blob: ae8a3ebc359a360c2a61618e8b497b0cd4ddee5f [file] [log] [blame]
/*-------------------------------------------------------------------------
*
* parse_coerce.c
* handle type coercions/conversions for parser
*
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/parser/parse_coerce.c,v 2.146 2006/11/28 12:54:41 petere Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/catquery.h"
#include "catalog/pg_cast.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "parser/parsetree.h" /* get_tle_by_resno */
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_func.h"
#include "parser/parse_relation.h"
#include "parser/parse_type.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
#include "nodes/print.h"
static Node *coerce_type_typmod(Node *node,
Oid targetTypeId, int32 targetTypMod,
CoercionForm cformat, bool isExplicit,
bool hideInputCoercion);
static void hide_coercion_node(Node *node);
static Node *build_coercion_expression(Node *node, Oid funcId,
Oid targetTypeId, int32 targetTypMod,
CoercionForm cformat, bool isExplicit);
static Node *coerce_record_to_complex(ParseState *pstate, Node *node,
Oid targetTypeId,
CoercionContext ccontext,
CoercionForm cformat);
static Var *coerce_unknown_var(ParseState *pstate, Var *var,
Oid targetTypeId, int32 targetTypeMod,
CoercionContext ccontext, CoercionForm cformat,
int levelsup);
/*
* coerce_to_target_type()
* Convert an expression to a target type and typmod.
*
* This is the general-purpose entry point for arbitrary type coercion
* operations. Direct use of the component operations can_coerce_type,
* coerce_type, and coerce_type_typmod should be restricted to special
* cases (eg, when the conversion is expected to succeed).
*
* Returns the possibly-transformed expression tree, or NULL if the type
* conversion is not possible. (We do this, rather than ereport'ing directly,
* so that callers can generate custom error messages indicating context.)
*
* pstate - parse state (can be NULL, see coerce_type)
* expr - input expression tree (already transformed by transformExpr)
* exprtype - result type of expr
* targettype - desired result type
* targettypmod - desired result typmod
* ccontext, cformat - context indicators to control coercions
*/
Node *
coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype,
Oid targettype, int32 targettypmod,
CoercionContext ccontext,
CoercionForm cformat,
int location)
{
Node *result;
if (!can_coerce_type(1, &exprtype, &targettype, ccontext))
return NULL;
result = coerce_type(pstate, expr, exprtype,
targettype, targettypmod,
ccontext, cformat, location);
/*
* If the target is a fixed-length type, it may need a length coercion as
* well as a type coercion. If we find ourselves adding both, force the
* inner coercion node to implicit display form.
*/
result = coerce_type_typmod(result,
targettype, targettypmod,
cformat,
(cformat != COERCE_IMPLICIT_CAST),
(result != expr && !IsA(result, Const)
&& !IsA(result, Var)));
return result;
}
/*
* coerce_type()
* Convert an expression to a different type.
*
* The caller should already have determined that the coercion is possible;
* see can_coerce_type.
*
* Normally, no coercion to a typmod (length) is performed here. The caller
* must call coerce_type_typmod as well, if a typmod constraint is wanted.
* (But if the target type is a domain, it may internally contain a
* typmod constraint, which will be applied inside coerce_to_domain.)
* In some cases pg_cast specifies a type coercion function that also
* applies length conversion, and in those cases only, the result will
* already be properly coerced to the specified typmod.
*
* pstate is only used in the case that we are able to resolve the type of
* a previously UNKNOWN Param. It is okay to pass pstate = NULL if the
* caller does not want type information updated for Params.
*/
Node *
coerce_type(ParseState *pstate, Node *node,
Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod,
CoercionContext ccontext, CoercionForm cformat, int location)
{
Node *result;
Oid funcId;
if (targetTypeId == inputTypeId ||
node == NULL)
{
/* no conversion needed */
return node;
}
if (targetTypeId == ANYOID ||
targetTypeId == ANYELEMENTOID ||
(targetTypeId == ANYARRAYOID && inputTypeId != UNKNOWNOID))
{
/*
* Assume can_coerce_type verified that implicit coercion is okay.
*
* Note: by returning the unmodified node here, we are saying that
* it's OK to treat an UNKNOWN constant as a valid input for a
* function accepting ANY or ANYELEMENT. This should be all right,
* since an UNKNOWN value is still a perfectly valid Datum. However
* an UNKNOWN value is definitely *not* an array, and so we mustn't
* accept it for ANYARRAY. (Instead, we will call anyarray_in below,
* which will produce an error.)
*
* NB: we do NOT want a RelabelType here.
*/
/*
* BUG BUG
* JIRA MPP-3786
*
* Special handling for ANYARRAY type.
*/
if(targetTypeId == ANYARRAYOID && IsA(node, Const))
{
Const *con = (Const *) node;
Const *newcon = makeNode(Const);
Oid elemoid = get_element_type(inputTypeId);
if(elemoid == InvalidOid)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("Cannot convert non-Array type to ANYARRAY")));
memcpy(newcon, con, sizeof(Const));
newcon->consttype = ANYARRAYOID;
return (Node *) newcon;
}
return node;
}
if (inputTypeId == UNKNOWNOID && IsA(node, Const))
{
/*
* Input is a string constant with previously undetermined type. Apply
* the target type's typinput function to it to produce a constant of
* the target type.
*
* NOTE: this case cannot be folded together with the other
* constant-input case, since the typinput function does not
* necessarily behave the same as a type conversion function. For
* example, int4's typinput function will reject "1.2", whereas
* float-to-int type conversion will round to integer.
*
* XXX if the typinput function is not immutable, we really ought to
* postpone evaluation of the function call until runtime. But there
* is no way to represent a typinput function call as an expression
* tree, because C-string values are not Datums. (XXX This *is*
* possible as of 7.3, do we want to do it?)
*/
Const *con = (Const *) node;
Const *newcon = makeNode(Const);
Oid baseTypeId;
int32 baseTypeMod;
Type targetType;
/*
* If the target type is a domain, we want to call its base type's
* input routine, not domain_in(). This is to avoid premature failure
* when the domain applies a typmod: existing input routines follow
* implicit-coercion semantics for length checks, which is not always
* what we want here. The needed check will be applied properly
* inside coerce_to_domain().
*/
baseTypeMod = -1;
baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
targetType = typeidType(baseTypeId);
newcon->consttype = baseTypeId;
newcon->constlen = typeLen(targetType);
newcon->constbyval = typeByVal(targetType);
newcon->constisnull = con->constisnull;
/*
* We pass typmod -1 to the input routine, primarily because existing
* input routines follow implicit-coercion semantics for length
* checks, which is not always what we want here. Any length
* constraint will be applied later by our caller.
*
* We assume here that UNKNOWN's internal representation is the same
* as CSTRING.
*/
if (!con->constisnull)
newcon->constvalue = stringTypeDatum(targetType,
DatumGetCString(con->constvalue),
-1);
else
newcon->constvalue = stringTypeDatum(targetType, NULL, -1);
result = (Node *) newcon;
/* If target is a domain, apply constraints. */
if (baseTypeId != targetTypeId)
result = coerce_to_domain(result,
baseTypeId, baseTypeMod,
targetTypeId,
cformat, location, false, false);
ReleaseType(targetType);
return result;
}
if (inputTypeId == UNKNOWNOID && IsA(node, Param) &&
((Param *) node)->paramkind == PARAM_EXTERN &&
pstate != NULL && pstate->p_variableparams)
{
/*
* Input is a Param of previously undetermined type, and we want to
* update our knowledge of the Param's type. Find the topmost
* ParseState and update the state.
*/
Param *param = (Param *) node;
int paramno = param->paramid;
ParseState *toppstate;
toppstate = pstate;
while (toppstate->parentParseState != NULL)
toppstate = toppstate->parentParseState;
if (paramno <= 0 || /* shouldn't happen, but... */
paramno > toppstate->p_numparams)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_PARAMETER),
errmsg("there is no parameter $%d", paramno)));
if (toppstate->p_paramtypes[paramno - 1] == UNKNOWNOID)
{
/* We've successfully resolved the type */
toppstate->p_paramtypes[paramno - 1] = targetTypeId;
}
else if (toppstate->p_paramtypes[paramno - 1] == targetTypeId)
{
/* We previously resolved the type, and it matches */
}
else
{
/* Ooops */
ereport(ERROR,
(errcode(ERRCODE_AMBIGUOUS_PARAMETER),
errmsg("inconsistent types deduced for parameter $%d",
paramno),
errdetail("%s versus %s",
format_type_be(toppstate->p_paramtypes[paramno - 1]),
format_type_be(targetTypeId))));
}
param->paramtype = targetTypeId;
return (Node *) param;
}
if (pstate != NULL && inputTypeId == UNKNOWNOID && IsA(node, Var))
{
/*
* CDB: Var of type UNKNOWN probably comes from an untyped Const
* or Param in the targetlist of a range subquery. For a successful
* conversion we must coerce the underlying Const or Param to a
* proper type and remake the Var.
*/
int32 baseTypeMod = -1;
Oid baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
Var *fixvar = coerce_unknown_var(pstate, (Var *)node,
baseTypeId, baseTypeMod,
ccontext, cformat,
0);
node = (Node *)fixvar;
inputTypeId = fixvar->vartype;
if (targetTypeId == inputTypeId)
return node;
else
{
/*
* That didn't work, so, try and cast the unknown value to
* what ever the user wants. If it can't be done, they'll
* get an IO error later.
*/
Oid outfunc = InvalidOid;
bool outtypisvarlena = false;
Oid infunc = InvalidOid;
Oid intypioparam = InvalidOid;
FuncExpr *fe;
List *args = NIL;
getTypeOutputInfo(UNKNOWNOID, &outfunc, &outtypisvarlena);
getTypeInputInfo(targetTypeId, &infunc, &intypioparam);
Insist(OidIsValid(outfunc));
Insist(OidIsValid(infunc));
/* do unknownout(Var) */
fe = makeFuncExpr(outfunc, CSTRINGOID, list_make1(node), cformat);
/*
* Now pass the above as an argument to the input function of the
* type we're casting to
*/
args = list_make3(fe,
makeConst(OIDOID, -1, sizeof(Oid),
ObjectIdGetDatum(intypioparam),
false, true),
makeConst(INT4OID, -1, sizeof(int32),
Int32GetDatum(-1),
false, true));
fe = makeFuncExpr(infunc, targetTypeId, args, cformat);
return (Node *)fe;
}
}
if (find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
&funcId))
{
if (OidIsValid(funcId))
{
/*
* Generate an expression tree representing run-time application
* of the conversion function. If we are dealing with a domain
* target type, the conversion function will yield the base type,
* and we need to extract the correct typmod to use from the
* domain's typtypmod.
*/
Oid baseTypeId;
int32 baseTypeMod;
baseTypeMod = targetTypeMod;
baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod);
result = build_coercion_expression(node, funcId,
baseTypeId, baseTypeMod,
cformat,
(cformat != COERCE_IMPLICIT_CAST));
/*
* If domain, coerce to the domain type and relabel with domain
* type ID. We can skip the internal length-coercion step if the
* selected coercion function was a type-and-length coercion.
*/
if (targetTypeId != baseTypeId)
result = coerce_to_domain(result, baseTypeId, baseTypeMod,
targetTypeId,
cformat, location, true,
exprIsLengthCoercion(result,
NULL));
}
else
{
/*
* We don't need to do a physical conversion, but we do need to
* attach a RelabelType node so that the expression will be seen
* to have the intended type when inspected by higher-level code.
*
* Also, domains may have value restrictions beyond the base type
* that must be accounted for. If the destination is a domain
* then we won't need a RelabelType node.
*/
result = coerce_to_domain(node, InvalidOid, -1, targetTypeId,
cformat, location, false, false);
if (result == node)
{
/*
* XXX could we label result with exprTypmod(node) instead of
* default -1 typmod, to save a possible length-coercion
* later? Would work if both types have same interpretation of
* typmod, which is likely but not certain.
*/
result = (Node *) makeRelabelType((Expr *) result,
targetTypeId, -1,
cformat);
}
}
return result;
}
if (inputTypeId == RECORDOID &&
ISCOMPLEX(targetTypeId))
{
/* Coerce a RECORD to a specific complex type */
return coerce_record_to_complex(pstate, node, targetTypeId,
ccontext, cformat);
}
if (targetTypeId == RECORDOID &&
ISCOMPLEX(inputTypeId))
{
/* Coerce a specific complex type to RECORD */
/* NB: we do NOT want a RelabelType here */
return node;
}
if (typeInheritsFrom(inputTypeId, targetTypeId))
{
/*
* Input class type is a subclass of target, so generate an
* appropriate runtime conversion (removing unneeded columns and
* possibly rearranging the ones that are wanted).
*/
ConvertRowtypeExpr *r = makeNode(ConvertRowtypeExpr);
r->arg = (Expr *) node;
r->resulttype = targetTypeId;
r->convertformat = cformat;
return (Node *) r;
}
/* If we get here, caller blew it */
elog(ERROR, "failed to find conversion function from %s to %s",
format_type_be(inputTypeId), format_type_be(targetTypeId));
return NULL; /* keep compiler quiet */
}
/*
* coerce_unknown_var
*
* A Var of type UNKNOWN probably refers, directly or indirectly, to a
* Const or Param node of type UNKNOWN in the targetlist of a subquery.
* Coercing the Var to a proper type (such as TEXT) implies that the
* same must be done to the underlying Const or Param.
*
* Returns a new Var node; or if the type is still UNKNOWN, returns the
* given Var unchanged.
*
* When 'targettypeid' is UNKNOWNOID, this function returns a new Var if an
* already properly typed underlying expr is found; but returns the unchanged
* Var with no coercion if the Const or Param type is still UNKNOWN. In this
* case the targetTypeMod, ccontext, and cformat parameters are not used.
*
* 'levelsup' is an extra offset to interpret the Var's varlevelsup correctly.
* See also markTargetListOrigin() in parse_target.c.
*/
static Var *
coerce_unknown_var(ParseState *pstate, Var *var,
Oid targetTypeId, int32 targetTypeMod,
CoercionContext ccontext, CoercionForm cformat,
int levelsup)
{
RangeTblEntry *rte;
int netlevelsup = var->varlevelsup + levelsup;
Assert(IsA(var, Var));
/*
* If the parser isn't set up, we can't do anything here so just return the
* Var as is. This can happen if we call back into the parser from the
* planner (calls to addRangeTableEntryForJoin()).
*/
if (!PointerIsValid(pstate))
return var;
rte = GetRTEByRangeTablePosn(pstate, var->varno, netlevelsup);
switch (rte->rtekind)
{
/* Descend thru Join RTEs to a leaf RTE. */
case RTE_JOIN:
{
ListCell *cell;
Var *joinvar;
Assert(var->varattno > 0 &&
var->varattno <= list_length(rte->joinaliasvars));
/* Get referenced join result Var */
cell = list_nth_cell(rte->joinaliasvars, var->varattno - 1);
joinvar = (Var *)lfirst(cell);
/* If still untyped, try to replace it with a properly typed Var */
if (joinvar->vartype == UNKNOWNOID &&
targetTypeId != UNKNOWNOID)
{
joinvar = coerce_unknown_var(pstate, joinvar,
targetTypeId, targetTypeMod,
ccontext, cformat,
netlevelsup);
/* Substitute new Var into join result list. */
lfirst(cell) = joinvar;
}
/* Make a new Var for the caller */
if (joinvar->vartype != UNKNOWNOID)
{
var = (Var *)copyObject(var);
var->vartype = joinvar->vartype;
var->vartypmod = joinvar->vartypmod;
}
break;
}
/* Impose requested type on Const or Param in subquery's targetlist. */
case RTE_SUBQUERY:
{
TargetEntry *ste;
Node *targetexpr;
Oid exprtype;
/* Get referenced subquery result expr */
ste = get_tle_by_resno(rte->subquery->targetList, var->varattno);
Assert(ste && !ste->resjunk && ste->expr);
targetexpr = (Node *)ste->expr;
/* If still untyped, try to coerce it to the requested type. */
exprtype = exprType(targetexpr);
if (exprtype == UNKNOWNOID &&
targetTypeId != UNKNOWNOID)
{
ParseState *subpstate = make_parsestate(pstate);
subpstate->p_rtable = rte->subquery->rtable;
targetexpr = coerce_type(subpstate, targetexpr, exprtype,
targetTypeId, targetTypeMod,
ccontext, cformat, -1);
free_parsestate(&subpstate);
/* Substitute coerced expr into subquery's targetlist. */
ste->expr = (Expr *)targetexpr;
exprtype = exprType(targetexpr);
}
/* Make a new Var for the caller */
if (exprtype != UNKNOWNOID)
{
var = (Var *)copyObject(var);
var->vartype = exprtype;
var->vartypmod = exprTypmod(targetexpr);
}
break;
}
/* Return unchanged Var if leaf RTE is not a subquery. */
default:
break;
}
return var;
} /* coerce_unknown_var */
/*
* fixup_unknown_vars_in_exprlist / fixup_unknown_vars_in_targetlist
*
* A Var of type UNKNOWN could have been created as a reference to an
* untyped expression in the targetlist of a range subquery. Afterwards
* coerce_type() could have changed the underlying Const or Param node
* from UNKNOWN to some proper type. Here we try to update Var nodes
* in the given list to reflect recent knowledge of source column types.
*/
void
fixup_unknown_vars_in_exprlist(ParseState *pstate, List *exprlist)
{
ListCell *cell;
foreach(cell, exprlist)
{
if (IsA(lfirst(cell), Var) &&
((Var *)lfirst(cell))->vartype == UNKNOWNOID)
{
lfirst(cell) = coerce_unknown_var(pstate, (Var *)lfirst(cell),
UNKNOWNOID, -1,
COERCION_IMPLICIT, COERCE_DONTCARE,
0);
}
}
} /* fixup_unknown_vars_in_exprlist */
void
fixup_unknown_vars_in_targetlist(ParseState *pstate, List *targetlist)
{
ListCell *cell;
foreach(cell, targetlist)
{
TargetEntry *tle = (TargetEntry *)lfirst(cell);
Assert(IsA(tle, TargetEntry));
if (IsA(tle->expr, Var) &&
((Var *)tle->expr)->vartype == UNKNOWNOID)
{
tle->expr = (Expr *)coerce_unknown_var(pstate, (Var *)tle->expr,
UNKNOWNOID, -1,
COERCION_IMPLICIT, COERCE_DONTCARE,
0);
}
}
} /* fixup_unknown_vars_in_targetlist */
/*
* Fix up the unknown Vars in the subquery specified by rtr. The new
* types and typemods are given.
*/
static void
fixup_unknown_vars_in_RangeTblRef(ParseState *pstate, RangeTblRef *rtr,
List *colTypes, List *colTypmods)
{
ListCell *tle_lc, *type_lc, *typemod_lc;
int rti;
RangeTblEntry *rte;
Query *query;
List *old_rtable = pstate->p_rtable;
rti = rtr->rtindex;
rte = rt_fetch(rti, pstate->p_rtable);
query = rte->subquery;
pstate->p_rtable = query->rtable;
tle_lc = list_head(query->targetList);
forboth (type_lc, colTypes, typemod_lc, colTypmods)
{
TargetEntry *tle = (TargetEntry *)lfirst(tle_lc);
Oid colType = lfirst_oid(type_lc);
int32 colTypmod = lfirst_int(typemod_lc);
Assert(IsA(tle, TargetEntry) && tle->expr != NULL);
if (IsA(tle->expr, Var) &&
((Var *)tle->expr)->vartype == UNKNOWNOID)
{
tle->expr = (Expr *)coerce_unknown_var(pstate, (Var *)tle->expr,
colType, colTypmod,
COERCION_IMPLICIT, COERCE_DONTCARE,
0);
}
tle_lc = lnext(tle_lc);
}
pstate->p_rtable = old_rtable;
}
/*
* Fix up the unknown Vars in all subqueries in a SetOperationStmt.
*/
void
fixup_unknown_vars_in_setop(ParseState *pstate, SetOperationStmt *stmt)
{
if (stmt->rarg != NULL)
{
if (IsA(stmt->rarg, SetOperationStmt))
{
SetOperationStmt *new_stmt = (SetOperationStmt *)stmt->rarg;
new_stmt->colTypes = copyObject(stmt->colTypes);
new_stmt->colTypmods = copyObject(stmt->colTypmods);
fixup_unknown_vars_in_setop(pstate, new_stmt);
}
else if (IsA(stmt->rarg, RangeTblRef))
{
fixup_unknown_vars_in_RangeTblRef(pstate, (RangeTblRef *) (stmt->rarg),
stmt->colTypes, stmt->colTypmods);
}
else
Assert(0);
}
if (stmt->larg != NULL)
{
if (IsA(stmt->larg, SetOperationStmt))
{
SetOperationStmt *new_stmt = (SetOperationStmt *)stmt->larg;
new_stmt->colTypes = copyObject(stmt->colTypes);
new_stmt->colTypmods = copyObject(stmt->colTypmods);
fixup_unknown_vars_in_setop(pstate, new_stmt);
}
else if (IsA(stmt->larg, RangeTblRef))
{
fixup_unknown_vars_in_RangeTblRef(pstate, (RangeTblRef *) (stmt->larg),
stmt->colTypes, stmt->colTypmods);
}
else
Assert(0);
}
}
/*
* can_coerce_type()
* Can input_typeids be coerced to target_typeids?
*
* We must be told the context (CAST construct, assignment, implicit coercion)
* as this determines the set of available casts.
*/
bool
can_coerce_type(int nargs, Oid *input_typeids, Oid *target_typeids,
CoercionContext ccontext)
{
bool have_generics = false;
int i;
/* run through argument list... */
for (i = 0; i < nargs; i++)
{
Oid inputTypeId = input_typeids[i];
Oid targetTypeId = target_typeids[i];
Oid funcId;
/* no problem if same type */
if (inputTypeId == targetTypeId)
continue;
/*
* ANYTABLE is a special case that can occur when a function is
* called with a TableValue expression. A table value expression
* can only match a parameter to a function defined as a "anytable".
*
* Only allow ANYTABLE to match another ANYTABLE, anything else would
* be a mismatch of Table domain and Value domain expressions.
*
* Validation of ANYTABLE coercion is processed at a higher level
* that has more context related to the tupleDesc for the tables
* involved.
*/
if (targetTypeId == ANYTABLEOID || inputTypeId == ANYTABLEOID)
return false;
/* accept if target is ANY */
if (targetTypeId == ANYOID)
continue;
/* accept if target is ANYARRAY or ANYELEMENT, for now */
if (targetTypeId == ANYARRAYOID ||
targetTypeId == ANYELEMENTOID)
{
have_generics = true; /* do more checking later */
continue;
}
/*
* If input is an untyped string constant, assume we can convert it to
* anything.
*/
if (inputTypeId == UNKNOWNOID)
continue;
/*
* If pg_cast shows that we can coerce, accept. This test now covers
* both binary-compatible and coercion-function cases.
*/
if (find_coercion_pathway(targetTypeId, inputTypeId, ccontext,
&funcId))
continue;
/*
* If input is RECORD and target is a composite type, assume we can
* coerce (may need tighter checking here)
*/
if (inputTypeId == RECORDOID &&
ISCOMPLEX(targetTypeId))
continue;
/*
* If input is a composite type and target is RECORD, accept
*/
if (targetTypeId == RECORDOID &&
ISCOMPLEX(inputTypeId))
continue;
/*
* If input is a class type that inherits from target, accept
*/
if (typeInheritsFrom(inputTypeId, targetTypeId))
continue;
/*
* Else, cannot coerce at this argument position
*/
return false;
}
/* If we found any generic argument types, cross-check them */
if (have_generics)
{
if (!check_generic_type_consistency(input_typeids, target_typeids,
nargs))
return false;
}
return true;
}
/*
* Create an expression tree to represent coercion to a domain type.
*
* 'arg': input expression
* 'baseTypeId': base type of domain, if known (pass InvalidOid if caller
* has not bothered to look this up)
* 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller
* has not bothered to look this up)
* 'typeId': target type to coerce to
* 'cformat': coercion format
* 'hideInputCoercion': if true, hide the input coercion under this one.
* 'lengthCoercionDone': if true, caller already accounted for length,
* ie the input is already of baseTypMod as well as baseTypeId.
*
* If the target type isn't a domain, the given 'arg' is returned as-is.
*/
Node *
coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId,
CoercionForm cformat, int location, bool hideInputCoercion,
bool lengthCoercionDone)
{
CoerceToDomain *result;
/* Get the base type if it hasn't been supplied */
if (baseTypeId == InvalidOid)
baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod);
/* If it isn't a domain, return the node as it was passed in */
if (baseTypeId == typeId)
return arg;
/* Suppress display of nested coercion steps */
if (hideInputCoercion)
hide_coercion_node(arg);
/*
* If the domain applies a typmod to its base type, build the appropriate
* coercion step. Mark it implicit for display purposes, because we don't
* want it shown separately by ruleutils.c; but the isExplicit flag passed
* to the conversion function depends on the manner in which the domain
* coercion is invoked, so that the semantics of implicit and explicit
* coercion differ. (Is that really the behavior we want?)
*
* NOTE: because we apply this as part of the fixed expression structure,
* ALTER DOMAIN cannot alter the typtypmod. But it's unclear that that
* would be safe to do anyway, without lots of knowledge about what the
* base type thinks the typmod means.
*/
if (!lengthCoercionDone)
{
if (baseTypeMod >= 0)
arg = coerce_type_typmod(arg, baseTypeId, baseTypeMod,
COERCE_IMPLICIT_CAST,
(cformat != COERCE_IMPLICIT_CAST),
false);
}
/*
* Now build the domain coercion node. This represents run-time checking
* of any constraints currently attached to the domain. This also ensures
* that the expression is properly labeled as to result type.
*/
result = makeNode(CoerceToDomain);
result->arg = (Expr *) arg;
result->resulttype = typeId;
result->resulttypmod = -1; /* currently, always -1 for domains */
result->coercionformat = cformat;
return (Node *) result;
}
/*
* coerce_type_typmod()
* Force a value to a particular typmod, if meaningful and possible.
*
* This is applied to values that are going to be stored in a relation
* (where we have an atttypmod for the column) as well as values being
* explicitly CASTed (where the typmod comes from the target type spec).
*
* The caller must have already ensured that the value is of the correct
* type, typically by applying coerce_type.
*
* cformat determines the display properties of the generated node (if any),
* while isExplicit may affect semantics. If hideInputCoercion is true
* *and* we generate a node, the input node is forced to IMPLICIT display
* form, so that only the typmod coercion node will be visible when
* displaying the expression.
*
* NOTE: this does not need to work on domain types, because any typmod
* coercion for a domain is considered to be part of the type coercion
* needed to produce the domain value in the first place. So, no getBaseType.
*/
static Node *
coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod,
CoercionForm cformat, bool isExplicit,
bool hideInputCoercion)
{
Oid funcId;
/*
* A negative typmod is assumed to mean that no coercion is wanted. Also,
* skip coercion if already done.
*/
if (targetTypMod < 0 || targetTypMod == exprTypmod(node))
return node;
funcId = find_typmod_coercion_function(targetTypeId);
if (OidIsValid(funcId))
{
/* Suppress display of nested coercion steps */
if (hideInputCoercion)
hide_coercion_node(node);
node = build_coercion_expression(node, funcId,
targetTypeId, targetTypMod,
cformat, isExplicit);
}
return node;
}
/*
* Mark a coercion node as IMPLICIT so it will never be displayed by
* ruleutils.c. We use this when we generate a nest of coercion nodes
* to implement what is logically one conversion; the inner nodes are
* forced to IMPLICIT_CAST format. This does not change their semantics,
* only display behavior.
*
* It is caller error to call this on something that doesn't have a
* CoercionForm field.
*/
static void
hide_coercion_node(Node *node)
{
if (IsA(node, FuncExpr))
((FuncExpr *) node)->funcformat = COERCE_IMPLICIT_CAST;
else if (IsA(node, RelabelType))
((RelabelType *) node)->relabelformat = COERCE_IMPLICIT_CAST;
else if (IsA(node, ConvertRowtypeExpr))
((ConvertRowtypeExpr *) node)->convertformat = COERCE_IMPLICIT_CAST;
else if (IsA(node, RowExpr))
((RowExpr *) node)->row_format = COERCE_IMPLICIT_CAST;
else if (IsA(node, CoerceToDomain))
((CoerceToDomain *) node)->coercionformat = COERCE_IMPLICIT_CAST;
else
elog(ERROR, "unsupported node type: %d", (int) nodeTag(node));
}
/*
* build_coercion_expression()
* Construct a function-call expression for applying a pg_cast entry.
*
* This is used for both type-coercion and length-coercion functions,
* since there is no difference in terms of the calling convention.
*/
static Node *
build_coercion_expression(Node *node, Oid funcId,
Oid targetTypeId, int32 targetTypMod,
CoercionForm cformat, bool isExplicit)
{
HeapTuple tp;
Form_pg_proc procstruct;
int nargs;
List *args;
Const *cons;
cqContext *pcqCtx;
pcqCtx = caql_beginscan(
NULL,
cql("SELECT * FROM pg_proc "
" WHERE oid = :1 ",
ObjectIdGetDatum(funcId)));
tp = caql_getnext(pcqCtx);
if (!HeapTupleIsValid(tp))
elog(ERROR, "cache lookup failed for function %u", funcId);
procstruct = (Form_pg_proc) GETSTRUCT(tp);
/*
* Asserts essentially check that function is a legal coercion function.
* We can't make the seemingly obvious tests on prorettype and
* proargtypes[0], because of various binary-compatibility cases.
*/
/* Assert(targetTypeId == procstruct->prorettype); */
Assert(!procstruct->proretset);
Assert(!procstruct->proisagg);
nargs = procstruct->pronargs;
Assert(nargs >= 1 && nargs <= 3);
/* Assert(procstruct->proargtypes.values[0] == exprType(node)); */
Assert(nargs < 2 || procstruct->proargtypes.values[1] == INT4OID);
Assert(nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID);
caql_endscan(pcqCtx);
args = list_make1(node);
if (nargs >= 2)
{
/* Pass target typmod as an int4 constant */
cons = makeConst(INT4OID,
-1,
sizeof(int32),
Int32GetDatum(targetTypMod),
false,
true);
args = lappend(args, cons);
}
if (nargs == 3)
{
/* Pass it a boolean isExplicit parameter, too */
cons = makeConst(BOOLOID,
-1,
sizeof(bool),
BoolGetDatum(isExplicit),
false,
true);
args = lappend(args, cons);
}
return (Node *) makeFuncExpr(funcId, targetTypeId, args, cformat);
}
/*
* coerce_record_to_complex
* Coerce a RECORD to a specific composite type.
*
* Currently we only support this for inputs that are RowExprs or whole-row
* Vars.
*/
static Node *
coerce_record_to_complex(ParseState *pstate, Node *node,
Oid targetTypeId,
CoercionContext ccontext,
CoercionForm cformat)
{
RowExpr *rowexpr;
TupleDesc tupdesc;
List *args = NIL;
List *newargs;
int i;
int ucolno;
ListCell *arg;
if (node && IsA(node, RowExpr))
{
/*
* Since the RowExpr must be of type RECORD, we needn't worry about it
* containing any dropped columns.
*/
args = ((RowExpr *) node)->args;
}
else if (node && IsA(node, Var) &&
((Var *) node)->varattno == InvalidAttrNumber)
{
int rtindex = ((Var *) node)->varno;
int sublevels_up = ((Var *) node)->varlevelsup;
RangeTblEntry *rte;
rte = GetRTEByRangeTablePosn(pstate, rtindex, sublevels_up);
expandRTE(rte, rtindex, sublevels_up, -1, false,
NULL, &args);
}
else
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s",
format_type_be(RECORDOID),
format_type_be(targetTypeId))));
tupdesc = lookup_rowtype_tupdesc(targetTypeId, -1);
newargs = NIL;
ucolno = 1;
arg = list_head(args);
for (i = 0; i < tupdesc->natts; i++)
{
Node *expr;
Oid exprtype;
/* Fill in NULLs for dropped columns in rowtype */
if (tupdesc->attrs[i]->attisdropped)
{
/*
* can't use atttypid here, but it doesn't really matter what type
* the Const claims to be.
*/
newargs = lappend(newargs, makeNullConst(INT4OID, -1));
continue;
}
if (arg == NULL)
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s",
format_type_be(RECORDOID),
format_type_be(targetTypeId)),
errdetail("Input has too few columns.")));
expr = (Node *) lfirst(arg);
exprtype = exprType(expr);
expr = coerce_to_target_type(pstate,
expr, exprtype,
tupdesc->attrs[i]->atttypid,
tupdesc->attrs[i]->atttypmod,
ccontext,
COERCE_IMPLICIT_CAST,
-1);
if (expr == NULL)
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s",
format_type_be(RECORDOID),
format_type_be(targetTypeId)),
errdetail("Cannot cast type %s to %s in column %d.",
format_type_be(exprtype),
format_type_be(tupdesc->attrs[i]->atttypid),
ucolno)));
newargs = lappend(newargs, expr);
ucolno++;
arg = lnext(arg);
}
if (arg != NULL)
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
errmsg("cannot cast type %s to %s",
format_type_be(RECORDOID),
format_type_be(targetTypeId)),
errdetail("Input has too many columns.")));
ReleaseTupleDesc(tupdesc);
rowexpr = makeNode(RowExpr);
rowexpr->args = newargs;
rowexpr->row_typeid = targetTypeId;
rowexpr->row_format = cformat;
return (Node *) rowexpr;
}
/*
* coerce_to_boolean()
* Coerce an argument of a construct that requires boolean input
* (AND, OR, NOT, etc). Also check that input is not a set.
*
* Returns the possibly-transformed node tree.
*
* As with coerce_type, pstate may be NULL if no special unknown-Param
* processing is wanted.
*/
Node *
coerce_to_boolean(ParseState *pstate, Node *node,
const char *constructName)
{
Oid inputTypeId = exprType(node);
if (inputTypeId != BOOLOID)
{
node = coerce_to_target_type(pstate, node, inputTypeId,
BOOLOID, -1,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST,
-1);
if (node == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: first %s is name of a SQL construct, eg WHERE */
errmsg("argument of %s must be type boolean, not type %s",
constructName, format_type_be(inputTypeId))));
}
if (expression_returns_set(node))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: %s is name of a SQL construct, eg WHERE */
errmsg("argument of %s must not return a set",
constructName)));
return node;
}
/*
* coerce_to_integer()
* Coerce an argument of a construct that requires integer input.
* Also check that input is not a set.
*
* Returns the possibly-transformed node tree.
*
* As with coerce_type, pstate may be NULL if no special unknown-Param
* processing is wanted.
*/
Node *
coerce_to_integer(ParseState *pstate, Node *node,
const char *constructName)
{
Oid inputTypeId = exprType(node);
if (inputTypeId != INT4OID)
{
node = coerce_to_target_type(pstate, node, inputTypeId,
INT4OID, -1,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST,
-1);
if (node == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: first %s is name of a SQL construct, eg LIMIT */
errmsg("argument of %s must be type integer, not type %s",
constructName, format_type_be(inputTypeId))));
}
if (expression_returns_set(node))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: %s is name of a SQL construct, eg LIMIT */
errmsg("argument of %s must not return a set",
constructName)));
return node;
}
/*
* coerce_to_bigint()
* Coerce an argument of a construct that requires int8 input.
* Also check that input is not a set.
*
* Returns the possibly-transformed node tree.
*
* As with coerce_type, pstate may be NULL if no special unknown-Param
* processing is wanted.
*/
Node *
coerce_to_bigint(ParseState *pstate, Node *node,
const char *constructName)
{
Oid inputTypeId = exprType(node);
if (inputTypeId != INT8OID)
{
node = coerce_to_target_type(pstate, node, inputTypeId,
INT8OID, -1,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST,
-1);
if (node == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: first %s is name of a SQL construct, eg LIMIT */
errmsg("argument of %s must be type bigint, not type %s",
constructName, format_type_be(inputTypeId))));
}
if (expression_returns_set(node))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/* translator: %s is name of a SQL construct, eg LIMIT */
errmsg("argument of %s must not return a set",
constructName)));
return node;
}
/* select_common_type()
* Determine the common supertype of a list of input expression types.
* This is used for determining the output type of CASE and UNION
* constructs.
*
* typeids is a nonempty list of type OIDs. Note that earlier items
* in the list will be preferred if there is doubt.
* 'context' is a phrase to use in the error message if we fail to select
* a usable type. Pass NULL to have the routine return InvalidOid
* rather than throwing an error on failure.
*/
Oid
select_common_type(List *typeids, const char *context)
{
Oid ptype;
CATEGORY pcategory;
ListCell *type_item;
Assert(typeids != NIL);
ptype = getBaseType(linitial_oid(typeids));
pcategory = TypeCategory(ptype);
for_each_cell(type_item, lnext(list_head(typeids)))
{
Oid ntype = getBaseType(lfirst_oid(type_item));
/* move on to next one if no new information... */
if ((ntype != InvalidOid) && (ntype != UNKNOWNOID) && (ntype != ptype))
{
if ((ptype == InvalidOid) || ptype == UNKNOWNOID)
{
/* so far, only nulls so take anything... */
ptype = ntype;
pcategory = TypeCategory(ptype);
}
else if (TypeCategory(ntype) != pcategory)
{
/*
* both types in different categories? then not much hope...
*/
if (context == NULL)
return InvalidOid;
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
/*------
translator: first %s is name of a SQL construct, eg CASE */
errmsg("%s types %s and %s cannot be matched",
context,
format_type_be(ptype),
format_type_be(ntype))));
}
else if (!IsPreferredType(pcategory, ptype) &&
can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) &&
!can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT))
{
/*
* take new type if can coerce to it implicitly but not the
* other way; but if we have a preferred type, stay on it.
*/
ptype = ntype;
pcategory = TypeCategory(ptype);
}
}
}
/*
* If all the inputs were UNKNOWN type --- ie, unknown-type literals ---
* then resolve as type TEXT. This situation comes up with constructs
* like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo'
* UNION SELECT 'bar'; It might seem desirable to leave the construct's
* output type as UNKNOWN, but that really doesn't work, because we'd
* probably end up needing a runtime coercion from UNKNOWN to something
* else, and we usually won't have it. We need to coerce the unknown
* literals while they are still literals, so a decision has to be made
* now.
*/
if (ptype == UNKNOWNOID)
ptype = TEXTOID;
return ptype;
}
/* coerce_to_common_type()
* Coerce an expression to the given type.
*
* This is used following select_common_type() to coerce the individual
* expressions to the desired type. 'context' is a phrase to use in the
* error message if we fail to coerce.
*
* As with coerce_type, pstate may be NULL if no special unknown-Param
* processing is wanted.
*/
Node *
coerce_to_common_type(ParseState *pstate, Node *node,
Oid targetTypeId, const char *context)
{
Oid inputTypeId = exprType(node);
if (inputTypeId == targetTypeId)
return node; /* no work */
if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT))
node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1,
COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1);
else
ereport(ERROR,
(errcode(ERRCODE_CANNOT_COERCE),
/* translator: first %s is name of a SQL construct, eg CASE */
errmsg("%s could not convert type %s to %s",
context,
format_type_be(inputTypeId),
format_type_be(targetTypeId))));
return node;
}
/*
* check_generic_type_consistency()
* Are the actual arguments potentially compatible with a
* polymorphic function?
*
* The argument consistency rules are:
*
* 1) All arguments declared ANYARRAY must have matching datatypes,
* and must in fact be varlena arrays.
* 2) All arguments declared ANYELEMENT must have matching datatypes.
* 3) If there are arguments of both ANYELEMENT and ANYARRAY, make sure
* the actual ANYELEMENT datatype is in fact the element type for
* the actual ANYARRAY datatype.
*
* If we have UNKNOWN input (ie, an untyped literal) for any ANYELEMENT
* or ANYARRAY argument, assume it is okay.
*
* If an input is of type ANYARRAY (ie, we know it's an array, but not
* what element type), we will accept it as a match to an argument declared
* ANYARRAY, so long as we don't have to determine an element type ---
* that is, so long as there is no use of ANYELEMENT. This is mostly for
* backwards compatibility with the pre-7.4 behavior of ANYARRAY.
*
* We do not ereport here, but just return FALSE if a rule is violated.
*/
bool
check_generic_type_consistency(Oid *actual_arg_types,
Oid *declared_arg_types,
int nargs)
{
int j;
Oid elem_typeid = InvalidOid;
Oid array_typeid = InvalidOid;
Oid array_typelem;
bool have_anyelement = false;
/*
* Loop through the arguments to see if we have any that are ANYARRAY or
* ANYELEMENT. If so, require the actual types to be self-consistent
*/
for (j = 0; j < nargs; j++)
{
Oid actual_type = actual_arg_types[j];
if (declared_arg_types[j] == ANYELEMENTOID)
{
have_anyelement = true;
if (actual_type == UNKNOWNOID)
continue;
if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
return false;
elem_typeid = actual_type;
}
else if (declared_arg_types[j] == ANYARRAYOID)
{
if (actual_type == UNKNOWNOID)
continue;
if (OidIsValid(array_typeid) && actual_type != array_typeid)
return false;
array_typeid = actual_type;
}
}
/* Get the element type based on the array type, if we have one */
if (OidIsValid(array_typeid))
{
if (array_typeid == ANYARRAYOID)
{
/* Special case for ANYARRAY input: okay iff no ANYELEMENT */
if (have_anyelement)
return false;
return true;
}
array_typelem = get_element_type(array_typeid);
if (!OidIsValid(array_typelem))
return false; /* should be an array, but isn't */
if (!OidIsValid(elem_typeid))
{
/*
* if we don't have an element type yet, use the one we just got
*/
elem_typeid = array_typelem;
}
else if (array_typelem != elem_typeid)
{
/* otherwise, they better match */
return false;
}
}
/* Looks valid */
return true;
}
/*
* enforce_generic_type_consistency()
* Make sure a polymorphic function is legally callable, and
* deduce actual argument and result types.
*
* If ANYARRAY or ANYELEMENT is used for a function's arguments or
* return type, we make sure the actual data types are consistent with
* each other. The argument consistency rules are shown above for
* check_generic_type_consistency().
*
* If we have UNKNOWN input (ie, an untyped literal) for any ANYELEMENT
* or ANYARRAY argument, we attempt to deduce the actual type it should
* have. If successful, we alter that position of declared_arg_types[]
* so that make_fn_arguments will coerce the literal to the right thing.
*
* Rules are applied to the function's return type (possibly altering it)
* if it is declared ANYARRAY or ANYELEMENT:
*
* 1) If return type is ANYARRAY, and any argument is ANYARRAY, use the
* argument's actual type as the function's return type.
* 2) If return type is ANYARRAY, no argument is ANYARRAY, but any argument
* is ANYELEMENT, use the actual type of the argument to determine
* the function's return type, i.e. the element type's corresponding
* array type.
* 3) If return type is ANYARRAY, no argument is ANYARRAY or ANYELEMENT,
* generate an ERROR. This condition is prevented by CREATE FUNCTION
* and is therefore not expected here.
* 4) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the
* argument's actual type as the function's return type.
* 5) If return type is ANYELEMENT, no argument is ANYELEMENT, but any
* argument is ANYARRAY, use the actual type of the argument to determine
* the function's return type, i.e. the array type's corresponding
* element type.
* 6) If return type is ANYELEMENT, no argument is ANYARRAY or ANYELEMENT,
* generate an ERROR. This condition is prevented by CREATE FUNCTION
* and is therefore not expected here.
*/
Oid
enforce_generic_type_consistency(Oid *actual_arg_types,
Oid *declared_arg_types,
int nargs,
Oid rettype)
{
int j;
bool have_generics = false;
bool have_unknowns = false;
Oid elem_typeid = InvalidOid;
Oid array_typeid = InvalidOid;
Oid array_typelem;
bool have_anyelement = (rettype == ANYELEMENTOID);
/*
* Loop through the arguments to see if we have any that are ANYARRAY or
* ANYELEMENT. If so, require the actual types to be self-consistent
*/
for (j = 0; j < nargs; j++)
{
Oid actual_type = actual_arg_types[j];
if (declared_arg_types[j] == ANYELEMENTOID)
{
have_generics = have_anyelement = true;
if (actual_type == UNKNOWNOID)
{
have_unknowns = true;
continue;
}
if (OidIsValid(elem_typeid) && actual_type != elem_typeid)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("arguments declared \"anyelement\" are not all alike"),
errdetail("%s versus %s",
format_type_be(elem_typeid),
format_type_be(actual_type))));
elem_typeid = actual_type;
}
else if (declared_arg_types[j] == ANYARRAYOID)
{
have_generics = true;
if (actual_type == UNKNOWNOID)
{
have_unknowns = true;
continue;
}
if (OidIsValid(array_typeid) && actual_type != array_typeid)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("arguments declared \"anyarray\" are not all alike"),
errdetail("%s versus %s",
format_type_be(array_typeid),
format_type_be(actual_type))));
array_typeid = actual_type;
}
}
/*
* Fast Track: if none of the arguments are ANYARRAY or ANYELEMENT, return
* the unmodified rettype.
*/
if (!have_generics)
return rettype;
/* Get the element type based on the array type, if we have one */
if (OidIsValid(array_typeid))
{
if (array_typeid == ANYARRAYOID && !have_anyelement)
{
/* Special case for ANYARRAY input: okay iff no ANYELEMENT */
array_typelem = InvalidOid;
}
else
{
array_typelem = get_element_type(array_typeid);
if (!OidIsValid(array_typelem))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyarray\" is not an array but type %s",
format_type_be(array_typeid))));
}
if (!OidIsValid(elem_typeid))
{
/*
* if we don't have an element type yet, use the one we just got
*/
elem_typeid = array_typelem;
}
else if (array_typelem != elem_typeid)
{
/* otherwise, they better match */
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyarray\" is not consistent with argument declared \"anyelement\""),
errdetail("%s versus %s",
format_type_be(array_typeid),
format_type_be(elem_typeid)),
errOmitLocation(true)));
}
}
else if (!OidIsValid(elem_typeid))
{
/* Only way to get here is if all the generic args are UNKNOWN */
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("could not determine anyarray/anyelement type because input has type \"unknown\""),
errOmitLocation(true)));
}
/*
* If we had any unknown inputs, re-scan to assign correct types
*/
if (have_unknowns)
{
for (j = 0; j < nargs; j++)
{
Oid actual_type = actual_arg_types[j];
if (actual_type != UNKNOWNOID)
continue;
if (declared_arg_types[j] == ANYELEMENTOID)
declared_arg_types[j] = elem_typeid;
else if (declared_arg_types[j] == ANYARRAYOID)
{
if (!OidIsValid(array_typeid))
{
array_typeid = get_array_type(elem_typeid);
if (!OidIsValid(array_typeid))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find array type for data type %s",
format_type_be(elem_typeid))));
}
declared_arg_types[j] = array_typeid;
}
}
}
/* if we return ANYARRAYOID use the appropriate argument type */
if (rettype == ANYARRAYOID)
{
if (!OidIsValid(array_typeid))
{
array_typeid = get_array_type(elem_typeid);
if (!OidIsValid(array_typeid))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find array type for data type %s",
format_type_be(elem_typeid))));
}
return array_typeid;
}
/* if we return ANYELEMENTOID use the appropriate argument type */
if (rettype == ANYELEMENTOID)
return elem_typeid;
/* we don't return a generic type; send back the original return type */
return rettype;
}
/*
* resolve_generic_type()
* Deduce an individual actual datatype on the assumption that
* the rules for ANYARRAY/ANYELEMENT are being followed.
*
* declared_type is the declared datatype we want to resolve.
* context_actual_type is the actual input datatype to some argument
* that has declared datatype context_declared_type.
*
* If declared_type isn't polymorphic, we just return it. Otherwise,
* context_declared_type must be polymorphic, and we deduce the correct
* return type based on the relationship of the two polymorphic types.
*/
Oid
resolve_generic_type(Oid declared_type,
Oid context_actual_type,
Oid context_declared_type)
{
if (declared_type == ANYARRAYOID)
{
if (context_declared_type == ANYARRAYOID)
{
/* Use actual type, but it must be an array */
Oid array_typelem = get_element_type(context_actual_type);
if (!OidIsValid(array_typelem))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyarray\" is not an array but type %s",
format_type_be(context_actual_type))));
return context_actual_type;
}
else if (context_declared_type == ANYELEMENTOID)
{
/* Use the array type corresponding to actual type */
Oid array_typeid = get_array_type(context_actual_type);
if (!OidIsValid(array_typeid))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("could not find array type for data type %s",
format_type_be(context_actual_type))));
return array_typeid;
}
}
else if (declared_type == ANYELEMENTOID)
{
if (context_declared_type == ANYARRAYOID)
{
/* Use the element type corresponding to actual type */
Oid array_typelem = get_element_type(context_actual_type);
if (!OidIsValid(array_typelem))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("argument declared \"anyarray\" is not an array but type %s",
format_type_be(context_actual_type))));
return array_typelem;
}
else if (context_declared_type == ANYELEMENTOID)
{
/* Use the actual type; it doesn't matter if array or not */
return context_actual_type;
}
}
else
{
/* declared_type isn't polymorphic, so return it as-is */
return declared_type;
}
/* If we get here, declared_type is polymorphic and context isn't */
/* NB: this is a calling-code logic error, not a user error */
elog(ERROR, "could not determine ANYARRAY/ANYELEMENT type because context isn't polymorphic");
return InvalidOid; /* keep compiler quiet */
}
/* TypeCategory()
* Assign a category to the specified type OID.
*
* NB: this must not return INVALID_TYPE.
*
* XXX This should be moved to system catalog lookups
* to allow for better type extensibility.
* - thomas 2001-09-30
*/
CATEGORY
TypeCategory(Oid inType)
{
CATEGORY result;
switch (inType)
{
case (BOOLOID):
result = BOOLEAN_TYPE;
break;
case (CHAROID):
case (NAMEOID):
case (BPCHAROID):
case (VARCHAROID):
case (TEXTOID):
result = STRING_TYPE;
break;
case (BITOID):
case (VARBITOID):
result = BITSTRING_TYPE;
break;
case (OIDOID):
case (REGPROCOID):
case (REGPROCEDUREOID):
case (REGOPEROID):
case (REGOPERATOROID):
case (REGCLASSOID):
case (REGTYPEOID):
case (INT2OID):
case (INT4OID):
case (INT8OID):
case (FLOAT4OID):
case (FLOAT8OID):
case (NUMERICOID):
case (CASHOID):
result = NUMERIC_TYPE;
break;
case (DATEOID):
case (TIMEOID):
case (TIMETZOID):
case (ABSTIMEOID):
case (TIMESTAMPOID):
case (TIMESTAMPTZOID):
result = DATETIME_TYPE;
break;
case (RELTIMEOID):
case (TINTERVALOID):
case (INTERVALOID):
result = TIMESPAN_TYPE;
break;
case (POINTOID):
case (LSEGOID):
case (PATHOID):
case (BOXOID):
case (POLYGONOID):
case (LINEOID):
case (CIRCLEOID):
result = GEOMETRIC_TYPE;
break;
case (INETOID):
case (CIDROID):
result = NETWORK_TYPE;
break;
case (UNKNOWNOID):
case (InvalidOid):
result = UNKNOWN_TYPE;
break;
case (RECORDOID):
case (CSTRINGOID):
case (ANYOID):
case (ANYARRAYOID):
case (VOIDOID):
case (TRIGGEROID):
case (LANGUAGE_HANDLEROID):
case (INTERNALOID):
case (OPAQUEOID):
case (ANYELEMENTOID):
result = GENERIC_TYPE;
break;
default:
result = USER_TYPE;
break;
}
return result;
} /* TypeCategory() */
/* IsPreferredType()
* Check if this type is a preferred type for the given category.
*
* If category is INVALID_TYPE, then we'll return TRUE for preferred types
* of any category; otherwise, only for preferred types of that category.
*
* XXX This should be moved to system catalog lookups
* to allow for better type extensibility.
* - thomas 2001-09-30
*/
bool
IsPreferredType(CATEGORY category, Oid type)
{
Oid preftype;
if (category == INVALID_TYPE)
category = TypeCategory(type);
else if (category != TypeCategory(type))
return false;
/*
* This switch should agree with TypeCategory(), above. Note that at this
* point, category certainly matches the type.
*/
switch (category)
{
case (UNKNOWN_TYPE):
case (GENERIC_TYPE):
preftype = UNKNOWNOID;
break;
case (BOOLEAN_TYPE):
preftype = BOOLOID;
break;
case (STRING_TYPE):
preftype = TEXTOID;
break;
case (BITSTRING_TYPE):
preftype = VARBITOID;
break;
case (NUMERIC_TYPE):
if (type == OIDOID ||
type == REGPROCOID ||
type == REGPROCEDUREOID ||
type == REGOPEROID ||
type == REGOPERATOROID ||
type == REGCLASSOID ||
type == REGTYPEOID)
preftype = OIDOID;
else
preftype = FLOAT8OID;
break;
case (DATETIME_TYPE):
if (type == DATEOID)
preftype = TIMESTAMPOID;
else
preftype = TIMESTAMPTZOID;
break;
case (TIMESPAN_TYPE):
preftype = INTERVALOID;
break;
case (GEOMETRIC_TYPE):
preftype = type;
break;
case (NETWORK_TYPE):
preftype = INETOID;
break;
case (USER_TYPE):
preftype = type;
break;
default:
elog(ERROR, "unrecognized type category: %d", (int) category);
preftype = UNKNOWNOID;
break;
}
return (type == preftype);
} /* IsPreferredType() */
/* IsBinaryCoercible()
* Check if srctype is binary-coercible to targettype.
*
* This notion allows us to cheat and directly exchange values without
* going through the trouble of calling a conversion function. Note that
* in general, this should only be an implementation shortcut. Before 7.4,
* this was also used as a heuristic for resolving overloaded functions and
* operators, but that's basically a bad idea.
*
* As of 7.3, binary coercibility isn't hardwired into the code anymore.
* We consider two types binary-coercible if there is an implicitly
* invokable, no-function-needed pg_cast entry. Also, a domain is always
* binary-coercible to its base type, though *not* vice versa (in the other
* direction, one must apply domain constraint checks before accepting the
* value as legitimate). We also need to special-case the polymorphic
* ANYARRAY type.
*
* This function replaces IsBinaryCompatible(), which was an inherently
* symmetric test. Since the pg_cast entries aren't necessarily symmetric,
* the order of the operands is now significant.
*/
bool
IsBinaryCoercible(Oid srctype, Oid targettype)
{
HeapTuple tuple;
Form_pg_cast castForm;
bool result;
cqContext *pcqCtx;
/* Fast path if same type */
if (srctype == targettype)
return true;
/* If srctype is a domain, reduce to its base type */
if (OidIsValid(srctype))
srctype = getBaseType(srctype);
/* Somewhat-fast path for domain -> base type case */
if (srctype == targettype)
return true;
/* Also accept any array type as coercible to ANYARRAY */
if (targettype == ANYARRAYOID)
if (OidIsValid(get_element_type(srctype)))
return true;
/* Else look in pg_cast */
pcqCtx = caql_beginscan(
NULL,
cql("SELECT * FROM pg_cast "
" WHERE castsource = :1 "
" AND casttarget = :2 ",
ObjectIdGetDatum(srctype),
ObjectIdGetDatum(targettype)));
tuple = caql_getnext(pcqCtx);
if (!HeapTupleIsValid(tuple))
return false; /* no cast */
castForm = (Form_pg_cast) GETSTRUCT(tuple);
result = (!OidIsValid(castForm->castfunc) &&
castForm->castcontext == COERCION_CODE_IMPLICIT);
caql_endscan(pcqCtx);
return result;
}
/*
* find_coercion_pathway
* Look for a coercion pathway between two types.
*
* ccontext determines the set of available casts.
*
* If we find a suitable entry in pg_cast, return TRUE, and set *funcid
* to the castfunc value, which may be InvalidOid for a binary-compatible
* coercion.
*
* NOTE: *funcid == InvalidOid does not necessarily mean that no work is
* needed to do the coercion; if the target is a domain then we may need to
* apply domain constraint checking. If you want to check for a zero-effort
* conversion then use IsBinaryCoercible().
*/
bool
find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId,
CoercionContext ccontext,
Oid *funcid)
{
bool result = false;
HeapTuple tuple;
cqContext *pcqCtx;
*funcid = InvalidOid;
/* Perhaps the types are domains; if so, look at their base types */
if (OidIsValid(sourceTypeId))
sourceTypeId = getBaseType(sourceTypeId);
if (OidIsValid(targetTypeId))
targetTypeId = getBaseType(targetTypeId);
/* Domains are always coercible to and from their base type */
if (sourceTypeId == targetTypeId)
return true;
/* SELECT castcontext from pg_cast */
/* Look in pg_cast */
pcqCtx = caql_beginscan(
NULL,
cql("SELECT * FROM pg_cast "
" WHERE castsource = :1 "
" AND casttarget = :2 ",
ObjectIdGetDatum(sourceTypeId),
ObjectIdGetDatum(targetTypeId)));
tuple = caql_getnext(pcqCtx);
if (HeapTupleIsValid(tuple))
{
Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple);
CoercionContext castcontext;
/* convert char value for castcontext to CoercionContext enum */
switch (castForm->castcontext)
{
case COERCION_CODE_IMPLICIT:
castcontext = COERCION_IMPLICIT;
break;
case COERCION_CODE_ASSIGNMENT:
castcontext = COERCION_ASSIGNMENT;
break;
case COERCION_CODE_EXPLICIT:
castcontext = COERCION_EXPLICIT;
break;
default:
elog(ERROR, "unrecognized castcontext: %d",
(int) castForm->castcontext);
castcontext = 0; /* keep compiler quiet */
break;
}
/* Rely on ordering of enum for correct behavior here */
if (ccontext >= castcontext)
{
*funcid = castForm->castfunc;
result = true;
}
}
else
{
/*
* If there's no pg_cast entry, perhaps we are dealing with a pair of
* array types. If so, and if the element types have a suitable cast,
* use array_type_coerce() or array_type_length_coerce().
*
* Hack: disallow coercions to oidvector and int2vector, which
* otherwise tend to capture coercions that should go to "real" array
* types. We want those types to be considered "real" arrays for many
* purposes, but not this one. (Also, array_type_coerce isn't
* guaranteed to produce an output that meets the restrictions of
* these datatypes, such as being 1-dimensional.)
*/
Oid targetElemType;
Oid sourceElemType;
Oid elemfuncid;
if (targetTypeId == OIDVECTOROID || targetTypeId == INT2VECTOROID)
return false;
if ((targetElemType = get_element_type(targetTypeId)) != InvalidOid &&
(sourceElemType = get_element_type(sourceTypeId)) != InvalidOid)
{
if (find_coercion_pathway(targetElemType, sourceElemType,
ccontext, &elemfuncid))
{
if (!OidIsValid(elemfuncid))
{
/* binary-compatible element type conversion */
*funcid = F_ARRAY_TYPE_COERCE;
}
else
{
/* does the function take a typmod arg? */
if (get_func_nargs(elemfuncid) > 1)
*funcid = F_ARRAY_TYPE_LENGTH_COERCE;
else
*funcid = F_ARRAY_TYPE_COERCE;
}
result = true;
}
}
}
caql_endscan(pcqCtx);
return result;
}
/*
* find_typmod_coercion_function -- does the given type need length coercion?
*
* If the target type possesses a pg_cast function from itself to itself,
* it must need length coercion.
*
* "bpchar" (ie, char(N)) and "numeric" are examples of such types.
*
* If the given type is a varlena array type, we do not look for a coercion
* function associated directly with the array type, but instead look for
* one associated with the element type. If one exists, we report
* array_length_coerce() as the coercion function to use.
*/
Oid
find_typmod_coercion_function(Oid typeId)
{
Oid funcid = InvalidOid;
bool isArray = false;
Type targetType;
Form_pg_type typeForm;
targetType = typeidType(typeId);
typeForm = (Form_pg_type) GETSTRUCT(targetType);
/* Check for a varlena array type (and not a domain) */
if (OidIsValid(typeForm->typelem) &&
typeForm->typlen == -1 &&
typeForm->typtype != TYPTYPE_DOMAIN)
{
/* Yes, switch our attention to the element type */
typeId = typeForm->typelem;
isArray = true;
}
ReleaseType(targetType);
/* Look in pg_cast */
funcid = caql_getoid(
NULL,
cql("SELECT castfunc FROM pg_cast "
" WHERE castsource = :1 "
" AND casttarget = :2 ",
ObjectIdGetDatum(typeId),
ObjectIdGetDatum(typeId)));
/*
* Now, if we did find a coercion function for an array element type,
* report array_length_coerce() as the function to use.
*/
if (isArray && OidIsValid(funcid))
funcid = F_ARRAY_LENGTH_COERCE;
return funcid;
}