blob: 0dcc1b7b1f5e41ef6318c9f3f85b81518192ec5c [file] [log] [blame]
/*-------------------------------------------------------------------------
*
* funcapi.c
* Utility and convenience functions for fmgr functions that return
* sets and/or composite types.
*
* Copyright (c) 2002-2008, PostgreSQL Global Development Group
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/fmgr/funcapi.c,v 1.31 2006/07/11 16:35:33 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/catquery.h"
#include "access/heapam.h"
#include "catalog/namespace.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h" /* ReturnSetInfo, RegisterExprContextCallback */
#include "funcapi.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
static void shutdown_MultiFuncCall(Datum arg);
static TypeFuncClass internal_get_result_type(Oid funcid,
Node *call_expr,
ReturnSetInfo *rsinfo,
Oid *resultTypeId,
TupleDesc *resultTupleDesc);
static bool resolve_polymorphic_tupdesc(TupleDesc tupdesc,
oidvector *declared_args,
Node *call_expr);
static TypeFuncClass get_type_func_class(Oid typid);
/*
* init_MultiFuncCall
* Create an empty FuncCallContext data structure
* and do some other basic Multi-function call setup
* and error checking
*/
FuncCallContext *
init_MultiFuncCall(PG_FUNCTION_ARGS)
{
FuncCallContext *retval;
/*
* Bail if we're called in the wrong context
*/
if (fcinfo->resultinfo == NULL || !IsA(fcinfo->resultinfo, ReturnSetInfo))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
if (fcinfo->flinfo->fn_extra == NULL)
{
/*
* First call
*/
ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo;
MemoryContext multi_call_ctx;
/*
* Create a suitably long-lived context to hold cross-call data
*/
multi_call_ctx = AllocSetContextCreate(fcinfo->flinfo->fn_mcxt,
"SRF multi-call context",
ALLOCSET_SMALL_MINSIZE,
ALLOCSET_SMALL_INITSIZE,
ALLOCSET_SMALL_MAXSIZE);
/*
* Allocate suitably long-lived space and zero it
*/
retval = (FuncCallContext *)
MemoryContextAllocZero(multi_call_ctx,
sizeof(FuncCallContext));
/*
* initialize the elements
*/
retval->call_cntr = 0;
retval->max_calls = 0;
retval->slot = NULL;
retval->user_fctx = NULL;
retval->attinmeta = NULL;
retval->tuple_desc = NULL;
retval->multi_call_memory_ctx = multi_call_ctx;
/*
* save the pointer for cross-call use
*/
fcinfo->flinfo->fn_extra = retval;
/*
* Ensure we will get shut down cleanly if the exprcontext is not run
* to completion.
*/
RegisterExprContextCallback(rsi->econtext,
shutdown_MultiFuncCall,
PointerGetDatum(fcinfo->flinfo));
}
else
{
/* second and subsequent calls */
elog(ERROR, "init_MultiFuncCall cannot be called more than once");
/* never reached, but keep compiler happy */
retval = NULL;
}
return retval;
}
/*
* per_MultiFuncCall
*
* Do Multi-function per-call setup
*/
FuncCallContext *
per_MultiFuncCall(PG_FUNCTION_ARGS)
{
FuncCallContext *retval = (FuncCallContext *) fcinfo->flinfo->fn_extra;
/*
* Clear the TupleTableSlot, if present. This is for safety's sake: the
* Slot will be in a long-lived context (it better be, if the
* FuncCallContext is pointing to it), but in most usage patterns the
* tuples stored in it will be in the function's per-tuple context. So at
* the beginning of each call, the Slot will hold a dangling pointer to an
* already-recycled tuple. We clear it out here.
*
* Note: use of retval->slot is obsolete as of 8.0, and we expect that it
* will always be NULL. This is just here for backwards compatibility in
* case someone creates a slot anyway.
*/
if (retval->slot != NULL)
ExecClearTuple(retval->slot);
return retval;
}
/*
* end_MultiFuncCall
* Clean up after init_MultiFuncCall
*/
void
end_MultiFuncCall(PG_FUNCTION_ARGS, FuncCallContext *funcctx)
{
ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo;
/* Deregister the shutdown callback */
UnregisterExprContextCallback(rsi->econtext,
shutdown_MultiFuncCall,
PointerGetDatum(fcinfo->flinfo));
/* But use it to do the real work */
shutdown_MultiFuncCall(PointerGetDatum(fcinfo->flinfo));
}
/*
* shutdown_MultiFuncCall
* Shutdown function to clean up after init_MultiFuncCall
*/
static void
shutdown_MultiFuncCall(Datum arg)
{
FmgrInfo *flinfo = (FmgrInfo *) DatumGetPointer(arg);
FuncCallContext *funcctx = (FuncCallContext *) flinfo->fn_extra;
/* unbind from flinfo */
flinfo->fn_extra = NULL;
/*
* Delete context that holds all multi-call data, including the
* FuncCallContext itself
*/
MemoryContextSwitchTo(flinfo->fn_mcxt);
MemoryContextDelete(funcctx->multi_call_memory_ctx);
}
/*
* get_call_result_type
* Given a function's call info record, determine the kind of datatype
* it is supposed to return. If resultTypeId isn't NULL, *resultTypeId
* receives the actual datatype OID (this is mainly useful for scalar
* result types). If resultTupleDesc isn't NULL, *resultTupleDesc
* receives a pointer to a TupleDesc when the result is of a composite
* type, or NULL when it's a scalar result.
*
* One hard case that this handles is resolution of actual rowtypes for
* functions returning RECORD (from either the function's OUT parameter
* list, or a ReturnSetInfo context node). TYPEFUNC_RECORD is returned
* only when we couldn't resolve the actual rowtype for lack of information.
*
* The other hard case that this handles is resolution of polymorphism.
* We will never return polymorphic pseudotypes (ANYELEMENT etc), either
* as a scalar result type or as a component of a rowtype.
*
* This function is relatively expensive --- in a function returning set,
* try to call it only the first time through.
*/
TypeFuncClass
get_call_result_type(FunctionCallInfo fcinfo,
Oid *resultTypeId,
TupleDesc *resultTupleDesc)
{
return internal_get_result_type(fcinfo->flinfo->fn_oid,
fcinfo->flinfo->fn_expr,
(ReturnSetInfo *) fcinfo->resultinfo,
resultTypeId,
resultTupleDesc);
}
/*
* get_expr_result_type
* As above, but work from a calling expression node tree
*/
TypeFuncClass
get_expr_result_type(Node *expr,
Oid *resultTypeId,
TupleDesc *resultTupleDesc)
{
TypeFuncClass result;
if (expr && IsA(expr, FuncExpr))
result = internal_get_result_type(((FuncExpr *) expr)->funcid,
expr,
NULL,
resultTypeId,
resultTupleDesc);
else if (expr && IsA(expr, OpExpr))
result = internal_get_result_type(get_opcode(((OpExpr *) expr)->opno),
expr,
NULL,
resultTypeId,
resultTupleDesc);
else
{
/* handle as a generic expression; no chance to resolve RECORD */
Oid typid = exprType(expr);
if (resultTypeId)
*resultTypeId = typid;
if (resultTupleDesc)
*resultTupleDesc = NULL;
result = get_type_func_class(typid);
if (result == TYPEFUNC_COMPOSITE && resultTupleDesc)
*resultTupleDesc = lookup_rowtype_tupdesc_copy(typid, -1);
}
return result;
}
/*
* get_func_result_type
* As above, but work from a function's OID only
*
* This will not be able to resolve pure-RECORD results nor polymorphism.
*/
TypeFuncClass
get_func_result_type(Oid functionId,
Oid *resultTypeId,
TupleDesc *resultTupleDesc)
{
return internal_get_result_type(functionId,
NULL,
NULL,
resultTypeId,
resultTupleDesc);
}
/*
* internal_get_result_type -- workhorse code implementing all the above
*
* funcid must always be supplied. call_expr and rsinfo can be NULL if not
* available. We will return TYPEFUNC_RECORD, and store NULL into
* *resultTupleDesc, if we cannot deduce the complete result rowtype from
* the available information.
*/
static TypeFuncClass
internal_get_result_type(Oid funcid,
Node *call_expr,
ReturnSetInfo *rsinfo,
Oid *resultTypeId,
TupleDesc *resultTupleDesc)
{
TypeFuncClass result;
HeapTuple tp;
Form_pg_proc procform;
Oid rettype;
TupleDesc tupdesc;
cqContext *pcqCtx;
/* First fetch the function's pg_proc row to inspect its rettype */
pcqCtx = caql_beginscan(
NULL,
cql("SELECT * FROM pg_proc "
" WHERE oid = :1 ",
ObjectIdGetDatum(funcid)));
tp = caql_getnext(pcqCtx);
if (!HeapTupleIsValid(tp))
elog(ERROR, "cache lookup failed for function %u", funcid);
procform = (Form_pg_proc) GETSTRUCT(tp);
rettype = procform->prorettype;
/* Check for OUT parameters defining a RECORD result */
tupdesc = build_function_result_tupdesc_t(tp);
if (tupdesc)
{
/*
* It has OUT parameters, so it's basically like a regular composite
* type, except we have to be able to resolve any polymorphic OUT
* parameters.
*/
if (resultTypeId)
*resultTypeId = rettype;
if (resolve_polymorphic_tupdesc(tupdesc,
&procform->proargtypes,
call_expr))
{
if (tupdesc->tdtypeid == RECORDOID &&
tupdesc->tdtypmod < 0)
assign_record_type_typmod(tupdesc);
if (resultTupleDesc)
*resultTupleDesc = tupdesc;
result = TYPEFUNC_COMPOSITE;
}
else
{
if (resultTupleDesc)
*resultTupleDesc = NULL;
result = TYPEFUNC_RECORD;
}
caql_endscan(pcqCtx);
return result;
}
/*
* If scalar polymorphic result, try to resolve it.
*/
if (IsPolymorphicType(rettype))
{
Oid newrettype = exprType(call_expr);
if (!OidIsValid(newrettype)) /* this probably should not happen */
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("could not determine actual result type for function \"%s\" declared to return type %s",
NameStr(procform->proname),
format_type_be(rettype))));
rettype = newrettype;
}
if (resultTypeId)
*resultTypeId = rettype;
if (resultTupleDesc)
*resultTupleDesc = NULL; /* default result */
/* Classify the result type */
result = get_type_func_class(rettype);
switch (result)
{
case TYPEFUNC_COMPOSITE:
if (resultTupleDesc)
*resultTupleDesc = lookup_rowtype_tupdesc_copy(rettype, -1);
/* Named composite types can't have any polymorphic columns */
break;
case TYPEFUNC_SCALAR:
break;
case TYPEFUNC_RECORD:
/* We must get the tupledesc from call context */
if (rsinfo && IsA(rsinfo, ReturnSetInfo) &&
rsinfo->expectedDesc != NULL)
{
result = TYPEFUNC_COMPOSITE;
if (resultTupleDesc)
*resultTupleDesc = rsinfo->expectedDesc;
/* Assume no polymorphic columns here, either */
}
break;
default:
break;
}
caql_endscan(pcqCtx);
return result;
}
/*
* Given the result tuple descriptor for a function with OUT parameters,
* replace any polymorphic columns (ANYELEMENT etc) with correct data types
* deduced from the input arguments. Returns TRUE if able to deduce all types,
* FALSE if not.
*/
static bool
resolve_polymorphic_tupdesc(TupleDesc tupdesc, oidvector *declared_args,
Node *call_expr)
{
int natts = tupdesc->natts;
int nargs = declared_args->dim1;
bool have_anyelement_result = false;
bool have_anyarray_result = false;
Oid anyelement_type = InvalidOid;
Oid anyarray_type = InvalidOid;
int i;
/* See if there are any polymorphic outputs; quick out if not */
for (i = 0; i < natts; i++)
{
switch (tupdesc->attrs[i]->atttypid)
{
case ANYELEMENTOID:
have_anyelement_result = true;
break;
case ANYARRAYOID:
have_anyarray_result = true;
break;
default:
break;
}
}
if (!have_anyelement_result && !have_anyarray_result)
return true;
/*
* Otherwise, extract actual datatype(s) from input arguments. (We assume
* the parser already validated consistency of the arguments.)
*/
if (!call_expr)
return false; /* no hope */
for (i = 0; i < nargs; i++)
{
switch (declared_args->values[i])
{
case ANYELEMENTOID:
if (!OidIsValid(anyelement_type))
anyelement_type = get_call_expr_argtype(call_expr, i);
break;
case ANYARRAYOID:
if (!OidIsValid(anyarray_type))
anyarray_type = get_call_expr_argtype(call_expr, i);
break;
default:
break;
}
}
/* If nothing found, parser messed up */
if (!OidIsValid(anyelement_type) && !OidIsValid(anyarray_type))
return false;
/* If needed, deduce one polymorphic type from the other */
if (have_anyelement_result && !OidIsValid(anyelement_type))
anyelement_type = resolve_generic_type(ANYELEMENTOID,
anyarray_type,
ANYARRAYOID);
if (have_anyarray_result && !OidIsValid(anyarray_type))
anyarray_type = resolve_generic_type(ANYARRAYOID,
anyelement_type,
ANYELEMENTOID);
/* And finally replace the tuple column types as needed */
for (i = 0; i < natts; i++)
{
switch (tupdesc->attrs[i]->atttypid)
{
case ANYELEMENTOID:
TupleDescInitEntry(tupdesc, i + 1,
NameStr(tupdesc->attrs[i]->attname),
anyelement_type,
-1,
0);
break;
case ANYARRAYOID:
TupleDescInitEntry(tupdesc, i + 1,
NameStr(tupdesc->attrs[i]->attname),
anyarray_type,
-1,
0);
break;
default:
break;
}
}
return true;
}
/*
* Given the declared argument types and modes for a function, replace any
* polymorphic types (ANYELEMENT etc) with correct data types deduced from the
* input arguments. Returns TRUE if able to deduce all types, FALSE if not.
* This is the same logic as resolve_polymorphic_tupdesc, but with a different
* argument representation.
*
* argmodes may be NULL, in which case all arguments are assumed to be IN mode.
*/
bool
resolve_polymorphic_argtypes(int numargs, Oid *argtypes, char *argmodes,
Node *call_expr)
{
bool have_anyelement_result = false;
bool have_anyarray_result = false;
Oid anyelement_type = InvalidOid;
Oid anyarray_type = InvalidOid;
int inargno;
int i;
/* First pass: resolve polymorphic inputs, check for outputs */
inargno = 0;
for (i = 0; i < numargs; i++)
{
char argmode = argmodes ? argmodes[i] : PROARGMODE_IN;
switch (argtypes[i])
{
case ANYELEMENTOID:
if (argmode == PROARGMODE_OUT || argmode == PROARGMODE_TABLE)
have_anyelement_result = true;
else
{
if (!OidIsValid(anyelement_type))
{
anyelement_type = get_call_expr_argtype(call_expr,
inargno);
if (!OidIsValid(anyelement_type))
return false;
}
argtypes[i] = anyelement_type;
}
break;
case ANYARRAYOID:
if (argmode == PROARGMODE_OUT || argmode == PROARGMODE_TABLE)
have_anyarray_result = true;
else
{
if (!OidIsValid(anyarray_type))
{
anyarray_type = get_call_expr_argtype(call_expr,
inargno);
if (!OidIsValid(anyarray_type))
return false;
}
argtypes[i] = anyarray_type;
}
break;
default:
break;
}
if (argmode != PROARGMODE_OUT && argmode != PROARGMODE_TABLE)
inargno++;
}
/* Done? */
if (!have_anyelement_result && !have_anyarray_result)
return true;
/* If no input polymorphics, parser messed up */
if (!OidIsValid(anyelement_type) && !OidIsValid(anyarray_type))
return false;
/* If needed, deduce one polymorphic type from the other */
if (have_anyelement_result && !OidIsValid(anyelement_type))
anyelement_type = resolve_generic_type(ANYELEMENTOID,
anyarray_type,
ANYARRAYOID);
if (have_anyarray_result && !OidIsValid(anyarray_type))
anyarray_type = resolve_generic_type(ANYARRAYOID,
anyelement_type,
ANYELEMENTOID);
/* And finally replace the output column types as needed */
for (i = 0; i < numargs; i++)
{
switch (argtypes[i])
{
case ANYELEMENTOID:
argtypes[i] = anyelement_type;
break;
case ANYARRAYOID:
argtypes[i] = anyarray_type;
break;
default:
break;
}
}
return true;
}
/*
* get_type_func_class
* Given the type OID, obtain its TYPEFUNC classification.
*
* This is intended to centralize a bunch of formerly ad-hoc code for
* classifying types. The categories used here are useful for deciding
* how to handle functions returning the datatype.
*/
static TypeFuncClass
get_type_func_class(Oid typid)
{
switch (get_typtype(typid))
{
case 'c':
return TYPEFUNC_COMPOSITE;
case 'b':
case 'd':
return TYPEFUNC_SCALAR;
case 'p':
if (typid == RECORDOID)
return TYPEFUNC_RECORD;
/*
* We treat VOID and CSTRING as legitimate scalar datatypes,
* mostly for the convenience of the JDBC driver (which wants to
* be able to do "SELECT * FROM foo()" for all legitimately
* user-callable functions).
*/
if (typid == VOIDOID || typid == CSTRINGOID)
return TYPEFUNC_SCALAR;
return TYPEFUNC_OTHER;
}
/* shouldn't get here, probably */
return TYPEFUNC_OTHER;
}
/*
* get_func_arg_info
*
* Fetch info about the argument types, names, and IN/OUT modes from the
* pg_proc tuple. Return value is the total number of arguments.
* Other results are palloc'd. *p_argtypes is always filled in, but
* *p_argnames and *p_argmodes will be set NULL in the default cases
* (no names, and all IN arguments, respectively).
*
* Note that this function simply fetches what is in the pg_proc tuple;
* it doesn't do any interpretation of polymorphic types.
*/
int
get_func_arg_info(HeapTuple procTup,
Oid **p_argtypes, char ***p_argnames, char **p_argmodes)
{
Form_pg_proc procStruct = (Form_pg_proc) GETSTRUCT(procTup);
Datum proallargtypes;
Datum proargmodes;
Datum proargnames;
bool isNull;
ArrayType *arr;
int numargs;
Datum *elems;
int nelems;
int i;
/* First discover the total number of parameters and get their types */
proallargtypes = SysCacheGetAttr(PROCOID, procTup,
Anum_pg_proc_proallargtypes,
&isNull);
if (!isNull)
{
/*
* We expect the arrays to be 1-D arrays of the right types; verify
* that. For the OID and char arrays, we don't need to use
* deconstruct_array() since the array data is just going to look like
* a C array of values.
*/
arr = DatumGetArrayTypeP(proallargtypes); /* ensure not toasted */
numargs = ARR_DIMS(arr)[0];
if (ARR_NDIM(arr) != 1 ||
numargs < 0 ||
ARR_HASNULL(arr) ||
ARR_ELEMTYPE(arr) != OIDOID)
elog(ERROR, "proallargtypes is not a 1-D Oid array");
Assert(numargs >= procStruct->pronargs);
*p_argtypes = (Oid *) palloc(numargs * sizeof(Oid));
memcpy(*p_argtypes, ARR_DATA_PTR(arr),
numargs * sizeof(Oid));
}
else
{
/* If no proallargtypes, use proargtypes */
numargs = procStruct->proargtypes.dim1;
Assert(numargs == procStruct->pronargs);
*p_argtypes = (Oid *) palloc(numargs * sizeof(Oid));
memcpy(*p_argtypes, procStruct->proargtypes.values,
numargs * sizeof(Oid));
}
/* Get argument names, if available */
proargnames = SysCacheGetAttr(PROCOID, procTup,
Anum_pg_proc_proargnames,
&isNull);
if (isNull)
*p_argnames = NULL;
else
{
deconstruct_array(DatumGetArrayTypeP(proargnames),
TEXTOID, -1, false, 'i',
&elems, NULL, &nelems);
if (nelems != numargs) /* should not happen */
elog(ERROR, "proargnames must have the same number of elements as the function has arguments");
*p_argnames = (char **) palloc(sizeof(char *) * numargs);
for (i = 0; i < numargs; i++)
(*p_argnames)[i] = DatumGetCString(DirectFunctionCall1(textout,
elems[i]));
}
/* Get argument modes, if available */
proargmodes = SysCacheGetAttr(PROCOID, procTup,
Anum_pg_proc_proargmodes,
&isNull);
if (isNull)
*p_argmodes = NULL;
else
{
arr = DatumGetArrayTypeP(proargmodes); /* ensure not toasted */
if (ARR_NDIM(arr) != 1 ||
ARR_DIMS(arr)[0] != numargs ||
ARR_HASNULL(arr) ||
ARR_ELEMTYPE(arr) != CHAROID)
elog(ERROR, "proargmodes is not a 1-D char array");
*p_argmodes = (char *) palloc(numargs * sizeof(char));
memcpy(*p_argmodes, ARR_DATA_PTR(arr),
numargs * sizeof(char));
}
return numargs;
}
/*
* get_func_result_name
*
* If the function has exactly one output parameter, and that parameter
* is named, return the name (as a palloc'd string). Else return NULL.
*
* This is used to determine the default output column name for functions
* returning scalar types.
*/
char *
get_func_result_name(Oid functionId)
{
char *result;
HeapTuple procTuple;
Datum proargmodes;
Datum proargnames;
bool isnull;
ArrayType *arr;
int numargs;
char *argmodes;
Datum *argnames;
int numoutargs;
int nargnames;
int i;
cqContext *pcqCtx;
/* First fetch the function's pg_proc row */
pcqCtx = caql_beginscan(
NULL,
cql("SELECT * FROM pg_proc "
" WHERE oid = :1 ",
ObjectIdGetDatum(functionId)));
procTuple = caql_getnext(pcqCtx);
if (!HeapTupleIsValid(procTuple))
elog(ERROR, "cache lookup failed for function %u", functionId);
/* If there are no named OUT parameters, return NULL */
if (heap_attisnull(procTuple, Anum_pg_proc_proargmodes) ||
heap_attisnull(procTuple, Anum_pg_proc_proargnames))
result = NULL;
else
{
/* Get the data out of the tuple */
proargmodes = caql_getattr(pcqCtx,
Anum_pg_proc_proargmodes,
&isnull);
Assert(!isnull);
proargnames = caql_getattr(pcqCtx,
Anum_pg_proc_proargnames,
&isnull);
Assert(!isnull);
/*
* We expect the arrays to be 1-D arrays of the right types; verify
* that. For the char array, we don't need to use deconstruct_array()
* since the array data is just going to look like a C array of
* values.
*/
arr = DatumGetArrayTypeP(proargmodes); /* ensure not toasted */
numargs = ARR_DIMS(arr)[0];
if (ARR_NDIM(arr) != 1 ||
numargs < 0 ||
ARR_HASNULL(arr) ||
ARR_ELEMTYPE(arr) != CHAROID)
elog(ERROR, "proargmodes is not a 1-D char array");
argmodes = (char *) ARR_DATA_PTR(arr);
arr = DatumGetArrayTypeP(proargnames); /* ensure not toasted */
if (ARR_NDIM(arr) != 1 ||
ARR_DIMS(arr)[0] != numargs ||
ARR_HASNULL(arr) ||
ARR_ELEMTYPE(arr) != TEXTOID)
elog(ERROR, "proargnames is not a 1-D text array");
deconstruct_array(arr, TEXTOID, -1, false, 'i',
&argnames, NULL, &nargnames);
Assert(nargnames == numargs);
/* scan for output argument(s) */
result = NULL;
numoutargs = 0;
for (i = 0; i < numargs; i++)
{
if (argmodes[i] == PROARGMODE_IN ||
argmodes[i] == PROARGMODE_VARIADIC)
continue;
Assert(argmodes[i] == PROARGMODE_OUT ||
argmodes[i] == PROARGMODE_INOUT ||
argmodes[i] == PROARGMODE_TABLE);
if (++numoutargs > 1)
{
/* multiple out args, so forget it */
result = NULL;
break;
}
result = DatumGetCString(DirectFunctionCall1(textout,
argnames[i]));
if (result == NULL || result[0] == '\0')
{
/* Parameter is not named, so forget it */
result = NULL;
break;
}
}
}
caql_endscan(pcqCtx);
return result;
}
/*
* build_function_result_tupdesc_t
*
* Given a pg_proc row for a function, return a tuple descriptor for the
* result rowtype, or NULL if the function does not have OUT parameters.
*
* Note that this does not handle resolution of ANYELEMENT/ANYARRAY types;
* that is deliberate.
*/
TupleDesc
build_function_result_tupdesc_t(HeapTuple procTuple)
{
Form_pg_proc procform = (Form_pg_proc) GETSTRUCT(procTuple);
Datum proallargtypes;
Datum proargmodes;
Datum proargnames;
bool isnull;
/* Return NULL if the function isn't declared to return RECORD */
if (procform->prorettype != RECORDOID)
return NULL;
/* If there are no OUT parameters, return NULL */
if (heap_attisnull(procTuple, Anum_pg_proc_proallargtypes) ||
heap_attisnull(procTuple, Anum_pg_proc_proargmodes))
return NULL;
/* Get the data out of the tuple */
proallargtypes = SysCacheGetAttr(PROCOID, procTuple,
Anum_pg_proc_proallargtypes,
&isnull);
Assert(!isnull);
proargmodes = SysCacheGetAttr(PROCOID, procTuple,
Anum_pg_proc_proargmodes,
&isnull);
Assert(!isnull);
proargnames = SysCacheGetAttr(PROCOID, procTuple,
Anum_pg_proc_proargnames,
&isnull);
if (isnull)
proargnames = PointerGetDatum(NULL); /* just to be sure */
return build_function_result_tupdesc_d(proallargtypes,
proargmodes,
proargnames);
}
/*
* build_function_result_tupdesc_d
*
* Build a RECORD function's tupledesc from the pg_proc proallargtypes,
* proargmodes, and proargnames arrays. This is split out for the
* convenience of ProcedureCreate, which needs to be able to compute the
* tupledesc before actually creating the function.
*
* Returns NULL if there are not at least two OUT or INOUT arguments.
*/
TupleDesc
build_function_result_tupdesc_d(Datum proallargtypes,
Datum proargmodes,
Datum proargnames)
{
TupleDesc desc;
ArrayType *arr;
int numargs;
Oid *argtypes;
char *argmodes;
Datum *argnames = NULL;
Oid *outargtypes;
char **outargnames;
int numoutargs;
int nargnames;
int i;
/* Can't have output args if columns are null */
if (proallargtypes == PointerGetDatum(NULL) ||
proargmodes == PointerGetDatum(NULL))
return NULL;
/*
* We expect the arrays to be 1-D arrays of the right types; verify that.
* For the OID and char arrays, we don't need to use deconstruct_array()
* since the array data is just going to look like a C array of values.
*/
arr = DatumGetArrayTypeP(proallargtypes); /* ensure not toasted */
numargs = ARR_DIMS(arr)[0];
if (ARR_NDIM(arr) != 1 ||
numargs < 0 ||
ARR_HASNULL(arr) ||
ARR_ELEMTYPE(arr) != OIDOID)
elog(ERROR, "proallargtypes is not a 1-D Oid array");
argtypes = (Oid *) ARR_DATA_PTR(arr);
arr = DatumGetArrayTypeP(proargmodes); /* ensure not toasted */
if (ARR_NDIM(arr) != 1 ||
ARR_DIMS(arr)[0] != numargs ||
ARR_HASNULL(arr) ||
ARR_ELEMTYPE(arr) != CHAROID)
elog(ERROR, "proargmodes is not a 1-D char array");
argmodes = (char *) ARR_DATA_PTR(arr);
if (proargnames != PointerGetDatum(NULL))
{
arr = DatumGetArrayTypeP(proargnames); /* ensure not toasted */
if (ARR_NDIM(arr) != 1 ||
ARR_DIMS(arr)[0] != numargs ||
ARR_HASNULL(arr) ||
ARR_ELEMTYPE(arr) != TEXTOID)
elog(ERROR, "proargnames is not a 1-D text array");
deconstruct_array(arr, TEXTOID, -1, false, 'i',
&argnames, NULL, &nargnames);
Assert(nargnames == numargs);
}
/* zero elements probably shouldn't happen, but handle it gracefully */
if (numargs <= 0)
return NULL;
/* extract output-argument types and names */
outargtypes = (Oid *) palloc(numargs * sizeof(Oid));
outargnames = (char **) palloc(numargs * sizeof(char *));
numoutargs = 0;
for (i = 0; i < numargs; i++)
{
char *pname;
switch (argmodes[i])
{
/* input modes */
case PROARGMODE_IN:
case PROARGMODE_VARIADIC:
break;
/* input and output */
case PROARGMODE_INOUT:
/* fallthrough */
/* output modes */
case PROARGMODE_OUT:
case PROARGMODE_TABLE:
outargtypes[numoutargs] = argtypes[i];
if (argnames)
pname = DatumGetCString(DirectFunctionCall1(textout, argnames[i]));
else
pname = NULL;
if (pname == NULL || pname[0] == '\0')
{
/* Parameter is not named, so gin up a column name */
pname = (char *) palloc(32);
snprintf(pname, 32, "column%d", numoutargs + 1);
}
outargnames[numoutargs] = pname;
numoutargs++;
}
}
/*
* If there is no output argument, or only one, the function does not
* return tuples.
*/
if (numoutargs < 2)
return NULL;
desc = CreateTemplateTupleDesc(numoutargs, false);
for (i = 0; i < numoutargs; i++)
{
TupleDescInitEntry(desc, i + 1,
outargnames[i],
outargtypes[i],
-1,
0);
}
return desc;
}
/*
* RelationNameGetTupleDesc
*
* Given a (possibly qualified) relation name, build a TupleDesc.
*
* Note: while this works as advertised, it's seldom the best way to
* build a tupdesc for a function's result type. It's kept around
* only for backwards compatibility with existing user-written code.
*/
TupleDesc
RelationNameGetTupleDesc(const char *relname)
{
RangeVar *relvar;
Relation rel;
TupleDesc tupdesc;
List *relname_list;
/* Open relation and copy the tuple description */
relname_list = stringToQualifiedNameList(relname, "RelationNameGetTupleDesc");
relvar = makeRangeVarFromNameList(relname_list);
rel = relation_openrv(relvar, AccessShareLock);
tupdesc = CreateTupleDescCopy(RelationGetDescr(rel));
relation_close(rel, AccessShareLock);
return tupdesc;
}
/*
* TypeGetTupleDesc
*
* Given a type Oid, build a TupleDesc. (In most cases you should be
* using get_call_result_type or one of its siblings instead of this
* routine, so that you can handle OUT parameters, RECORD result type,
* and polymorphic results.)
*
* If the type is composite, *and* a colaliases List is provided, *and*
* the List is of natts length, use the aliases instead of the relation
* attnames. (NB: this usage is deprecated since it may result in
* creation of unnecessary transient record types.)
*
* If the type is a base type, a single item alias List is required.
*/
TupleDesc
TypeGetTupleDesc(Oid typeoid, List *colaliases)
{
TypeFuncClass functypclass = get_type_func_class(typeoid);
TupleDesc tupdesc = NULL;
/*
* Build a suitable tupledesc representing the output rows
*/
if (functypclass == TYPEFUNC_COMPOSITE)
{
/* Composite data type, e.g. a table's row type */
tupdesc = lookup_rowtype_tupdesc_copy(typeoid, -1);
if (colaliases != NIL)
{
int natts = tupdesc->natts;
int varattno;
/* does the list length match the number of attributes? */
if (list_length(colaliases) != natts)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("number of aliases does not match number of columns")));
/* OK, use the aliases instead */
for (varattno = 0; varattno < natts; varattno++)
{
char *label = strVal(list_nth(colaliases, varattno));
if (label != NULL)
namestrcpy(&(tupdesc->attrs[varattno]->attname), label);
}
/* The tuple type is now an anonymous record type */
tupdesc->tdtypeid = RECORDOID;
tupdesc->tdtypmod = -1;
}
}
else if (functypclass == TYPEFUNC_SCALAR)
{
/* Base data type, i.e. scalar */
char *attname;
/* the alias list is required for base types */
if (colaliases == NIL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("no column alias was provided")));
/* the alias list length must be 1 */
if (list_length(colaliases) != 1)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("number of aliases does not match number of columns")));
/* OK, get the column alias */
attname = strVal(linitial(colaliases));
tupdesc = CreateTemplateTupleDesc(1, false);
TupleDescInitEntry(tupdesc,
(AttrNumber) 1,
attname,
typeoid,
-1,
0);
}
else if (functypclass == TYPEFUNC_RECORD)
{
/* XXX can't support this because typmod wasn't passed in ... */
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("could not determine row description for function returning record")));
}
else
{
/* crummy error message, but parser should have caught this */
elog(ERROR, "function in FROM has unsupported return type");
}
return tupdesc;
}