fix this, add an additional ref for the module here.
*
* This shouldn't cause a memory leak - we don't want this garbage collected,
* and this function shouldn't be called more than once per backend.
*/
Py_INCREF(excmod);
PLy_exc_error = PyErr_NewException("plpy.Error", NULL, NULL);
PLy_exc_fatal = PyErr_NewException("plpy.Fatal", NULL, NULL);
PLy_exc_spi_error = PyErr_NewException("plpy.SPIError", NULL, NULL);
Py_INCREF(PLy_exc_error);
PyModule_AddObject(plpy, "Error", PLy_exc_error);
Py_INCREF(PLy_exc_fatal);
PyModule_AddObject(plpy, "Fatal", PLy_exc_fatal);
Py_INCREF(PLy_exc_spi_error);
PyModule_AddObject(plpy, "SPIError", PLy_exc_spi_error);
memset(&hash_ctl, 0, sizeof(hash_ctl));
hash_ctl.keysize = sizeof(int);
hash_ctl.entrysize = sizeof(PLyExceptionEntry);
hash_ctl.hash = tag_hash;
PLy_spi_exceptions = hash_create("SPI exceptions", 256,
&hash_ctl, HASH_ELEM | HASH_FUNCTION);
PLy_generate_spi_exceptions(excmod, PLy_exc_spi_error);
}
#if PY_MAJOR_VERSION >= 3
static PyMODINIT_FUNC
PyInit_plpy(void)
{
PyObject *m;
m = PyModule_Create(&PLy_module);
if (m == NULL)
return NULL;
PLy_add_exceptions(m);
return m;
}
#endif
static const int plpython_python_version = PY_MAJOR_VERSION;
/*
* _PG_init() - library load-time initialization
*
* DO NOT make this static nor change its name!
*/
void
_PG_init(void)
{
/* Be sure we do initialization only once (should be redundant now) */
static bool inited = false;
const int **version_ptr;
HASHCTL hash_ctl;
if (inited)
return;
/* Be sure we don't run Python 2 and 3 in the same session (might crash) */
version_ptr = (const int **) find_rendezvous_variable("plpython_python_version");
if (!(*version_ptr))
*version_ptr = &plpython_python_version;
else
{
if (**version_ptr != plpython_python_version)
ereport(FATAL,
(errmsg("Python major version mismatch in session"),
errdetail("This session has previously used Python major version %d, and it is now attempting to use Python major version %d.",
**version_ptr, plpython_python_version),
errhint("Start a new session to use a different Python major version.")));
}
pg_bindtextdomain(TEXTDOMAIN);
#if PY_MAJOR_VERSION >= 3
PyImport_AppendInittab("plpy", PyInit_plpy);
#endif
Py_Initialize();
#if PY_MAJOR_VERSION >= 3
PyImport_ImportModule("plpy");
#endif
PLy_init_interp();
PLy_init_plpy();
if (PyErr_Occurred())
PLy_elog(FATAL, "untrapped error in initialization");
memset(&hash_ctl, 0, sizeof(hash_ctl));
hash_ctl.keysize = sizeof(Oid);
hash_ctl.entrysize = sizeof(PLyProcedureEntry);
hash_ctl.hash = oid_hash;
PLy_procedure_cache = hash_create("PL/Python procedures", 32, &hash_ctl,
HASH_ELEM | HASH_FUNCTION);
memset(&hash_ctl, 0, sizeof(hash_ctl));
hash_ctl.keysize = sizeof(Oid);
hash_ctl.entrysize = sizeof(PLyProcedureEntry);
hash_ctl.hash = oid_hash;
PLy_trigger_cache = hash_create("PL/Python triggers", 32, &hash_ctl,
HASH_ELEM | HASH_FUNCTION);
explicit_subtransactions = NIL;
inited = true;
}
static void
PLy_init_interp(void)
{
PyObject *mainmod;
mainmod = PyImport_AddModule("__main__");
if (mainmod == NULL || PyErr_Occurred())
PLy_elog(ERROR, "could not import \"__main__\" module");
Py_INCREF(mainmod);
PLy_interp_globals = PyModule_GetDict(mainmod);
PLy_interp_safe_globals = PyDict_New();
PyDict_SetItemString(PLy_interp_globals, "GD", PLy_interp_safe_globals);
Py_DECREF(mainmod);
if (PLy_interp_globals == NULL || PyErr_Occurred())
PLy_elog(ERROR, "could not initialize globals");
}
static void
PLy_init_plpy(void)
{
PyObject *main_mod,
*main_dict,
*plpy_mod;
PyObject *plpy;
/*
* initialize plpy module
*/
if (PyType_Ready(&PLy_PlanType) < 0)
elog(ERROR, "could not initialize PLy_PlanType");
if (PyType_Ready(&PLy_ResultType) < 0)
elog(ERROR, "could not initialize PLy_ResultType");
if (PyType_Ready(&PLy_SubtransactionType) < 0)
elog(ERROR, "could not initialize PLy_SubtransactionType");
#if PY_MAJOR_VERSION >= 3
plpy = PyModule_Create(&PLy_module);
/* for Python 3 we initialized the exceptions in PyInit_plpy */
#else
plpy = Py_InitModule("plpy", PLy_methods);
PLy_add_exceptions(plpy);
#endif
/* PyDict_SetItemString(plpy, "PlanType", (PyObject *) &PLy_PlanType); */
/*
* initialize main module, and add plpy
*/
main_mod = PyImport_AddModule("__main__");
main_dict = PyModule_GetDict(main_mod);
plpy_mod = PyImport_AddModule("plpy");
PyDict_SetItemString(main_dict, "plpy", plpy_mod);
if (PyErr_Occurred())
elog(ERROR, "could not initialize plpy");
}
/* the python interface to the elog function
* don't confuse these with PLy_elog
*/
static PyObject *PLy_output(volatile int, PyObject *, PyObject *);
static PyObject *
PLy_debug(PyObject *self, PyObject *args)
{
return PLy_output(DEBUG2, self, args);
}
static PyObject *
PLy_log(PyObject *self, PyObject *args)
{
return PLy_output(LOG, self, args);
}
static PyObject *
PLy_info(PyObject *self, PyObject *args)
{
return PLy_output(INFO, self, args);
}
static PyObject *
PLy_notice(PyObject *self, PyObject *args)
{
return PLy_output(NOTICE, self, args);
}
static PyObject *
PLy_warning(PyObject *self, PyObject *args)
{
return PLy_output(WARNING, self, args);
}
static PyObject *
PLy_error(PyObject *self, PyObject *args)
{
return PLy_output(ERROR, self, args);
}
static PyObject *
PLy_fatal(PyObject *self, PyObject *args)
{
return PLy_output(FATAL, self, args);
}
static PyObject *
PLy_output(volatile int level, PyObject *self __attribute__((unused)), PyObject *args)
{
PyObject *volatile so;
char *volatile sv;
volatile MemoryContext oldcontext;
if (PyTuple_Size(args) == 1)
{
/*
* Treat single argument specially to avoid undesirable ('tuple',)
* decoration.
*/
PyObject *o;
PyArg_UnpackTuple(args, "plpy.elog", 1, 1, &o);
so = PyObject_Str(o);
}
else
so = PyObject_Str(args);
if (so == NULL || ((sv = PyString_AsString(so)) == NULL))
{
level = ERROR;
sv = dgettext(TEXTDOMAIN, "could not parse error message in plpy.elog");
}
oldcontext = CurrentMemoryContext;
PG_TRY();
{
pg_verifymbstr(sv, strlen(sv), false);
elog(level, "%s", sv);
}
PG_CATCH();
{
ErrorData *edata;
MemoryContextSwitchTo(oldcontext);
edata = CopyErrorData();
FlushErrorState();
/*
* Note: If sv came from PyString_AsString(), it points into storage
* owned by so. So free so after using sv.
*/
Py_XDECREF(so);
/* Make Python raise the exception */
PLy_exception_set(PLy_exc_error, "%s", edata->message);
return NULL;
}
PG_END_TRY();
Py_XDECREF(so);
/*
* return a legal object so the interpreter will continue on its merry way
*/
Py_INCREF(Py_None);
return Py_None;
}
/*
static PyObject *
PLy_quote_literal(PyObject *self, PyObject *args)
{
const char *str;
char *quoted;
PyObject *ret;
if (!PyArg_ParseTuple(args, "s", &str))
return NULL;
quoted = quote_literal_cstr(str);
ret = PyString_FromString(quoted);
pfree(quoted);
return ret;
}
static PyObject *
PLy_quote_nullable(PyObject *self, PyObject *args)
{
const char *str;
char *quoted;
PyObject *ret;
if (!PyArg_ParseTuple(args, "z", &str))
return NULL;
if (str == NULL)
return PyString_FromString("NULL");
quoted = quote_literal_cstr(str);
ret = PyString_FromString(quoted);
pfree(quoted);
return ret;
}
static PyObject *
PLy_quote_ident(PyObject *self, PyObject *args)
{
const char *str;
const char *quoted;
PyObject *ret;
if (!PyArg_ParseTuple(args, "s", &str))
return NULL;
quoted = quote_identifier(str);
ret = PyString_FromString(quoted);
return ret;
}
*/
/*
* Get the name of the last procedure called by the backend (the
* innermost, if a plpython procedure call calls the backend and the
* backend calls another plpython procedure).
*
* NB: this returns the SQL name, not the internal Python procedure name
*/
static char *
PLy_procedure_name(PLyProcedure *proc)
{
if (proc == NULL)
return "<unknown procedure>";
return proc->proname;
}
/*
* Call PyErr_SetString with a vprint interface and translation support
*/
static void
PLy_exception_set(PyObject *exc, const char *fmt,...)
{
char buf[1024];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), dgettext(TEXTDOMAIN, fmt), ap);
va_end(ap);
PyErr_SetString(exc, buf);
}
/*
* The same, pluralized.
*/
static void
PLy_exception_set_plural(PyObject *exc,
const char *fmt_singular, const char *fmt_plural,
unsigned long n,...)
{
char buf[1024];
va_list ap;
va_start(ap, n);
vsnprintf(buf, sizeof(buf),
dngettext(TEXTDOMAIN, fmt_singular, fmt_plural, n),
ap);
va_end(ap);
PyErr_SetString(exc, buf);
}
/*
* Raise a SPIError, passing in it more error details, like the
* internal query and error position.
*/
static void
PLy_spi_exception_set(PyObject *excclass, ErrorData *edata)
{
PyObject *args = NULL;
PyObject *spierror = NULL;
PyObject *spidata = NULL;
args = Py_BuildValue("(s)", edata->message);
if (!args)
goto failure;
/* create a new SPI exception with the error message as the parameter */
spierror = PyObject_CallObject(excclass, args);
if (!spierror)
goto failure;
spidata = Py_BuildValue("(zzzi)", edata->detail, edata->hint,
edata->internalquery, edata->internalpos);
if (!spidata)
goto failure;
if (PyObject_SetAttrString(spierror, "spidata", spidata) == -1)
goto failure;
PyErr_SetObject(excclass, spierror);
Py_DECREF(args);
Py_DECREF(spierror);
Py_DECREF(spidata);
return;
failure:
Py_XDECREF(args);
Py_XDECREF(spierror);
Py_XDECREF(spidata);
elog(ERROR, "could not convert SPI error to Python exception");
}
/* Emit a PG error or notice, together with any available info about
* the current Python error, previously set by PLy_exception_set().
* This should be used to propagate Python errors into PG. If fmt is
* NULL, the Python error becomes the primary error message, otherwise
* it becomes the detail. If there is a Python traceback, it is put
* in the context.
*/
static void
PLy_elog(int elevel, const char *fmt,...)
{
char *xmsg;
char *tbmsg;
int tb_depth;
StringInfoData emsg;
PyObject *exc,
*val,
*tb;
const char *primary = NULL;
char *detail = NULL;
char *hint = NULL;
char *query = NULL;
int position = 0;
PyErr_Fetch(&exc, &val, &tb);
if (exc != NULL)
{
if (PyErr_GivenExceptionMatches(val, PLy_exc_spi_error))
PLy_get_spi_error_data(val, &detail, &hint, &query, &position);
else if (PyErr_GivenExceptionMatches(val, PLy_exc_fatal))
elevel = FATAL;
}
PyErr_Restore(exc, val, tb);
PLy_traceback(&xmsg, &tbmsg, &tb_depth);
if (fmt)
{
initStringInfo(&emsg);
for (;;)
{
va_list ap;
bool success;
va_start(ap, fmt);
success = appendStringInfoVA(&emsg, dgettext(TEXTDOMAIN, fmt), ap);
va_end(ap);
if (success)
break;
enlargeStringInfo(&emsg, emsg.maxlen);
}
primary = emsg.data;
/* Since we have a format string, we cannot have a SPI detail. */
Assert(detail == NULL);
/* If there's an exception message, it goes in the detail. */
if (xmsg)
detail = xmsg;
}
else
{
if (xmsg)
primary = xmsg;
}
PG_TRY();
{
ereport(elevel,
(errmsg("%s", primary ? primary : "no exception data"),
(detail) ? errdetail("%s", detail) : 0,
(tb_depth > 0 && tbmsg) ? errcontext("%s", tbmsg) : 0,
(hint) ? errhint("%s", hint) : 0,
(query) ? internalerrquery(query) : 0,
(position) ? internalerrposition(position) : 0));
}
PG_CATCH();
{
if (fmt)
pfree(emsg.data);
if (xmsg)
pfree(xmsg);
if (tbmsg)
pfree(tbmsg);
PG_RE_THROW();
}
PG_END_TRY();
if (fmt)
pfree(emsg.data);
if (xmsg)
pfree(xmsg);
if (tbmsg)
pfree(tbmsg);
}
/*
* Extract the error data from a SPIError
*/
static void
PLy_get_spi_error_data(PyObject *exc, char **detail, char **hint, char **query, int *position)
{
PyObject *spidata = NULL;
spidata = PyObject_GetAttrString(exc, "spidata");
if (!spidata)
goto cleanup;
if (!PyArg_ParseTuple(spidata, "zzzi", detail, hint, query, position))
goto cleanup;
cleanup:
PyErr_Clear();
/* no elog here, we simply won't report the errhint, errposition etc */
Py_XDECREF(spidata);
}
/*
* Get the given source line as a palloc'd string
*/
static char *
get_source_line(const char *src, int lineno)
{
const char *s = NULL;
const char *next = src;
int current = 0;
while (current < lineno)
{
s = next;
next = strchr(s + 1, '\n');
current++;
if (next == NULL)
break;
}
if (current != lineno)
return NULL;
while (*s && isspace((unsigned char) *s))
s++;
if (next == NULL)
return pstrdup(s);
/*
* Sanity check, next < s if the line was all-whitespace, which should
* never happen if Python reported a frame created on that line, but
* check anyway.
*/
if (next < s)
return NULL;
return pnstrdup(s, next - s);
}
/*
* Extract a Python traceback from the current exception.
*
* The exception error message is returned in xmsg, the traceback in
* tbmsg (both as palloc'd strings) and the traceback depth in
* tb_depth.
*/
static void
PLy_traceback(char **xmsg, char **tbmsg, int *tb_depth)
{
PyObject *e,
*v,
*tb;
PyObject *e_type_o;
PyObject *e_module_o;
char *e_type_s = NULL;
char *e_module_s = NULL;
PyObject *vob = NULL;
char *vstr;
StringInfoData xstr;
StringInfoData tbstr;
/*
* get the current exception
*/
PyErr_Fetch(&e, &v, &tb);
/*
* oops, no exception, return
*/
if (e == NULL)
{
*xmsg = NULL;
*tbmsg = NULL;
*tb_depth = 0;
return;
}
PyErr_NormalizeException(&e, &v, &tb);
/*
* Format the exception and its value and put it in xmsg.
*/
e_type_o = PyObject_GetAttrString(e, "__name__");
e_module_o = PyObject_GetAttrString(e, "__module__");
if (e_type_o)
e_type_s = PyString_AsString(e_type_o);
if (e_type_s)
e_module_s = PyString_AsString(e_module_o);
if (v && ((vob = PyObject_Str(v)) != NULL))
vstr = PyString_AsString(vob);
else
vstr = "unknown";
initStringInfo(&xstr);
if (!e_type_s || !e_module_s)
{
if (PyString_Check(e))
/* deprecated string exceptions */
appendStringInfoString(&xstr, PyString_AsString(e));
else
/* shouldn't happen */
appendStringInfoString(&xstr, "unrecognized exception");
}
/* mimics behavior of traceback.format_exception_only */
else if (strcmp(e_module_s, "builtins") == 0
|| strcmp(e_module_s, "__main__") == 0
|| strcmp(e_module_s, "exceptions") == 0)
appendStringInfo(&xstr, "%s", e_type_s);
else
appendStringInfo(&xstr, "%s.%s", e_module_s, e_type_s);
appendStringInfo(&xstr, ": %s", vstr);
*xmsg = xstr.data;
/*
* Now format the traceback and put it in tbmsg.
*/
*tb_depth = 0;
initStringInfo(&tbstr);
/* Mimick Python traceback reporting as close as possible. */
appendStringInfoString(&tbstr, "Traceback (most recent call last):");
while (tb != NULL && tb != Py_None)
{
PyObject *volatile tb_prev = NULL;
PyObject *volatile frame = NULL;
PyObject *volatile code = NULL;
PyObject *volatile name = NULL;
PyObject *volatile lineno = NULL;
PyObject *volatile filename = NULL;
PG_TRY();
{
lineno = PyObject_GetAttrString(tb, "tb_lineno");
if (lineno == NULL)
elog(ERROR, "could not get line number from Python traceback");
frame = PyObject_GetAttrString(tb, "tb_frame");
if (frame == NULL)
elog(ERROR, "could not get frame from Python traceback");
code = PyObject_GetAttrString(frame, "f_code");
if (code == NULL)
elog(ERROR, "could not get code object from Python frame");
name = PyObject_GetAttrString(code, "co_name");
if (name == NULL)
elog(ERROR, "could not get function name from Python code object");
filename = PyObject_GetAttrString(code, "co_filename");
if (filename == NULL)
elog(ERROR, "could not get file name from Python code object");
}
PG_CATCH();
{
Py_XDECREF(frame);
Py_XDECREF(code);
Py_XDECREF(name);
Py_XDECREF(lineno);
Py_XDECREF(filename);
PG_RE_THROW();
}
PG_END_TRY();
/* The first frame always points at <module>, skip it. */
if (*tb_depth > 0)
{
char *proname;
char *fname;
char *line;
char *plain_filename;
long plain_lineno;
/*
* The second frame points at the internal function, but to mimick
* Python error reporting we want to say <module>.
*/
if (*tb_depth == 1)
fname = "<module>";
else
fname = PyString_AsString(name);
proname = PLy_procedure_name(PLy_curr_procedure);
plain_filename = PyString_AsString(filename);
plain_lineno = PyInt_AsLong(lineno);
if (proname == NULL)
appendStringInfo(
&tbstr, "\n PL/Python anonymous code block, line %ld, in %s",
plain_lineno - 1, fname);
else
appendStringInfo(
&tbstr, "\n PL/Python function \"%s\", line %ld, in %s",
proname, plain_lineno - 1, fname);
/* function code object was compiled with "<string>" as the filename */
if (PLy_curr_procedure && plain_filename != NULL &&
strcmp(plain_filename, "<string>") == 0)
{
/*
* If we know the current procedure, append the exact line
* from the source, again mimicking Python's traceback.py
* module behavior. We could store the already line-split
* source to avoid splitting it every time, but producing a
* traceback is not the most important scenario to optimize
* for. But we do not go as far as traceback.py in reading
* the source of imported modules.
*/
line = get_source_line(PLy_curr_procedure->src, plain_lineno);
if (line)
{
appendStringInfo(&tbstr, "\n %s", line);
pfree(line);
}
}
}
Py_DECREF(frame);
Py_DECREF(code);
Py_DECREF(name);
Py_DECREF(lineno);
Py_DECREF(filename);
/* Release the current frame and go to the next one. */
tb_prev = tb;
tb = PyObject_GetAttrString(tb, "tb_next");
Assert(tb_prev != Py_None);
Py_DECREF(tb_prev);
if (tb == NULL)
elog(ERROR, "could not traverse Python traceback");
(*tb_depth)++;
}
/* Return the traceback. */
*tbmsg = tbstr.data;
Py_XDECREF(e_type_o);
Py_XDECREF(e_module_o);
Py_XDECREF(vob);
Py_XDECREF(v);
Py_DECREF(e);
}
/* python module code */
/* some dumb utility functions */
static void *
PLy_malloc(size_t bytes)
{
/* We need our allocations to be long-lived, so use TopMemoryContext */
return MemoryContextAlloc(TopMemoryContext, bytes);
}
static void *
PLy_malloc0(size_t bytes)
{
void *ptr = PLy_malloc(bytes);
MemSet(ptr, 0, bytes);
return ptr;
}
static char *
PLy_strdup(const char *str)
{
char *result;
size_t len;
len = strlen(str) + 1;
result = PLy_malloc(len);
memcpy(result, str, len);
return result;
}
/* define this away */
static void
PLy_free(void *ptr)
{
pfree(ptr);
}
/*
* Convert a Python unicode object to a Python string/bytes object in
* PostgreSQL server encoding. Reference ownership is passed to the
* caller.
*/
static PyObject *
PLyUnicode_Bytes(PyObject *unicode)
{
PyObject *rv;
const char *serverenc;
/*
* Python understands almost all PostgreSQL encoding names, but it doesn't
* know SQL_ASCII.
*/
if (GetDatabaseEncoding() == PG_SQL_ASCII)
serverenc = "ascii";
else
serverenc = GetDatabaseEncodingName();
rv = PyUnicode_AsEncodedString(unicode, serverenc, "strict");
if (rv == NULL)
PLy_elog(ERROR, "could not convert Python Unicode object to PostgreSQL server encoding");
return rv;
}
/*
* Convert a Python unicode object to a C string in PostgreSQL server
* encoding. No Python object reference is passed out of this
* function. The result is palloc'ed.
*
* Note that this function is disguised as PyString_AsString() when
* using Python 3. That function retuns a pointer into the internal
* memory of the argument, which isn't exactly the interface of this
* function. But in either case you get a rather short-lived
* reference that you ought to better leave alone.
*/
static char *
PLyUnicode_AsString(PyObject *unicode)
{
PyObject *o = PLyUnicode_Bytes(unicode);
char *rv = pstrdup(PyBytes_AsString(o));
Py_XDECREF(o);
return rv;
}
#if PY_MAJOR_VERSION >= 3
/*
* Convert a C string in the PostgreSQL server encoding to a Python
* unicode object. Reference ownership is passed to the caller.
*/
static PyObject *
PLyUnicode_FromString(const char *s)
{
char *utf8string;
PyObject *o;
utf8string = (char *) pg_do_encoding_conversion((unsigned char *) s,
strlen(s),
GetDatabaseEncoding(),
PG_UTF8);
o = PyUnicode_FromString(utf8string);
if (utf8string != s)
pfree(utf8string);
return o;
}
#endif /* PY_MAJOR_VERSION >= 3 */
#if PY_MAJOR_VERSION < 3
/* Define aliases plpython2_call_handler etc */
Datum plpython2_call_handler(PG_FUNCTION_ARGS);
Datum plpython2_validator(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(plpython2_call_handler);
Datum
plpython2_call_handler(PG_FUNCTION_ARGS)
{
return plpython_call_handler(fcinfo);
}
PG_FUNCTION_INFO_V1(plpython2_validator);
Datum
plpython2_validator(PG_FUNCTION_ARGS)
{
/* call plpython validator with our fcinfo so it gets our oid */
return plpython_validator(fcinfo);
}
#endif /* PY_MAJOR_VERSION < 3 */