blob: 2ae470be447399e2b951c4bffd2fd44a2c8e1fb8 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*-------------------------------------------------------------------------
*
* heaptuple.c
* This file contains heap tuple accessor and mutator routines, as well
* as various tuple utilities.
*
* Some notes about varlenas and this code:
*
* Before Postgres 8.3 varlenas always had a 4-byte length header, and
* therefore always needed 4-byte alignment (at least). This wasted space
* for short varlenas, for example CHAR(1) took 5 bytes and could need up to
* 3 additional padding bytes for alignment.
*
* Now, a short varlena (up to 126 data bytes) is reduced to a 1-byte header
* and we don't align it. To hide this from datatype-specific functions that
* don't want to deal with it, such a datum is considered "toasted" and will
* be expanded back to the normal 4-byte-header format by pg_detoast_datum.
* (In performance-critical code paths we can use pg_detoast_datum_packed
* and the appropriate access macros to avoid that overhead.) Note that this
* conversion is performed directly in heap_form_tuple, without invoking
* tuptoaster.c.
*
* This change will break any code that assumes it needn't detoast values
* that have been put into a tuple but never sent to disk. Hopefully there
* are few such places.
*
* Varlenas still have alignment 'i' (or 'd') in pg_type/pg_attribute, since
* that's the normal requirement for the untoasted format. But we ignore that
* for the 1-byte-header format. This means that the actual start position
* of a varlena datum may vary depending on which format it has. To determine
* what is stored, we have to require that alignment padding bytes be zero.
* (Postgres actually has always zeroed them, but now it's required!) Since
* the first byte of a 1-byte-header varlena can never be zero, we can examine
* the first byte after the previous datum to tell if it's a pad byte or the
* start of a 1-byte-header varlena.
*
* Note that while formerly we could rely on the first varlena column of a
* system catalog to be at the offset suggested by the C struct for the
* catalog, this is now risky: it's only safe if the preceding field is
* word-aligned, so that there will never be any padding.
*
* We don't pack varlenas whose attstorage is 'p', since the data type
* isn't expecting to have to detoast values. This is used in particular
* by oidvector and int2vector, which are used in the system catalogs
* and we'd like to still refer to them via C struct offsets.
*
*
* Portions Copyright (c) 2006-2009, Greenplum inc
* Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/common/heaptuple.c,v 1.112 2006/11/23 05:27:18 neilc Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/sysattr.h"
#include "access/transam.h"
#include "access/tuptoaster.h"
#include "executor/tuptable.h"
#include "catalog/pg_type.h"
#include "cdb/cdbvars.h" /* Gp_segment */
#include "utils/debugbreak.h"
/* Does att's datatype allow packing into the 1-byte-header varlena format? */
#define ATT_IS_PACKABLE(att) \
((att)->attlen == -1 && (att)->attstorage != 'p')
/* Use this if it's already known varlena */
#define VARLENA_ATT_IS_PACKABLE(att) \
((att)->attstorage != 'p')
/* ----------------------------------------------------------------
* misc support routines
* ----------------------------------------------------------------
*/
/*
* heap_compute_data_size
* Determine size of the data area of a tuple to be constructed
*/
Size
heap_compute_data_size(TupleDesc tupleDesc,
Datum *values,
bool *isnull)
{
Size data_length = 0;
int i;
int numberOfAttributes = tupleDesc->natts;
Form_pg_attribute *att = tupleDesc->attrs;
for (i = 0; i < numberOfAttributes; i++)
{
if (isnull[i])
continue;
/* we're anticipating converting to a short varlena header even if it's
* not currently */
if (att[i]->attlen == -1 && value_type_could_short(values[i], att[i]->atttypid))
{
/* no alignment and we will convert to 1-byte header */;
data_length += VARSIZE_ANY_EXHDR_D(values[i]) + VARHDRSZ_SHORT;
}
else
{
data_length = att_align(data_length, att[i]->attalign);
data_length = att_addlength(data_length, att[i]->attlen, values[i]);
}
}
return data_length;
}
/*
* heap_fill_tuple
* Load data portion of a tuple from values/isnull arrays
*
* We also fill the null bitmap (if any) and set the infomask bits
* that reflect the tuple's data contents.
*
* NOTE: it is now REQUIRED that the caller have pre-zeroed the data area.
*
*
* @param isnull will only be used if <code>bit</code> is non-NULL
* @param bit should be non-NULL (refer to td->t_bits) if isnull is set and contains non-null values
*/
Size
heap_fill_tuple(TupleDesc tupleDesc,
Datum *values, bool *isnull,
char *data, uint16 *infomask, bits8 *bit)
{
char *start = data;
bits8 *bitP;
int bitmask;
int i;
int numberOfAttributes = tupleDesc->natts;
Form_pg_attribute *att = tupleDesc->attrs;
if (bit != NULL)
{
bitP = &bit[-1];
bitmask = HIGHBIT;
}
else
{
/* just to keep compiler quiet */
bitP = NULL;
bitmask = 0;
}
*infomask &= ~(HEAP_HASNULL | HEAP_HASVARWIDTH | HEAP_HASEXTENDED);
for (i = 0; i < numberOfAttributes; i++)
{
Size data_length;
if (bit != NULL)
{
if (bitmask != HIGHBIT)
bitmask <<= 1;
else
{
bitP += 1;
*bitP = 0x0;
bitmask = 1;
}
if (isnull[i])
{
*infomask |= HEAP_HASNULL;
continue;
}
*bitP |= bitmask;
}
/*
* XXX we use the att_align macros on the pointer value itself, not on
* an offset. This is a bit of a hack.
*/
if (att[i]->attbyval)
{
/* pass-by-value */
data = (char *) att_align_zero(data, att[i]->attalign);
store_att_byval(data, values[i], att[i]->attlen);
data_length = att[i]->attlen;
}
else if (att[i]->attlen == -1)
{
/* varlena */
*infomask |= HEAP_HASVARWIDTH;
if (VARATT_IS_COMPRESSED_D(values[i]))
*infomask |= HEAP_HASCOMPRESSED;
if (VARATT_IS_EXTERNAL_D(values[i]))
{
*infomask |= HEAP_HASEXTERNAL;
data = (char *) att_align_zero(data, att[i]->attalign);
data_length = VARSIZE_EXTERNAL(DatumGetPointer(values[i]));
memcpy(data, DatumGetPointer(values[i]), data_length);
}
else if (VARATT_IS_SHORT_D(values[i]))
{
/* no alignment for short varlenas */
data_length = VARSIZE_SHORT(DatumGetPointer(values[i]));
memcpy(data, DatumGetPointer(values[i]), data_length);
}
else if (VARATT_COULD_SHORT_D(values[i]) &&
att[i]->atttypid != INT2VECTOROID &&
att[i]->atttypid != OIDVECTOROID &&
att[i]->atttypid < FirstNormalObjectId)
{
/* convert to short varlena -- no alignment */
data_length = VARSIZE_D(values[i]) - VARHDRSZ + VARHDRSZ_SHORT;
*data = VARSIZE_TO_SHORT_D(values[i]);
memcpy(data+1,
VARDATA_D(values[i]),
data_length-1);
}
else
{
/* must store full 4-byte header varlena */
data = (char *) att_align_zero(data, att[i]->attalign);
data_length = VARSIZE(DatumGetPointer(values[i]));
memcpy(data, DatumGetPointer(values[i]), data_length);
}
}
else if (att[i]->attlen == -2)
{
/* cstring */
data = (char *) att_align_zero(data, att[i]->attalign);
*infomask |= HEAP_HASVARWIDTH;
data_length = strlen(DatumGetCString(values[i])) + 1;
memcpy(data, DatumGetPointer(values[i]), data_length);
}
else
{
/* fixed-length pass-by-reference */
data = (char *) att_align_zero(data, att[i]->attalign);
Assert(att[i]->attlen > 0);
data_length = att[i]->attlen;
memcpy(data, DatumGetPointer(values[i]), data_length);
}
data += data_length;
}
return data - start;
}
/* ----------------------------------------------------------------
* heap tuple interface
* ----------------------------------------------------------------
*/
/* ----------------
* heap_attisnull - returns TRUE iff tuple attribute is not present
* ----------------
*/
bool
heap_attisnull(HeapTuple tup, int attnum)
{
Assert(!is_heaptuple_memtuple(tup));
if (attnum > (int) HeapTupleHeaderGetNatts(tup->t_data))
return true;
if (attnum > 0)
{
if (HeapTupleNoNulls(tup))
return false;
return att_isnull(attnum - 1, tup->t_data->t_bits);
}
switch (attnum)
{
case TableOidAttributeNumber:
case SelfItemPointerAttributeNumber:
case ObjectIdAttributeNumber:
case MinTransactionIdAttributeNumber:
case MinCommandIdAttributeNumber:
case MaxTransactionIdAttributeNumber:
case MaxCommandIdAttributeNumber:
case GpSegmentIdAttributeNumber: /*CDB*/
/* these are never null */
break;
default:
elog(ERROR, "invalid attnum: %d", attnum);
}
return false;
}
bool
heap_attisnull_normalattr(HeapTuple tup, int attnum)
{
Assert(attnum > 0);
if (HeapTupleNoNulls(tup))
return false;
return att_isnull(attnum - 1, tup->t_data->t_bits);
}
/* ----------------
* nocachegetattr
*
* This only gets called from fastgetattr() macro, in cases where
* we can't use a cacheoffset and the value is not null.
*
* This caches attribute offsets in the attribute descriptor.
*
* An alternative way to speed things up would be to cache offsets
* with the tuple, but that seems more difficult unless you take
* the storage hit of actually putting those offsets into the
* tuple you send to disk. Yuck.
*
* This scheme will be slightly slower than that, but should
* perform well for queries which hit large #'s of tuples. After
* you cache the offsets once, examining all the other tuples using
* the same attribute descriptor will go much quicker. -cim 5/4/91
*
* NOTE: if you need to change this code, see also heap_deform_tuple.
* Also see nocache_index_getattr, which is the same code for index
* tuples.
* ----------------
*/
Datum
nocachegetattr(HeapTuple tuple,
int attnum,
TupleDesc tupleDesc)
{
HeapTupleHeader tup = tuple->t_data;
Form_pg_attribute *att = tupleDesc->attrs;
char *tp; /* ptr to att in tuple */
bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */
bool slow = false; /* do we have to walk nulls? */
Assert(!is_heaptuple_memtuple(tuple));
/* If any cached offsets are there we can check that they make sense, but
* there may not be any at all, so pass -1 for the attnum we know is valid */
#ifdef IN_MACRO
/* This is handled in the macro */
Assert(attnum > 0);
if (isnull)
*isnull = false;
#endif
attnum--;
/* ----------------
* Three cases:
*
* 1: No nulls and no variable-width attributes.
* 2: Has a null or a var-width AFTER att.
* 3: Has nulls or var-widths BEFORE att.
* ----------------
*/
if (HeapTupleNoNulls(tuple))
{
#ifdef IN_MACRO
/* This is handled in the macro */
if (att[attnum]->attcacheoff != -1)
{
return fetchatt(att[attnum],
(char *) tup + tup->t_hoff +
att[attnum]->attcacheoff);
}
#endif
}
else
{
/*
* there's a null somewhere in the tuple
*
* check to see if desired att is null
*/
#ifdef IN_MACRO
/* This is handled in the macro */
if (att_isnull(attnum, bp))
{
if (isnull)
*isnull = true;
return (Datum) NULL;
}
#endif
/*
* Now check to see if any preceding bits are null...
*/
{
int byte = attnum >> 3;
int finalbit = attnum & 0x07;
/* check for nulls "before" final bit of last byte */
if ((~bp[byte]) & ((1 << finalbit) - 1))
slow = true;
else
{
/* check for nulls in any "earlier" bytes */
int i;
for (i = 0; i < byte; i++)
{
if (bp[i] != 0xFF)
{
slow = true;
break;
}
}
}
}
}
tp = (char *) tup + tup->t_hoff;
/*
* now check for any non-fixed length attrs before our attribute
*/
if (!slow)
{
/*
* If we get here, there are no nulls up to and including the target
* attribute. If we have a cached offset, we can use it.
*/
if (att[attnum]->attcacheoff >= 0)
{
return fetchatt(att[attnum],
tp + att[attnum]->attcacheoff);
}
/*
* Otherwise, check for non-fixed-length attrs up to and including
* target. If there aren't any, it's safe to cheaply initialize the
* cached offsets for these attrs.
*/
if (HeapTupleHasVarWidth(tuple))
{
int j;
/*
* In for(), we test <= and not < because we want to see if we can
* go past it in initializing offsets.
*/
for (j = 0; j <= attnum; j++)
{
if (att[j]->attlen <= 0)
{
slow = true;
break;
}
}
}
}
/*
* If slow is false, and we got here, we know that we have a tuple with no
* nulls or var-widths before the target attribute. If possible, we also
* want to initialize the remainder of the attribute cached offset values.
*/
if (!slow)
{
int j = 1;
long off;
int natts = HeapTupleHeaderGetNatts(tup);
/*
* If we get here, we have a tuple with no nulls or var-widths up to
* and including the target attribute, so we can use the cached offset
* ... only we don't have it yet, or we'd not have got here. Since
* it's cheap to compute offsets for fixed-width columns, we take the
* opportunity to initialize the cached offsets for *all* the leading
* fixed-width columns, in hope of avoiding future visits to this
* routine.
*/
/* this is always true */
att[0]->attcacheoff = 0;
while (j < attnum && att[j]->attcacheoff > 0)
j++;
off = att[j - 1]->attcacheoff + att[j - 1]->attlen;
for (; j <= attnum ||
/* Can we compute more? We will probably need them */
(j < natts &&
att[j]->attcacheoff == -1 &&
(HeapTupleNoNulls(tuple) || !att_isnull(j, bp)) &&
(HeapTupleAllFixed(tuple) || att[j]->attlen > 0)); j++)
{
/* don't need to worry about shortvarlenas here since we're only
* looking at non-varlenas. Note that it's important that we check
* that the target attribute itself is a nonvarlena too since we
* can't use cached offsets for even the first varlena any more. */
off = att_align(off, att[j]->attalign);
att[j]->attcacheoff = off;
off = att_addlength(off, att[j]->attlen, PointerGetDatum(tp + off));
}
return fetchatt(att[attnum], tp + att[attnum]->attcacheoff);
}
else
{
bool usecache = true;
int off = 0;
int i;
/* this is always true */
att[0]->attcacheoff = 0;
/*
* Now we know that we have to walk the tuple CAREFULLY.
*
* Note - This loop is a little tricky. For each non-null attribute,
* we have to first account for alignment padding before the attr,
* then advance over the attr based on its length. Nulls have no
* storage and no alignment padding either. We can use/set
* attcacheoff until we reach either a null or a var-width attribute.
*/
for (i = 0; i < attnum; i++)
{
if (HeapTupleHasNulls(tuple) && att_isnull(i, bp))
{
usecache = false;
continue;
}
/* If we know the next offset, we can skip the alignment calc */
if (usecache && att[i]->attcacheoff != -1)
off = att[i]->attcacheoff;
else
{
/* if it's a varlena it may or may not be aligned, so check for
* something that looks like a padding byte before aligning. If
* we're already aligned it may be the leading byte of a 4-byte
* header but then the att_align is harmless. Don't bother
* looking if it's not a varlena though.*/
if (att[i]->attlen != -1 || !tp[off])
off = att_align(off, att[i]->attalign);
if (usecache && att[i]->attlen != -1)
att[i]->attcacheoff = off;
}
if (att[i]->attlen < 0)
usecache = false;
off = att_addlength(off, att[i]->attlen, PointerGetDatum(tp + off));
}
if (att[attnum]->attlen != -1 || !tp[off])
off = att_align(off, att[attnum]->attalign);
return fetchatt(att[attnum], tp + off);
}
}
/* ----------------
* heap_getsysattr
*
* Fetch the value of a system attribute for a tuple.
*
* This is a support routine for the heap_getattr macro. The macro
* has already determined that the attnum refers to a system attribute.
* ----------------
*/
Datum
heap_getsysattr(HeapTuple tup, int attnum, bool *isnull)
{
Datum result;
Assert(tup);
Assert(!is_heaptuple_memtuple(tup));
/* Currently, no sys attribute ever reads as NULL. */
if (isnull)
*isnull = false;
switch (attnum)
{
case SelfItemPointerAttributeNumber:
/* pass-by-reference datatype */
result = PointerGetDatum(&(tup->t_self));
break;
case ObjectIdAttributeNumber:
result = ObjectIdGetDatum(HeapTupleGetOid(tup));
break;
case MinTransactionIdAttributeNumber:
result = TransactionIdGetDatum(HeapTupleHeaderGetXmin(tup->t_data));
break;
case MaxTransactionIdAttributeNumber:
result = TransactionIdGetDatum(HeapTupleHeaderGetXmax(tup->t_data));
break;
case MinCommandIdAttributeNumber:
case MaxCommandIdAttributeNumber:
/*
* cmin and cmax are now both aliases for the same field, which
* can in fact also be a combo command id. XXX perhaps we should
* return the "real" cmin or cmax if possible, that is if we are
* inside the originating transaction?
*/
result = CommandIdGetDatum(HeapTupleHeaderGetRawCommandId(tup->t_data));
break;
case TableOidAttributeNumber:
/* CDB: Must now use a TupleTableSlot to access the 'tableoid'. */
result = ObjectIdGetDatum(InvalidOid);
elog(ERROR, "Invalid reference to \"tableoid\" system attribute");
break;
case GpSegmentIdAttributeNumber: /*CDB*/
result = Int32GetDatum(GetQEIndex());
break;
default:
result = Int32GetDatum(0);
Assert(!"Invalid attnum for getsysattr");
elog(ERROR, "invalid attnum: %d", attnum);
break;
}
return result;
}
/* ----------------
* heap_copytuple
*
* returns a copy of an entire tuple
*
* The HeapTuple struct, tuple header, and tuple data are all allocated
* as a single palloc() block.
* ----------------
*/
HeapTuple
heaptuple_copy_to(HeapTuple tuple, HeapTuple dest, uint32 *destlen)
{
HeapTuple newTuple;
uint32 len;
if (!HeapTupleIsValid(tuple) || tuple->t_data == NULL)
return NULL;
Assert(!is_heaptuple_memtuple(tuple));
len = HEAPTUPLESIZE + tuple->t_len;
if(destlen && *destlen < len)
{
*destlen = len;
return NULL;
}
if(destlen)
{
*destlen = len;
newTuple = dest;
}
else
newTuple = (HeapTuple) palloc(HEAPTUPLESIZE + tuple->t_len);
newTuple->t_len = tuple->t_len;
newTuple->t_self = tuple->t_self;
newTuple->t_data = (HeapTupleHeader) ((char *) newTuple + HEAPTUPLESIZE);
memcpy((char *) newTuple->t_data, (char *) tuple->t_data, tuple->t_len);
return newTuple;
}
/* ----------------
* heap_copytuple_with_tuple
*
* copy a tuple into a caller-supplied HeapTuple management struct
*
* Note that after calling this function, the "dest" HeapTuple will not be
* allocated as a single palloc() block (unlike with heap_copytuple()).
* ----------------
*/
void
heap_copytuple_with_tuple(HeapTuple src, HeapTuple dest)
{
if (!HeapTupleIsValid(src) || src->t_data == NULL)
{
dest->t_data = NULL;
return;
}
Assert(!is_heaptuple_memtuple(src));
dest->t_len = src->t_len;
dest->t_self = src->t_self;
dest->t_data = (HeapTupleHeader) palloc(src->t_len);
memcpy((char *) dest->t_data, (char *) src->t_data, src->t_len);
}
/*
* heap_form_tuple
* construct a tuple from the given values[] and isnull[] arrays,
* which are of the length indicated by tupleDescriptor->natts
*
* The result is allocated in the current memory context.
*/
HeapTuple
heaptuple_form_to(TupleDesc tupleDescriptor, Datum *values, bool *isnull, HeapTuple dst, uint32 *dstlen)
{
HeapTuple tuple; /* return tuple */
HeapTupleHeader td; /* tuple data */
unsigned long len, predicted_len, actual_len;
int hoff;
bool hasnull = false;
Form_pg_attribute *att = tupleDescriptor->attrs;
int numberOfAttributes = tupleDescriptor->natts;
int i;
if (numberOfAttributes > MaxTupleAttributeNumber)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_COLUMNS),
errmsg("number of columns (%d) exceeds limit (%d)",
numberOfAttributes, MaxTupleAttributeNumber)));
/*
* Check for nulls and embedded tuples; expand any toasted attributes in
* embedded tuples. This preserves the invariant that toasting can only
* go one level deep.
*
* We can skip calling toast_flatten_tuple_attribute() if the attribute
* couldn't possibly be of composite type. All composite datums are
* varlena and have alignment 'd'; furthermore they aren't arrays. Also,
* if an attribute is already toasted, it must have been sent to disk
* already and so cannot contain toasted attributes.
*/
for (i = 0; i < numberOfAttributes; i++)
{
if (isnull[i])
hasnull = true;
else if (att[i]->attlen == -1 &&
att[i]->attalign == 'd' &&
att[i]->attndims == 0 &&
!VARATT_IS_EXTENDED_D(values[i]))
{
values[i] = toast_flatten_tuple_attribute(values[i],
att[i]->atttypid,
att[i]->atttypmod);
}
}
/*
* Determine total space needed
*/
len = offsetof(HeapTupleHeaderData, t_bits);
if (hasnull)
len += BITMAPLEN(numberOfAttributes);
if (tupleDescriptor->tdhasoid)
len += sizeof(Oid);
hoff = len = MAXALIGN(len); /* align user data safely */
predicted_len = heap_compute_data_size(tupleDescriptor, values, isnull);
len += predicted_len;
if(dstlen && (*dstlen) < (HEAPTUPLESIZE + len))
{
*dstlen = HEAPTUPLESIZE + len;
return NULL;
}
if(dstlen)
{
*dstlen = HEAPTUPLESIZE + len;
tuple = dst;
}
else
tuple = (HeapTuple) palloc(HEAPTUPLESIZE + len);
/*
* Allocate and zero the space needed. Note that the tuple body and
* HeapTupleData management structure are allocated in one chunk.
*/
tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
/*
* And fill in the information. Note we fill the Datum fields even though
* this tuple may never become a Datum.
*/
tuple->t_len = len;
ItemPointerSetInvalid(&(tuple->t_self));
/*
* The following 3 calls will setup the first 12 bytes of td (tuple->t_data)
*/
HeapTupleHeaderSetDatumLength(td, len);
HeapTupleHeaderSetTypeId(td, tupleDescriptor->tdtypeid);
HeapTupleHeaderSetTypMod(td, tupleDescriptor->tdtypmod);
/* t_ctid does not matter */
/* num of attrs are stored in t_infomask2. Clear the other flags first */
td->t_infomask2 = 0;
HeapTupleHeaderSetNatts(td, numberOfAttributes);
/*
* Set up t_hoff. This need to be done before set up t_infomask
* because HeapTupleHeaderSetOid will use t_hoff
*/
td->t_hoff = hoff;
if (tupleDescriptor->tdhasoid)
{
td->t_infomask = HEAP_HASOID;
HeapTupleHeaderSetOid(td, InvalidOid);
}
else
td->t_infomask = 0;
/* Really fill in the data. */
actual_len =
heap_fill_tuple(tupleDescriptor,
values,
isnull,
(char *) td + hoff,
&td->t_infomask,
(hasnull ? td->t_bits : NULL));
Assert(predicted_len == actual_len);
Assert(!is_heaptuple_memtuple(tuple));
return tuple;
}
/*
* heap_formtuple
*
* construct a tuple from the given values[] and nulls[] arrays
*
* Null attributes are indicated by a 'n' in the appropriate byte
* of nulls[]. Non-null attributes are indicated by a ' ' (space).
*
* OLD API with char 'n'/' ' convention for indicating nulls.
* This is deprecated and should not be used in new code, but we keep it
* around for use by old add-on modules.
*/
HeapTuple
heap_formtuple(TupleDesc tupleDescriptor,
Datum *values,
char *nulls)
{
bool *isnull = (bool *) palloc(sizeof(bool) * tupleDescriptor->natts);
HeapTuple ret;
int i;
for(i=0; i<tupleDescriptor->natts; ++i)
isnull[i] = (nulls[i] != ' ');
ret = heaptuple_form_to(tupleDescriptor, values, isnull, NULL, NULL);
pfree(isnull);
return ret;
}
/*
* heap_modify_tuple
* form a new tuple from an old tuple and a set of replacement values.
*
* The replValues, replIsnull, and doReplace arrays must be of the length
* indicated by tupleDesc->natts. The new tuple is constructed using the data
* from replValues/replIsnull at columns where doReplace is true, and using
* the data from the old tuple at columns where doReplace is false.
*
* The result is allocated in the current memory context.
*/
HeapTuple
heap_modify_tuple(HeapTuple tuple,
TupleDesc tupleDesc,
Datum *replValues,
bool *replIsnull,
bool *doReplace)
{
int numberOfAttributes = tupleDesc->natts;
int attoff;
Datum *values;
bool *isnull;
HeapTuple newTuple;
Assert(!is_heaptuple_memtuple(tuple));
/*
* allocate and fill values and isnull arrays from either the tuple or the
* repl information, as appropriate.
*
* NOTE: it's debatable whether to use heap_deform_tuple() here or just
* heap_getattr() only the non-replaced colums. The latter could win if
* there are many replaced columns and few non-replaced ones. However,
* heap_deform_tuple costs only O(N) while the heap_getattr way would cost
* O(N^2) if there are many non-replaced columns, so it seems better to
* err on the side of linear cost.
*/
values = (Datum *) palloc(numberOfAttributes * sizeof(Datum));
isnull = (bool *) palloc(numberOfAttributes * sizeof(bool));
heap_deform_tuple(tuple, tupleDesc, values, isnull);
for (attoff = 0; attoff < numberOfAttributes; attoff++)
{
if (doReplace[attoff])
{
values[attoff] = replValues[attoff];
isnull[attoff] = replIsnull[attoff];
}
}
/*
* create a new tuple from the values and isnull arrays
*/
newTuple = heap_form_tuple(tupleDesc, values, isnull);
pfree(values);
pfree(isnull);
/*
* copy the identification info of the old tuple: t_ctid, t_self, and OID
* (if any)
*/
newTuple->t_data->t_ctid = tuple->t_data->t_ctid;
newTuple->t_self = tuple->t_self;
if (tupleDesc->tdhasoid)
HeapTupleSetOid(newTuple, HeapTupleGetOid(tuple));
return newTuple;
}
/*
* heap_modifytuple
*
* forms a new tuple from an old tuple and a set of replacement values.
* returns a new palloc'ed tuple.
*
* OLD API with char 'n'/' ' convention for indicating nulls, and
* char 'r'/' ' convention for indicating whether to replace columns.
* This is deprecated and should not be used in new code, but we keep it
* around for use by old add-on modules.
*/
HeapTuple
heap_modifytuple(HeapTuple tuple,
TupleDesc tupleDesc,
Datum *replValues,
char *replNulls,
char *replActions)
{
bool *replIsNull = (bool *) palloc(sizeof(bool) * tupleDesc->natts);
bool *doRepl = (bool *) palloc(sizeof(bool) * tupleDesc->natts);
HeapTuple ret;
int i;
for(i=0; i<tupleDesc->natts; ++i)
{
replIsNull[i] = (replNulls[i] != ' ');
doRepl[i] = (replActions[i] == 'r');
}
ret = heap_modify_tuple(tuple, tupleDesc, replValues, replIsNull, doRepl);
pfree(replIsNull);
pfree(doRepl);
return ret;
}
/*
* heap_deform_tuple
* Given a tuple, extract data into values/isnull arrays; this is
* the inverse of heap_form_tuple.
*
* Storage for the values/isnull arrays is provided by the caller;
* it should be sized according to tupleDesc->natts not tuple->t_natts.
*
* Note that for pass-by-reference datatypes, the pointer placed
* in the Datum will point into the given tuple.
*
* When all or most of a tuple's fields need to be extracted,
* this routine will be significantly quicker than a loop around
* heap_getattr; the loop will become O(N^2) as soon as any
* noncacheable attribute offsets are involved.
*/
void
heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc,
Datum *values, bool *isnull)
{
HeapTupleHeader tup = tuple->t_data;
bool hasnulls = HeapTupleHasNulls(tuple);
Form_pg_attribute *att = tupleDesc->attrs;
int tdesc_natts = tupleDesc->natts;
int natts; /* number of atts to extract */
int attnum;
char *tp; /* ptr to tuple data */
long off; /* offset in tuple data */
bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */
bool slow = false; /* can we use/set attcacheoff? */
Assert(!is_heaptuple_memtuple(tuple));
natts = HeapTupleHeaderGetNatts(tup);
/*
* In inheritance situations, it is possible that the given tuple actually
* has more fields than the caller is expecting. Don't run off the end of
* the caller's arrays.
*/
natts = Min(natts, tdesc_natts);
tp = (char *) tup + tup->t_hoff;
off = 0;
for (attnum = 0; attnum < natts; attnum++)
{
Form_pg_attribute thisatt = att[attnum];
if (hasnulls && att_isnull(attnum, bp))
{
values[attnum] = (Datum) 0;
isnull[attnum] = true;
slow = true; /* can't use attcacheoff anymore */
continue;
}
isnull[attnum] = false;
if (!slow && thisatt->attcacheoff >= 0)
off = thisatt->attcacheoff;
else
{
/* if it's a varlena it may or may not be aligned, so check for
* something that looks like a padding byte before aligning. If
* we're already aligned it may be the leading byte of a 4-byte
* header but then the att_align is harmless. Don't bother looking
* if it's not a varlena though.*/
if (thisatt->attlen != -1 || !tp[off])
off = att_align(off, thisatt->attalign);
if (!slow && thisatt->attlen != -1)
thisatt->attcacheoff = off;
}
if (!slow && thisatt->attlen < 0)
slow = true;
values[attnum] = fetchatt(thisatt, tp + off);
#ifdef USE_ASSERT_CHECKING
/* Ignore attributes with dropped types */
if (thisatt->attlen == -1 && !thisatt->attisdropped)
{
Assert(VARATT_IS_SHORT_D(values[attnum]) ||
!VARATT_COULD_SHORT_D(values[attnum]) ||
thisatt->atttypid == OIDVECTOROID ||
thisatt->atttypid == INT2VECTOROID ||
thisatt->atttypid >= FirstNormalObjectId);
}
#endif
off = att_addlength(off, thisatt->attlen, PointerGetDatum(tp + off));
}
/*
* If tuple doesn't have all the atts indicated by tupleDesc, read the
* rest as null
*/
for (; attnum < tdesc_natts; attnum++)
{
values[attnum] = (Datum) 0;
isnull[attnum] = true;
}
}
/*
* heap_deformtuple
*
* Given a tuple, extract data into values/nulls arrays; this is
* the inverse of heap_formtuple.
*
* Storage for the values/nulls arrays is provided by the caller;
* it should be sized according to tupleDesc->natts not tuple->t_natts.
*
* Note that for pass-by-reference datatypes, the pointer placed
* in the Datum will point into the given tuple.
*
* When all or most of a tuple's fields need to be extracted,
* this routine will be significantly quicker than a loop around
* heap_getattr; the loop will become O(N^2) as soon as any
* noncacheable attribute offsets are involved.
*
* OLD API with char 'n'/' ' convention for indicating nulls.
* This is deprecated and should not be used in new code, but we keep it
* around for use by old add-on modules.
*/
void
heap_deformtuple(HeapTuple tuple,
TupleDesc tupleDesc,
Datum *values,
char *nulls)
{
int i;
bool *isnull = (bool *) palloc(tupleDesc->natts * sizeof(bool));
heap_deform_tuple(tuple, tupleDesc, values, isnull);
for(i=0; i<tupleDesc->natts; ++i)
nulls[i] = isnull[i] ? 'n' : ' ';
pfree(isnull);
}
/*
* slot_deform_tuple
* Given a TupleTableSlot, extract data from the slot's physical tuple
* into its Datum/isnull arrays. Data is extracted up through the
* natts'th column (caller must ensure this is a legal column number).
*
* This is essentially an incremental version of heap_deform_tuple:
* on each call we extract attributes up to the one needed, without
* re-computing information about previously extracted attributes.
* slot->tts_nvalid is the number of attributes already extracted.
*/
static void
slot_deform_tuple(TupleTableSlot *slot, int natts)
{
HeapTuple tuple = TupGetHeapTuple(slot);
TupleDesc tupleDesc = slot->tts_tupleDescriptor;
Datum *values = slot->PRIVATE_tts_values;
bool *isnull = slot->PRIVATE_tts_isnull;
HeapTupleHeader tup = tuple->t_data;
bool hasnulls = HeapTupleHasNulls(tuple);
Form_pg_attribute *att = tupleDesc->attrs;
int attnum;
char *tp; /* ptr to tuple data */
long off; /* offset in tuple data */
bits8 *bp = tup->t_bits; /* ptr to null bitmap in tuple */
bool slow; /* can we use/set attcacheoff? */
/*
* Check whether the first call for this tuple, and initialize or restore
* loop state.
*/
attnum = slot->PRIVATE_tts_nvalid;
if (attnum == 0)
{
/* Start from the first attribute */
off = 0;
slow = false;
}
else
{
/* Restore state from previous execution */
off = slot->PRIVATE_tts_off;
slow = slot->PRIVATE_tts_slow;
}
tp = (char *) tup + tup->t_hoff;
for (; attnum < natts; attnum++)
{
Form_pg_attribute thisatt = att[attnum];
if (hasnulls && att_isnull(attnum, bp))
{
values[attnum] = (Datum) 0;
isnull[attnum] = true;
slow = true; /* can't use attcacheoff anymore */
continue;
}
isnull[attnum] = false;
if (!slow && thisatt->attcacheoff >= 0)
off = thisatt->attcacheoff;
else
{
/* if it's a varlena it may or may not be aligned, so check for
* something that looks like a padding byte before aligning. If
* we're already aligned it may be the leading byte of a 4-byte
* header but then the att_align is harmless. Don't bother looking
* if it's not a varlena though.*/
if (thisatt->attlen != -1 || !tp[off])
off = att_align(off, thisatt->attalign);
if (!slow && thisatt->attlen != -1)
thisatt->attcacheoff = off;
}
if (!slow && thisatt->attlen < 0)
slow = true;
values[attnum] = fetchatt(thisatt, tp + off);
off = att_addlength(off, thisatt->attlen, PointerGetDatum(tp + off));
}
/*
* Save state for next execution
*/
slot->PRIVATE_tts_nvalid = attnum;
slot->PRIVATE_tts_off = off;
slot->PRIVATE_tts_slow = slow;
}
/*
* slot_getsomeattrs
* This function forces the entries of the slot's Datum/isnull
* arrays to be valid at least up through the attnum'th entry.
*/
void
_slot_getsomeattrs(TupleTableSlot *slot, int attnum)
{
HeapTuple tuple;
int attno;
/* Quick out if we have 'em all already */
if (slot->PRIVATE_tts_nvalid >= attnum)
return;
/* Check for caller error */
if (attnum <= 0 || attnum > slot->tts_tupleDescriptor->natts)
elog(ERROR, "invalid attribute number %d", attnum);
/*
* otherwise we had better have a physical tuple (tts_nvalid should equal
* natts in all virtual-tuple cases)
*/
tuple = TupGetHeapTuple(slot);
if (tuple == NULL) /* internal error */
elog(ERROR, "cannot extract attribute from empty tuple slot");
/*
* load up any slots available from physical tuple
*/
attno = HeapTupleHeaderGetNatts(tuple->t_data);
attno = Min(attno, attnum);
slot_deform_tuple(slot, attno);
/*
* If tuple doesn't have all the atts indicated by tupleDesc, read the
* rest as null
*/
for (; attno < attnum; attno++)
{
slot->PRIVATE_tts_values[attno] = (Datum) 0;
slot->PRIVATE_tts_isnull[attno] = true;
}
slot->PRIVATE_tts_nvalid = attnum;
TupSetVirtualTuple(slot);
}
/*
* heap_freetuple
*/
void
heap_freetuple(HeapTuple htup)
{
pfree(htup);
}
/* ----------------
* heap_addheader
*
* This routine forms a HeapTuple by copying the given structure (tuple
* data) and adding a generic header. Note that the tuple data is
* presumed to contain no null fields and no varlena fields.
*
* This routine is really only useful for certain system tables that are
* known to be fixed-width and null-free. Currently it is only used for
* pg_attribute tuples.
* ----------------
*/
HeapTuple
heap_addheader(int natts, /* max domain index */
bool withoid, /* reserve space for oid */
Size structlen, /* its length */
void *structure) /* pointer to the struct */
{
HeapTuple tuple;
HeapTupleHeader td;
Size len;
int hoff;
AssertArg(natts > 0);
/* header needs no null bitmap */
hoff = offsetof(HeapTupleHeaderData, t_bits);
if (withoid)
hoff += sizeof(Oid);
hoff = MAXALIGN(hoff);
len = hoff + structlen;
tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + len);
tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);
tuple->t_len = len;
ItemPointerSetInvalid(&(tuple->t_self));
/* we don't bother to fill the Datum fields */
HeapTupleHeaderSetNatts(td, natts);
td->t_hoff = hoff;
if (withoid) /* else leave infomask = 0 */
td->t_infomask = HEAP_HASOID;
memcpy((char *) td + hoff, structure, structlen);
return tuple;
}