blob: 0a3118be8dbdf8ce51d94ab35d3a3d1ddcb2fad7 [file] [log] [blame]
/*-------------------------------------------------------------------------
*
* inval.c
* POSTGRES cache invalidation dispatcher code.
*
* This is subtle stuff, so pay attention:
*
* When a tuple is updated or deleted, our standard time qualification rules
* consider that it is *still valid* so long as we are in the same command,
* ie, until the next CommandCounterIncrement() or transaction commit.
* (See utils/time/tqual.c, and note that system catalogs are generally
* scanned under SnapshotNow rules by the system, or plain user snapshots
* for user queries.) At the command boundary, the old tuple stops
* being valid and the new version, if any, becomes valid. Therefore,
* we cannot simply flush a tuple from the system caches during heap_update()
* or heap_delete(). The tuple is still good at that point; what's more,
* even if we did flush it, it might be reloaded into the caches by a later
* request in the same command. So the correct behavior is to keep a list
* of outdated (updated/deleted) tuples and then do the required cache
* flushes at the next command boundary. We must also keep track of
* inserted tuples so that we can flush "negative" cache entries that match
* the new tuples; again, that mustn't happen until end of command.
*
* Once we have finished the command, we still need to remember inserted
* tuples (including new versions of updated tuples), so that we can flush
* them from the caches if we abort the transaction. Similarly, we'd better
* be able to flush "negative" cache entries that may have been loaded in
* place of deleted tuples, so we still need the deleted ones too.
*
* If we successfully complete the transaction, we have to broadcast all
* these invalidation events to other backends (via the SI message queue)
* so that they can flush obsolete entries from their caches. Note we have
* to record the transaction commit before sending SI messages, otherwise
* the other backends won't see our updated tuples as good.
*
* When a subtransaction aborts, we can process and discard any events
* it has queued. When a subtransaction commits, we just add its events
* to the pending lists of the parent transaction.
*
* In short, we need to remember until xact end every insert or delete
* of a tuple that might be in the system caches. Updates are treated as
* two events, delete + insert, for simplicity. (There are cases where
* it'd be possible to record just one event, but we don't currently try.)
*
* We do not need to register EVERY tuple operation in this way, just those
* on tuples in relations that have associated catcaches. We do, however,
* have to register every operation on every tuple that *could* be in a
* catcache, whether or not it currently is in our cache. Also, if the
* tuple is in a relation that has multiple catcaches, we need to register
* an invalidation message for each such catcache. catcache.c's
* PrepareToInvalidateCacheTuple() routine provides the knowledge of which
* catcaches may need invalidation for a given tuple.
*
* Also, whenever we see an operation on a pg_class or pg_attribute tuple,
* we register a relcache flush operation for the relation described by that
* tuple. pg_class updates trigger an smgr flush operation as well.
*
* We keep the relcache and smgr flush requests in lists separate from the
* catcache tuple flush requests. This allows us to issue all the pending
* catcache flushes before we issue relcache flushes, which saves us from
* loading a catcache tuple during relcache load only to flush it again
* right away. Also, we avoid queuing multiple relcache flush requests for
* the same relation, since a relcache flush is relatively expensive to do.
* (XXX is it worth testing likewise for duplicate catcache flush entries?
* Probably not.)
*
* If a relcache flush is issued for a system relation that we preload
* from the relcache init file, we must also delete the init file so that
* it will be rebuilt during the next backend restart. The actual work of
* manipulating the init file is in relcache.c, but we keep track of the
* need for it here.
*
* The request lists proper are kept in CurTransactionContext of their
* creating (sub)transaction, since they can be forgotten on abort of that
* transaction but must be kept till top-level commit otherwise. For
* simplicity we keep the controlling list-of-lists in TopTransactionContext.
*
*
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/cache/inval.c,v 1.78 2006/10/04 00:30:00 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/twophase_rmgr.h"
#include "access/xact.h"
#include "catalog/catalog.h"
#include "catalog/gp_policy.h"
#include "miscadmin.h"
#include "storage/sinval.h"
#include "storage/smgr.h"
#include "utils/inval.h"
#include "utils/memutils.h"
#include "utils/relcache.h"
#include "utils/simex.h"
#include "utils/syscache.h"
#include "commands/dbcommands.h"
#include "access/heapam.h"
#include "utils/guc.h"
/*
* To minimize palloc traffic, we keep pending requests in successively-
* larger chunks (a slightly more sophisticated version of an expansible
* array). All request types can be stored as SharedInvalidationMessage
* records. The ordering of requests within a list is important for some
* components (e.g. Metadata Versioning), so we make sure to maintain it.
*/
typedef struct InvalidationChunk
{
struct InvalidationChunk *next; /* list link */
int nitems; /* # items currently stored in chunk */
int maxitems; /* size of allocated array in this chunk */
SharedInvalidationMessage msgs[1]; /* VARIABLE LENGTH ARRAY */
} InvalidationChunk; /* VARIABLE LENGTH STRUCTURE */
typedef struct InvalidationListHeader
{
InvalidationChunk *cclist; /* list of chunks holding catcache msgs */
InvalidationChunk *rclist; /* list of chunks holding relcache/smgr msgs */
InvalidationChunk *velist; /* list of chunks holding versioning event msgs */
} InvalidationListHeader;
/*----------------
* Invalidation info is divided into two lists:
* 1) events so far in current command, not yet reflected to caches.
* 2) events in previous commands of current transaction; these have
* been reflected to local caches, and must be either broadcast to
* other backends or rolled back from local cache when we commit
* or abort the transaction.
* Actually, we need two such lists for each level of nested transaction,
* so that we can discard events from an aborted subtransaction. When
* a subtransaction commits, we append its lists to the parent's lists.
*
* The relcache-file-invalidated flag can just be a simple boolean,
* since we only act on it at transaction commit; we don't care which
* command of the transaction set it.
*----------------
*/
typedef struct TransInvalidationInfo
{
/* Back link to parent transaction's info */
struct TransInvalidationInfo *parent;
/* Subtransaction nesting depth */
int my_level;
/*
* head of current-command event list.
* In Metadata versioning, this is the Command Versioning Queue (CVQ)
*/
InvalidationListHeader CurrentCmdInvalidMsgs;
/*
* head of previous-commands event list.
* In Metadata versioning, this is the Transaction Versioning Queue (XVQ)
*/
InvalidationListHeader PriorCmdInvalidMsgs;
/* init file must be invalidated? */
bool RelcacheInitFileInval;
} TransInvalidationInfo;
/*
* This global variable is used for testing Metadata Versioning, and
* therefore it needs to be non-static
*/
TransInvalidationInfo *transInvalInfo = NULL;
/*
* Dynamically-registered callback functions. Current implementation
* assumes there won't be very many of these at once; could improve if needed.
*/
#define MAX_CACHE_CALLBACKS 20
static struct CACHECALLBACK
{
int16 id; /* cache number or message type id */
CacheCallbackFunction function;
Datum arg;
} cache_callback_list[MAX_CACHE_CALLBACKS];
static int cache_callback_count = 0;
/* info values for 2PC callback */
#define TWOPHASE_INFO_MSG 0 /* SharedInvalidationMessage */
#define TWOPHASE_INFO_FILE_BEFORE 1 /* relcache file inval */
#define TWOPHASE_INFO_FILE_AFTER 2 /* relcache file inval */
static void PersistInvalidationMessage(SharedInvalidationMessage *msg);
static void PrepareForRelcacheInvalidation(Oid relid, HeapTuple tuple);
/* ----------------------------------------------------------------
* Invalidation list support functions
*
* These three routines encapsulate processing of the "chunked"
* representation of what is logically just a list of messages.
* ----------------------------------------------------------------
*/
/*
* AddInvalidationMessage
* Add an invalidation message to a list (of chunks).
*
* We make sure that we maintain the original order of messages by
* always appending at the end of the list.
*/
static void
AddInvalidationMessage(InvalidationChunk **listHdr,
SharedInvalidationMessage *msg)
{
InvalidationChunk *lastChunk = *listHdr;
if (lastChunk == NULL)
{
/* First time through; create initial chunk */
#define FIRSTCHUNKSIZE 16
lastChunk = (InvalidationChunk *)
MemoryContextAlloc(CurTransactionContext,
sizeof(InvalidationChunk) +
(FIRSTCHUNKSIZE - 1) *sizeof(SharedInvalidationMessage));
lastChunk->nitems = 0;
lastChunk->maxitems = FIRSTCHUNKSIZE;
lastChunk->next = *listHdr;
*listHdr = lastChunk;
}
else
{
/* We already have chunks in the list. Go to the last one */
while (NULL != lastChunk->next)
{
lastChunk = lastChunk->next;
}
/* Is there room in the last chunk? */
if (lastChunk->nitems >= lastChunk->maxitems)
{
/* Need another chunk; double size of last chunk */
int chunksize = 2 * lastChunk->maxitems;
InvalidationChunk * newChunk = (InvalidationChunk *)
MemoryContextAlloc(CurTransactionContext,
sizeof(InvalidationChunk) +
(chunksize - 1) *sizeof(SharedInvalidationMessage));
newChunk->nitems = 0;
newChunk->maxitems = chunksize;
newChunk->next = NULL;
/* Append new chunk after the last one */
lastChunk->next = newChunk;
lastChunk = newChunk;
}
}
/* Okay, add message to last chunk */
lastChunk->msgs[lastChunk->nitems] = *msg;
lastChunk->nitems++;
}
/*
* Append one list of invalidation message chunks to another, resetting
* the source chunk-list pointer to NULL.
* Source is appended at the end of the destination to preserve ordering.
*/
static void
AppendInvalidationMessageList(InvalidationChunk **destHdr,
InvalidationChunk **srcHdr)
{
if (NULL == *srcHdr)
{
/* nothing to do */
return;
}
InvalidationChunk *chunk = *destHdr;
if (NULL == chunk)
{
/* Destination is empty */
*destHdr = *srcHdr;
}
else
{
/* Find last chunk of destination list */
while (chunk->next != NULL)
chunk = chunk->next;
/* Append source list at the end of destination */
chunk->next = *srcHdr;
}
*srcHdr = NULL;
}
/*
* Process a list of invalidation messages.
*
* This is a macro that executes the given code fragment for each message in
* a message chunk list. The fragment should refer to the message as *msg.
*/
#define ProcessMessageList(listHdr, codeFragment) \
do { \
InvalidationChunk *_chunk; \
for (_chunk = (listHdr); _chunk != NULL; _chunk = _chunk->next) \
{ \
int _cindex; \
for (_cindex = 0; _cindex < _chunk->nitems; _cindex++) \
{ \
SharedInvalidationMessage *msg = &_chunk->msgs[_cindex]; \
codeFragment; \
} \
} \
} while (0)
/*
* Process a list of invalidation messages group-wise.
*
* As above, but the code fragment can handle an array of messages.
* The fragment should refer to the messages as msgs[], with n entries.
*/
#define ProcessMessageListMulti(listHdr, codeFragment) \
do { \
InvalidationChunk *_chunk; \
for (_chunk = (listHdr); _chunk != NULL; _chunk = _chunk->next) \
{ \
SharedInvalidationMessage *msgs = _chunk->msgs; \
int n = _chunk->nitems; \
codeFragment; \
} \
} while (0)
/* ----------------------------------------------------------------
* Invalidation set support functions
*
* These routines understand about the division of a logical invalidation
* list into separate physical lists for catcache and relcache/smgr entries.
* ----------------------------------------------------------------
*/
/*
* Add a catcache inval entry
*/
static void
AddCatcacheInvalidationMessage(InvalidationListHeader *hdr,
int id, uint32 hashValue,
ItemPointer tuplePtr, Oid dbId,
SysCacheInvalidateAction action)
{
SharedInvalidationMessage msg;
msg.cc.id = (int16) id;
msg.cc.tuplePtr = *tuplePtr;
msg.cc.dbId = dbId;
msg.cc.hashValue = hashValue;
AddInvalidationMessage(&hdr->cclist, &msg);
}
/*
* Add a relcache inval entry
*/
static void
AddRelcacheInvalidationMessage(InvalidationListHeader *hdr,
Oid dbId, Oid relId)
{
SharedInvalidationMessage msg;
/* Don't add a duplicate item */
/* We assume dbId need not be checked because it will never change */
ProcessMessageList(hdr->rclist,
if (msg->rc.id == SHAREDINVALRELCACHE_ID &&
msg->rc.relId == relId)
return);
/* OK, add the item */
msg.rc.id = SHAREDINVALRELCACHE_ID;
msg.rc.dbId = dbId;
msg.rc.relId = relId;
AddInvalidationMessage(&hdr->rclist, &msg);
}
/*
* Add an smgr inval entry
*/
static void
AddSmgrInvalidationMessage(InvalidationListHeader *hdr,
RelFileNode rnode)
{
SharedInvalidationMessage msg;
/* Don't add a duplicate item */
ProcessMessageList(hdr->rclist,
if (msg->sm.id == SHAREDINVALSMGR_ID &&
RelFileNodeEquals(msg->sm.rnode, rnode))
return);
/* OK, add the item */
msg.sm.id = SHAREDINVALSMGR_ID;
msg.sm.rnode = rnode;
AddInvalidationMessage(&hdr->rclist, &msg);
}
/*
* Append one list of invalidation messages to another, resetting
* the source list to empty.
*/
static void
AppendInvalidationMessages(InvalidationListHeader *dest,
InvalidationListHeader *src)
{
AppendInvalidationMessageList(&dest->cclist, &src->cclist);
AppendInvalidationMessageList(&dest->rclist, &src->rclist);
AppendInvalidationMessageList(&dest->velist, &src->velist);
}
/*
* Execute the given function for all the messages in an invalidation list.
* The list is not altered.
*
* catcache entries are processed first, for reasons mentioned above.
*/
static void
ProcessInvalidationMessages(InvalidationListHeader *hdr,
void (*func) (SharedInvalidationMessage *msg))
{
ProcessMessageList(hdr->cclist, func(msg));
ProcessMessageList(hdr->rclist, func(msg));
ProcessMessageList(hdr->velist, func(msg));
}
/*
* As above, but the function is able to process an array of messages
* rather than just one at a time.
*/
static void
ProcessInvalidationMessageMulti(InvalidationListHeader *hdr,
void (*func) (SharedInvalidationMessage *msgs, int n))
{
ProcessMessageListMulti(hdr->cclist, func(msgs, n));
ProcessMessageListMulti(hdr->rclist, func(msgs, n));
ProcessMessageListMulti(hdr->velist, func(msgs, n));
}
/* ----------------------------------------------------------------
* private support functions
* ----------------------------------------------------------------
*/
/*
* RegisterCatcacheInvalidation
*
* Register an invalidation event for a catcache tuple entry.
*/
static void
RegisterCatcacheInvalidation(int cacheId,
uint32 hashValue,
ItemPointer tuplePtr,
Oid dbId,
SysCacheInvalidateAction action)
{
AddCatcacheInvalidationMessage(&transInvalInfo->CurrentCmdInvalidMsgs,
cacheId, hashValue, tuplePtr, dbId, action);
}
/*
* RegisterRelcacheInvalidation
*
* As above, but register a relcache invalidation event.
*/
static void
RegisterRelcacheInvalidation(Oid dbId, Oid relId)
{
AddRelcacheInvalidationMessage(&transInvalInfo->CurrentCmdInvalidMsgs,
dbId, relId);
/*
* Most of the time, relcache invalidation is associated with system
* catalog updates, but there are a few cases where it isn't. Quick
* hack to ensure that the next CommandCounterIncrement() will think
* that we need to do CommandEndInvalidationMessages().
*/
(void) GetCurrentCommandId(/*true*/);
/*
* If the relation being invalidated is one of those cached in the
* relcache init file, mark that we need to zap that file at commit.
*/
if (RelationIdIsInInitFile(relId))
transInvalInfo->RelcacheInitFileInval = true;
}
/*
* RegisterSmgrInvalidation
*
* As above, but register an smgr invalidation event.
*/
static void
RegisterSmgrInvalidation(RelFileNode rnode)
{
AddSmgrInvalidationMessage(&transInvalInfo->CurrentCmdInvalidMsgs,
rnode);
/*
* As above, just in case there is not an associated catalog change.
*/
(void) GetCurrentCommandId(/*true*/);
}
#ifdef USE_ASSERT_CHECKING
static char *
si_to_str(SharedInvalidationMessage *msg)
{
StringInfoData buf;
int i;
char *s;
initStringInfo(&buf);
appendStringInfo(&buf, "message id = %d", msg->id);
s = (char *)&(msg->cc);
for (i = 0; i < sizeof(SharedInvalCatcacheMsg); i++)
{
if (i == 0)
appendStringInfo(&buf, " CC:");
appendStringInfo(&buf, " %x", *(s + i));
}
s = (char *)&(msg->rc);
for (i = 0; i < sizeof(SharedInvalRelcacheMsg); i++)
{
if (i == 0)
appendStringInfo(&buf, " RC:");
appendStringInfo(&buf, " %x", *(s + i));
}
return buf.data;
}
#endif
/*
* LocalExecuteInvalidationMessage
*
* Process a single invalidation message (which could be of any type).
* Only the local caches are flushed; this does not transmit the message
* to other backends.
*/
static void
LocalExecuteInvalidationMessage(SharedInvalidationMessage *msg)
{
int i;
if (msg->id >= 0)
{
/* When msg->id > 0, this is a CatCache invalidation message */
if (msg->cc.dbId == MyDatabaseId || msg->cc.dbId == 0)
{
CatalogCacheIdInvalidate(msg->cc.id,
msg->cc.hashValue,
&msg->cc.tuplePtr);
for (i = 0; i < cache_callback_count; i++)
{
struct CACHECALLBACK *ccitem = cache_callback_list + i;
if (ccitem->id == msg->cc.id)
(*ccitem->function) (ccitem->arg, InvalidOid);
}
}
return;
}
/*
* If we got here, we must have msg->id < 0. This means the invalidation
* message is for one of the other caches. Find out which one and
* take the specific actions for each.
*/
Assert(msg->id < 0);
switch (msg->id)
{
case SHAREDINVALRELCACHE_ID:
if (msg->rc.dbId == MyDatabaseId || msg->rc.dbId == InvalidOid)
{
RelationCacheInvalidateEntry(msg->rc.relId);
for (i = 0; i < cache_callback_count; i++)
{
struct CACHECALLBACK *ccitem = cache_callback_list + i;
if (ccitem->id == SHAREDINVALRELCACHE_ID)
(*ccitem->function) (ccitem->arg, msg->rc.relId);
}
}
break;
case SHAREDINVALSMGR_ID:
/*
* We could have smgr entries for relations of other databases, so no
* short-circuit test is possible here.
*/
smgrclosenode(msg->sm.rnode);
break;
default:
#ifdef USE_ASSERT_CHECKING
elog(NOTICE, "invalid SI message: %s", si_to_str(msg));
#endif
elog(FATAL, "unrecognized SI message id: %d", msg->id);
}
}
/*
* InvalidateSystemCaches
*
* This blows away all tuples in the system catalog caches and
* all the cached relation descriptors and smgr cache entries.
* Relation descriptors that have positive refcounts are then rebuilt.
*
* We call this when we see a shared-inval-queue overflow signal,
* since that tells us we've lost some shared-inval messages and hence
* don't know what needs to be invalidated.
*/
static void
InvalidateSystemCaches(void)
{
int i;
ResetCatalogCaches();
RelationCacheInvalidate(); /* gets smgr cache too */
for (i = 0; i < cache_callback_count; i++)
{
struct CACHECALLBACK *ccitem = cache_callback_list + i;
(*ccitem->function) (ccitem->arg, InvalidOid);
}
}
/*
* This is identical to InvalidateSystemCache, for now, with exception that this is
* a public interface, mainly because we want to keep the old interface private.
* At some point in the future we may want to consolidate them, though.
*/
void
ResetSystemCaches(void)
{
InvalidateSystemCaches();
}
/*
* PrepareForTupleInvalidation
* Detect whether invalidation of this tuple implies invalidation
* of catalog/relation cache entries; if so, register inval events.
*/
static void
PrepareForTupleInvalidation(Relation relation, HeapTuple tuple, SysCacheInvalidateAction action)
{
Oid tupleRelId;
/* Do nothing during bootstrap */
if (IsBootstrapProcessingMode())
return;
/*
* We only need to worry about invalidation for tuples that are in system
* relations; user-relation tuples are never in catcaches and can't affect
* the relcache either.
*/
if (!IsSystemRelation(relation))
return;
/*
* TOAST tuples can likewise be ignored here. Note that TOAST tables are
* considered system relations so they are not filtered by the above test.
*/
if (IsToastRelation(relation))
return;
/*
* First let the catcache do its thing
*/
PrepareToInvalidateCacheTuple(relation, tuple, action,
RegisterCatcacheInvalidation);
/*
* Now, is this tuple one of the primary definers of a relcache entry?
*/
tupleRelId = RelationGetRelid(relation);
PrepareForRelcacheInvalidation(tupleRelId, tuple);
}
/*
* PrepareForRelcacheInvalidation
* Detect whether invalidation of this tuple implies invalidation
* of catalog/relation cache entries; if so, register inval events.
*/
static void
PrepareForRelcacheInvalidation(Oid relid, HeapTuple tuple)
{
Oid relationId = InvalidOid;
Oid databaseId = InvalidOid;
if (relid == RelationRelationId)
{
Form_pg_class classtup = (Form_pg_class) GETSTRUCT(tuple);
RelFileNode rnode;
relationId = HeapTupleGetOid(tuple);
if (classtup->relisshared)
databaseId = InvalidOid;
else
databaseId = MyDatabaseId;
/*
* We need to send out an smgr inval as well as a relcache inval. This
* is needed because other backends might possibly possess smgr cache
* but not relcache entries for the target relation.
*
* Note: during a pg_class row update that assigns a new relfilenode
* or reltablespace value, we will be called on both the old and new
* tuples, and thus will broadcast invalidation messages showing both
* the old and new RelFileNode values. This ensures that other
* backends will close smgr references to the old file.
*
* XXX possible future cleanup: it might be better to trigger smgr
* flushes explicitly, rather than indirectly from pg_class updates.
*/
if (classtup->reltablespace)
rnode.spcNode = classtup->reltablespace;
else if (relstorage_is_ao(classtup->relstorage))
rnode.spcNode = get_database_dts(databaseId);
else
rnode.spcNode = MyDatabaseTableSpace;
rnode.dbNode = databaseId;
rnode.relNode = classtup->relfilenode;
RegisterSmgrInvalidation(rnode);
}
else if (relid == AttributeRelationId)
{
Form_pg_attribute atttup = (Form_pg_attribute) GETSTRUCT(tuple);
relationId = atttup->attrelid;
/*
* KLUGE ALERT: we always send the relcache event with MyDatabaseId,
* even if the rel in question is shared (which we can't easily tell).
* This essentially means that only backends in this same database
* will react to the relcache flush request. This is in fact
* appropriate, since only those backends could see our pg_attribute
* change anyway. It looks a bit ugly though. (In practice, shared
* relations can't have schema changes after bootstrap, so we should
* never come here for a shared rel anyway.)
*/
databaseId = MyDatabaseId;
}
else if (relid == GpPolicyRelationId)
{
FormData_gp_policy *gptup = (FormData_gp_policy *) GETSTRUCT(tuple);
relationId = gptup->localoid;
databaseId = MyDatabaseId;
}
else if (relid == IndexRelationId)
{
Form_pg_index indextup = (Form_pg_index) GETSTRUCT(tuple);
/*
* When a pg_index row is updated, we should send out a relcache inval
* for the index relation. As above, we don't know the shared status
* of the index, but in practice it doesn't matter since indexes of
* shared catalogs can't have such updates.
*/
relationId = indextup->indexrelid;
databaseId = MyDatabaseId;
}
else
return;
/*
* Yes. We need to register a relcache invalidation event.
*/
RegisterRelcacheInvalidation(databaseId, relationId);
}
/* ----------------------------------------------------------------
* public functions
* ----------------------------------------------------------------
*/
/*
* AcceptInvalidationMessages
* Read and process invalidation messages from the shared invalidation
* message queue.
*
* Note:
* This should be called as the first step in processing a transaction.
*/
void
AcceptInvalidationMessages(void)
{
ReceiveSharedInvalidMessages(LocalExecuteInvalidationMessage,
InvalidateSystemCaches);
Assert(SysCacheFlushForce_IsValid(gp_test_system_cache_flush_force));
#ifdef USE_TEST_UTILS
/*
* Test code to force cache flushes anytime a flush could happen.
*
* If used with CLOBBER_FREED_MEMORY, gp_test_system_cache_flush_force provides
* a fairly thorough test that the system contains no cache-flush hazards.
* However, it also makes the system unbelievably slow --- the regression
* tests take about 100 times longer than normal.
*
* gp_test_system_cache_flush_force_recursive slows things by
* at least a factor of 10000, so I wouldn't suggest
* trying to run the entire regression tests that way. It's useful to try
* a few simple tests, to make sure that cache reload isn't subject to
* internal cache-flush hazards, but after you've done a few thousand
* recursive reloads it's unlikely you'll learn more.
*/
if (SysCacheFlushForce_Recursive == gp_test_system_cache_flush_force)
{
/* potentially recursive cache invalidation */
InvalidateSystemCaches();
}
else
{
static bool in_recursion = false;
if (!in_recursion)
{
bool invalidate = (SysCacheFlushForce_NonRecursive == gp_test_system_cache_flush_force);
if (!invalidate &&
gp_simex_init &&
gp_simex_run &&
gp_simex_class == SimExESClass_CacheInvalidation)
{
/*
* Same basic idea as above, except using the SimEx facility, the main
* advantage of this approach is that it only triggers the invalidation
* once per unique call stack, which should make testing significantly
* faster.
*/
invalidate = (SimExESSubClass_CacheInvalidation == SimEx_CheckInject());
}
if (invalidate)
{
/* avoid recursive cache invalidation */
in_recursion = true;
InvalidateSystemCaches();
in_recursion = false;
}
}
}
#endif
}
/*
* AtStart_Inval
* Initialize inval lists at start of a main transaction.
*/
void
AtStart_Inval(void)
{
Assert(transInvalInfo == NULL);
transInvalInfo = (TransInvalidationInfo *)
MemoryContextAllocZero(TopTransactionContext,
sizeof(TransInvalidationInfo));
transInvalInfo->my_level = GetCurrentTransactionNestLevel();
}
/*
* AtPrepare_Inval
* Save the inval lists state at 2PC transaction prepare.
*
* In this phase we just generate 2PC records for all the pending invalidation
* work.
*/
void
AtPrepare_Inval(void)
{
/* Must be at top of stack */
Assert(transInvalInfo != NULL && transInvalInfo->parent == NULL);
/*
* Relcache init file invalidation requires processing both before and
* after we send the SI messages.
*/
if (transInvalInfo->RelcacheInitFileInval)
RegisterTwoPhaseRecord(TWOPHASE_RM_INVAL_ID, TWOPHASE_INFO_FILE_BEFORE,
NULL, 0);
AppendInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
&transInvalInfo->CurrentCmdInvalidMsgs);
ProcessInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
PersistInvalidationMessage);
if (transInvalInfo->RelcacheInitFileInval)
RegisterTwoPhaseRecord(TWOPHASE_RM_INVAL_ID, TWOPHASE_INFO_FILE_AFTER,
NULL, 0);
}
/*
* PostPrepare_Inval
* Clean up after successful PREPARE.
*
* Here, we want to act as though the transaction aborted, so that we will
* undo any syscache changes it made, thereby bringing us into sync with the
* outside world, which doesn't believe the transaction committed yet.
*
* If the prepared transaction is later aborted, there is nothing more to
* do; if it commits, we will receive the consequent inval messages just
* like everyone else.
*/
void
PostPrepare_Inval(void)
{
AtEOXact_Inval(false);
}
/*
* AtSubStart_Inval
* Initialize inval lists at start of a subtransaction.
*/
void
AtSubStart_Inval(void)
{
TransInvalidationInfo *myInfo;
Assert(transInvalInfo != NULL);
myInfo = (TransInvalidationInfo *)
MemoryContextAllocZero(TopTransactionContext,
sizeof(TransInvalidationInfo));
myInfo->parent = transInvalInfo;
myInfo->my_level = GetCurrentTransactionNestLevel();
transInvalInfo = myInfo;
}
/*
* PersistInvalidationMessage
* Write an invalidation message to the 2PC state file.
*/
static void
PersistInvalidationMessage(SharedInvalidationMessage *msg)
{
RegisterTwoPhaseRecord(TWOPHASE_RM_INVAL_ID, TWOPHASE_INFO_MSG,
msg, sizeof(SharedInvalidationMessage));
}
/*
* inval_twophase_postcommit
* Process an invalidation message from the 2PC state file.
*/
void
inval_twophase_postcommit(TransactionId xid, uint16 info,
void *recdata, uint32 len)
{
SharedInvalidationMessage *msg;
switch (info)
{
case TWOPHASE_INFO_MSG:
msg = (SharedInvalidationMessage *) recdata;
Assert(len == sizeof(SharedInvalidationMessage));
SendSharedInvalidMessages(msg, 1);
break;
case TWOPHASE_INFO_FILE_BEFORE:
RelationCacheInitFileInvalidate(true);
break;
case TWOPHASE_INFO_FILE_AFTER:
RelationCacheInitFileInvalidate(false);
break;
default:
Assert(false);
break;
}
}
/*
* AtEOXact_Inval
* Process queued-up invalidation messages at end of main transaction.
*
* If isCommit, we must send out the messages in our PriorCmdInvalidMsgs list
* to the shared invalidation message queue. Note that these will be read
* not only by other backends, but also by our own backend at the next
* transaction start (via AcceptInvalidationMessages). This means that
* we can skip immediate local processing of anything that's still in
* CurrentCmdInvalidMsgs, and just send that list out too.
*
* If not isCommit, we are aborting, and must locally process the messages
* in PriorCmdInvalidMsgs. No messages need be sent to other backends,
* since they'll not have seen our changed tuples anyway. We can forget
* about CurrentCmdInvalidMsgs too, since those changes haven't touched
* the caches yet.
*
* In any case, reset the various lists to empty. We need not physically
* free memory here, since TopTransactionContext is about to be emptied
* anyway.
*
* Note:
* This should be called as the last step in processing a transaction.
*/
void
AtEOXact_Inval(bool isCommit)
{
if (isCommit)
{
/* Must be at top of stack */
Assert(transInvalInfo != NULL && transInvalInfo->parent == NULL);
/*
* Relcache init file invalidation requires processing both before and
* after we send the SI messages. However, we need not do anything
* unless we committed.
*/
if (transInvalInfo->RelcacheInitFileInval)
RelationCacheInitFileInvalidate(true);
AppendInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
&transInvalInfo->CurrentCmdInvalidMsgs);
ProcessInvalidationMessageMulti(&transInvalInfo->PriorCmdInvalidMsgs,
SendSharedInvalidMessages);
if (transInvalInfo->RelcacheInitFileInval)
{
RelationCacheInitFileInvalidate(false);
}
}
else if (transInvalInfo != NULL)
{
/* Must be at top of stack */
Assert(transInvalInfo->parent == NULL);
ProcessInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
LocalExecuteInvalidationMessage);
}
transInvalInfo = NULL;
}
/*
* AtEOSubXact_Inval
* Process queued-up invalidation messages at end of subtransaction.
*
* If isCommit, process CurrentCmdInvalidMsgs if any (there probably aren't),
* and then attach both CurrentCmdInvalidMsgs and PriorCmdInvalidMsgs to the
* parent's PriorCmdInvalidMsgs list.
*
* If not isCommit, we are aborting, and must locally process the messages
* in PriorCmdInvalidMsgs. No messages need be sent to other backends.
* We can forget about CurrentCmdInvalidMsgs too, since those changes haven't
* touched the caches yet.
*
* In any case, pop the transaction stack. We need not physically free memory
* here, since CurTransactionContext is about to be emptied anyway
* (if aborting). Beware of the possibility of aborting the same nesting
* level twice, though.
*/
void
AtEOSubXact_Inval(bool isCommit)
{
int my_level = GetCurrentTransactionNestLevel();
TransInvalidationInfo *myInfo = transInvalInfo;
if (isCommit)
{
/* Must be at non-top of stack */
Assert(myInfo != NULL && myInfo->parent != NULL);
Assert(myInfo->my_level == my_level);
/* If CurrentCmdInvalidMsgs still has anything, fix it */
CommandEndInvalidationMessages();
/* Pass up my inval messages to parent */
AppendInvalidationMessages(&myInfo->parent->PriorCmdInvalidMsgs,
&myInfo->PriorCmdInvalidMsgs);
/* Pending relcache inval becomes parent's problem too */
if (myInfo->RelcacheInitFileInval)
myInfo->parent->RelcacheInitFileInval = true;
/* Pop the transaction state stack */
transInvalInfo = myInfo->parent;
/* Need not free anything else explicitly */
pfree(myInfo);
}
else if (myInfo != NULL && myInfo->my_level == my_level)
{
/* Must be at non-top of stack */
Assert(myInfo->parent != NULL);
ProcessInvalidationMessages(&myInfo->PriorCmdInvalidMsgs,
LocalExecuteInvalidationMessage);
/* Pop the transaction state stack */
transInvalInfo = myInfo->parent;
/* Need not free anything else explicitly */
pfree(myInfo);
}
}
/*
* CommandEndInvalidationMessages
* Process queued-up invalidation messages at end of one command
* in a transaction.
*
* Here, we send no messages to the shared queue, since we don't know yet if
* we will commit. We do need to locally process the CurrentCmdInvalidMsgs
* list, so as to flush our caches of any entries we have outdated in the
* current command. We then move the current-cmd list over to become part
* of the prior-cmds list.
*
* Note:
* This should be called during CommandCounterIncrement(),
* after we have advanced the command ID.
*/
void
CommandEndInvalidationMessages(void)
{
/*
* You might think this shouldn't be called outside any transaction, but
* bootstrap does it, and also ABORT issued when not in a transaction. So
* just quietly return if no state to work on.
*/
if (transInvalInfo == NULL)
return;
ProcessInvalidationMessages(&transInvalInfo->CurrentCmdInvalidMsgs,
LocalExecuteInvalidationMessage);
AppendInvalidationMessages(&transInvalInfo->PriorCmdInvalidMsgs,
&transInvalInfo->CurrentCmdInvalidMsgs);
}
/*
* CacheInvalidateHeapTuple
* Register the given tuple for invalidation at end of command
* (ie, current command is creating or outdating this tuple).
*/
void
CacheInvalidateHeapTuple(Relation relation, HeapTuple tuple, SysCacheInvalidateAction action)
{
PrepareForTupleInvalidation(relation, tuple, action);
}
/*
* CacheInvalidateRelcache
* Register invalidation of the specified relation's relcache entry
* at end of command.
*
* This is used in places that need to force relcache rebuild but aren't
* changing any of the tuples recognized as contributors to the relcache
* entry by PrepareForTupleInvalidation. (An example is dropping an index.)
* We assume in particular that relfilenode/reltablespace aren't changing
* (so the rd_node value is still good).
*
* XXX most callers of this probably don't need to force an smgr flush.
*/
void
CacheInvalidateRelcache(Relation relation)
{
Oid databaseId;
Oid relationId;
relationId = RelationGetRelid(relation);
if (relation->rd_rel->relisshared)
databaseId = InvalidOid;
else
databaseId = MyDatabaseId;
RegisterRelcacheInvalidation(databaseId, relationId);
RegisterSmgrInvalidation(relation->rd_node);
}
/*
* CacheInvalidateRelcacheByTuple
* As above, but relation is identified by passing its pg_class tuple.
*/
void
CacheInvalidateRelcacheByTuple(HeapTuple classTuple)
{
Form_pg_class classtup = (Form_pg_class) GETSTRUCT(classTuple);
Oid databaseId;
Oid relationId;
RelFileNode rnode;
relationId = HeapTupleGetOid(classTuple);
if (classtup->relisshared)
databaseId = InvalidOid;
else
databaseId = MyDatabaseId;
if (classtup->reltablespace)
rnode.spcNode = classtup->reltablespace;
else if (relstorage_is_ao(classtup->relstorage))
rnode.spcNode = get_database_dts(databaseId);
else
rnode.spcNode = MyDatabaseTableSpace;
rnode.dbNode = databaseId;
rnode.relNode = classtup->relfilenode;
RegisterRelcacheInvalidation(databaseId, relationId);
RegisterSmgrInvalidation(rnode);
}
/*
* CacheInvalidateRelcacheByRelid
* As above, but relation is identified by passing its OID.
* This is the least efficient of the three options; use one of
* the above routines if you have a Relation or pg_class tuple.
*/
void
CacheInvalidateRelcacheByRelid(Oid relid)
{
HeapTuple tup;
tup = SearchSysCache(RELOID,
ObjectIdGetDatum(relid),
0, 0, 0);
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for relation %u", relid);
CacheInvalidateRelcacheByTuple(tup);
ReleaseSysCache(tup);
}
/*
* CacheRegisterSyscacheCallback
* Register the specified function to be called for all future
* invalidation events in the specified cache.
*
* NOTE: currently, the OID argument to the callback routine is not
* provided for syscache callbacks; the routine doesn't really get any
* useful info as to exactly what changed. It should treat every call
* as a "cache flush" request.
*/
void
CacheRegisterSyscacheCallback(int cacheid,
CacheCallbackFunction func,
Datum arg)
{
if (cache_callback_count >= MAX_CACHE_CALLBACKS)
elog(FATAL, "out of cache_callback_list slots");
cache_callback_list[cache_callback_count].id = cacheid;
cache_callback_list[cache_callback_count].function = func;
cache_callback_list[cache_callback_count].arg = arg;
++cache_callback_count;
}
/*
* CacheRegisterRelcacheCallback
* Register the specified function to be called for all future
* relcache invalidation events. The OID of the relation being
* invalidated will be passed to the function.
*
* NOTE: InvalidOid will be passed if a cache reset request is received.
* In this case the called routines should flush all cached state.
*/
void
CacheRegisterRelcacheCallback(CacheCallbackFunction func,
Datum arg)
{
if (cache_callback_count >= MAX_CACHE_CALLBACKS)
elog(FATAL, "out of cache_callback_list slots");
cache_callback_list[cache_callback_count].id = SHAREDINVALRELCACHE_ID;
cache_callback_list[cache_callback_count].function = func;
cache_callback_list[cache_callback_count].arg = arg;
++cache_callback_count;
}