blob: dbb523ed838c0bd0170761fa9d69dee039a0d21f [file] [log] [blame]
/*-------------------------------------------------------------------------
*
* timestamp.c
* Functions for the built-in SQL92 types "timestamp" and "interval".
*
* Portions Copyright (c) 1996-2009, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/timestamp.c,v 1.200 2009/06/01 23:55:15 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <sys/time.h>
#include "access/hash.h"
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "miscadmin.h"
#include "parser/scansup.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/datetime.h"
/*
* gcc's -ffast-math switch breaks routines that expect exact results from
* expressions like timeval / SECS_PER_HOUR, where timeval is double.
*/
#ifdef __FAST_MATH__
#error -ffast-math is known to break this code
#endif
/* Set at postmaster start */
TimestampTz PgStartTime;
/* Set at configuration reload */
TimestampTz PgReloadTime;
typedef struct
{
Timestamp current;
Timestamp finish;
Interval step;
int step_sign;
} generate_series_timestamp_fctx;
typedef struct
{
TimestampTz current;
TimestampTz finish;
Interval step;
int step_sign;
} generate_series_timestamptz_fctx;
static TimeOffset time2t(const int hour, const int min, const int sec, const fsec_t fsec);
static void EncodeSpecialTimestamp(Timestamp dt, char *str);
static Timestamp dt2local(Timestamp dt, int timezone);
static void AdjustTimestampForTypmod(Timestamp *time, int32 typmod);
static void AdjustIntervalForTypmod(Interval *interval, int32 typmod);
static TimestampTz timestamp2timestamptz(Timestamp timestamp);
static ArrayType *interval_amalg_demalg(ArrayType *aTransArray,
ArrayType *bTransArray,
bool is_amalg);
/* common code for timestamptypmodin and timestamptztypmodin */
static int32
anytimestamp_typmodin(bool istz, ArrayType *ta)
{
int32 typmod;
int32 *tl;
int n;
tl = ArrayGetIntegerTypmods(ta, &n);
/*
* we're not too tense about good error message here because grammar
* shouldn't allow wrong number of modifiers for TIMESTAMP
*/
if (n != 1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid type modifier"),
errOmitLocation(true),
errOmitLocation(true)));
if (*tl < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("TIMESTAMP(%d)%s precision must not be negative",
*tl, (istz ? " WITH TIME ZONE" : "")),
errOmitLocation(true)));
if (*tl > MAX_TIMESTAMP_PRECISION)
{
ereport(WARNING,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("TIMESTAMP(%d)%s precision reduced to maximum allowed, %d",
*tl, (istz ? " WITH TIME ZONE" : ""),
MAX_TIMESTAMP_PRECISION),
errOmitLocation(true)));
typmod = MAX_TIMESTAMP_PRECISION;
}
else
typmod = *tl;
return typmod;
}
/* common code for timestamptypmodout and timestamptztypmodout */
static char *
anytimestamp_typmodout(bool istz, int32 typmod)
{
char *res = (char *) palloc(64);
const char *tz = istz ? " with time zone" : " without time zone";
if (typmod >= 0)
snprintf(res, 64, "(%d)%s", (int) typmod, tz);
else
snprintf(res, 64, "%s", tz);
return res;
}
/*****************************************************************************
* USER I/O ROUTINES *
*****************************************************************************/
/* timestamp_in()
* Convert a string to internal form.
*/
Datum
timestamp_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Timestamp result;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
int tz;
int dtype = 0;
int nf;
int dterr;
char *field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[MAXDATELEN + MAXDATEFIELDS];
dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz);
if (dterr != 0)
DateTimeParseError(dterr, str, "timestamp");
switch (dtype)
{
case DTK_DATE:
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: \"%s\"", str),
errOmitLocation(true)));
break;
case DTK_EPOCH:
result = SetEpochTimestamp();
break;
case DTK_LATE:
TIMESTAMP_NOEND(result);
break;
case DTK_EARLY:
TIMESTAMP_NOBEGIN(result);
break;
case DTK_INVALID:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("date/time value \"%s\" is no longer supported", str),
errOmitLocation(true)));
TIMESTAMP_NOEND(result);
break;
default:
elog(ERROR, "unexpected dtype %d while parsing timestamp \"%s\"",
dtype, str);
TIMESTAMP_NOEND(result);
}
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMP(result);
}
/* timestamp_out()
* Convert a timestamp to external form.
*/
Datum
timestamp_out(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
char *result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
char *tzn = NULL;
char buf[MAXDATELEN + 1];
if (TIMESTAMP_NOT_FINITE(timestamp))
EncodeSpecialTimestamp(timestamp, buf);
else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) == 0)
EncodeDateTime(tm, fsec, NULL, &tzn, DateStyle, buf);
else
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* timestamp_recv - converts external binary format to timestamp
*
* We make no attempt to provide compatibility between int and float
* timestamp representations ...
*/
Datum
timestamp_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Timestamp timestamp;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
#ifdef HAVE_INT64_TIMESTAMP
timestamp = (Timestamp) pq_getmsgint64(buf);
#else
timestamp = (Timestamp) pq_getmsgfloat8(buf);
#endif
/* rangecheck: see if timestamp_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
/* ok */ ;
else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
AdjustTimestampForTypmod(&timestamp, typmod);
PG_RETURN_TIMESTAMP(timestamp);
}
/*
* timestamp_send - converts timestamp to binary format
*/
Datum
timestamp_send(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
#else
pq_sendfloat8(&buf, timestamp);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum
timestamptypmodin(PG_FUNCTION_ARGS)
{
ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0);
PG_RETURN_INT32(anytimestamp_typmodin(false, ta));
}
Datum
timestamptypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
PG_RETURN_CSTRING(anytimestamp_typmodout(false, typmod));
}
/* timestamp_scale()
* Adjust time type for specified scale factor.
* Used by PostgreSQL type system to stuff columns.
*/
Datum
timestamp_scale(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
int32 typmod = PG_GETARG_INT32(1);
Timestamp result;
result = timestamp;
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMP(result);
}
static void
AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
{
#ifdef HAVE_INT64_TIMESTAMP
static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
INT64CONST(10000),
INT64CONST(1000),
INT64CONST(100),
INT64CONST(10),
INT64CONST(1)
};
static const int64 TimestampOffsets[MAX_TIMESTAMP_PRECISION + 1] = {
INT64CONST(500000),
INT64CONST(50000),
INT64CONST(5000),
INT64CONST(500),
INT64CONST(50),
INT64CONST(5),
INT64CONST(0)
};
#else
static const double TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
1,
10,
100,
1000,
10000,
100000,
1000000
};
#endif
if (!TIMESTAMP_NOT_FINITE(*time)
&& (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION))
{
if (typmod < 0 || typmod > MAX_TIMESTAMP_PRECISION)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp(%d) precision must be between %d and %d",
typmod, 0, MAX_TIMESTAMP_PRECISION),
errOmitLocation(true)));
/*
* Note: this round-to-nearest code is not completely consistent about
* rounding values that are exactly halfway between integral values.
* On most platforms, rint() will implement round-to-nearest-even, but
* the integer code always rounds up (away from zero). Is it worth
* trying to be consistent?
*/
#ifdef HAVE_INT64_TIMESTAMP
if (*time >= INT64CONST(0))
{
*time = ((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) *
TimestampScales[typmod];
}
else
{
*time = -((((-*time) + TimestampOffsets[typmod]) / TimestampScales[typmod])
* TimestampScales[typmod]);
}
#else
*time = rint((double) *time * TimestampScales[typmod]) / TimestampScales[typmod];
#endif
}
}
/* timestamptz_in()
* Convert a string to internal form.
*/
Datum
timestamptz_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
TimestampTz result;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
int tz;
int dtype = 0;
int nf;
int dterr;
char *field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[MAXDATELEN + MAXDATEFIELDS];
dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz);
if (dterr != 0)
DateTimeParseError(dterr, str, "timestamp with time zone");
switch (dtype)
{
case DTK_DATE:
if (tm2timestamp(tm, fsec, &tz, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: \"%s\"", str),
errOmitLocation(true)));
break;
case DTK_EPOCH:
result = SetEpochTimestamp();
break;
case DTK_LATE:
TIMESTAMP_NOEND(result);
break;
case DTK_EARLY:
TIMESTAMP_NOBEGIN(result);
break;
case DTK_INVALID:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("date/time value \"%s\" is no longer supported", str),
errOmitLocation(true)));
TIMESTAMP_NOEND(result);
break;
default:
elog(ERROR, "unexpected dtype %d while parsing timestamptz \"%s\"",
dtype, str);
TIMESTAMP_NOEND(result);
}
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMPTZ(result);
}
/* timestamptz_out()
* Convert a timestamp to external form.
*/
Datum
timestamptz_out(PG_FUNCTION_ARGS)
{
TimestampTz dt = PG_GETARG_TIMESTAMPTZ(0);
char *result;
int tz;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
char *tzn;
char buf[MAXDATELEN + 1];
if (TIMESTAMP_NOT_FINITE(dt))
EncodeSpecialTimestamp(dt, buf);
else if (timestamp2tm(dt, &tz, tm, &fsec, &tzn, NULL) == 0)
EncodeDateTime(tm, fsec, &tz, &tzn, DateStyle, buf);
else
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* timestamptz_recv - converts external binary format to timestamptz
*
* We make no attempt to provide compatibility between int and float
* timestamp representations ...
*/
Datum
timestamptz_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
TimestampTz timestamp;
int tz;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
char *tzn;
#ifdef HAVE_INT64_TIMESTAMP
timestamp = (TimestampTz) pq_getmsgint64(buf);
#else
timestamp = (TimestampTz) pq_getmsgfloat8(buf);
#endif
/* rangecheck: see if timestamptz_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
/* ok */ ;
else if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
AdjustTimestampForTypmod(&timestamp, typmod);
PG_RETURN_TIMESTAMPTZ(timestamp);
}
/*
* timestamptz_send - converts timestamptz to binary format
*/
Datum
timestamptz_send(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, timestamp);
#else
pq_sendfloat8(&buf, timestamp);
#endif
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum
timestamptztypmodin(PG_FUNCTION_ARGS)
{
ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0);
PG_RETURN_INT32(anytimestamp_typmodin(true, ta));
}
Datum
timestamptztypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
PG_RETURN_CSTRING(anytimestamp_typmodout(true, typmod));
}
/* timestamptz_scale()
* Adjust time type for specified scale factor.
* Used by PostgreSQL type system to stuff columns.
*/
Datum
timestamptz_scale(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
int32 typmod = PG_GETARG_INT32(1);
TimestampTz result;
result = timestamp;
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMPTZ(result);
}
/* interval_in()
* Convert a string to internal form.
*
* External format(s):
* Uses the generic date/time parsing and decoding routines.
*/
Datum
interval_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Interval *result;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
int dtype;
int nf;
int range;
int dterr;
char *field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[256];
tm->tm_year = 0;
tm->tm_mon = 0;
tm->tm_mday = 0;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
fsec = 0;
if (typmod >= 0)
range = INTERVAL_RANGE(typmod);
else
range = INTERVAL_FULL_RANGE;
dterr = ParseDateTime(str, workbuf, sizeof(workbuf), field,
ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeInterval(field, ftype, nf, range,
&dtype, tm, &fsec);
/* if those functions think it's a bad format, try ISO8601 style */
if (dterr == DTERR_BAD_FORMAT)
dterr = DecodeISO8601Interval(str,
&dtype, tm, &fsec);
if (dterr != 0)
{
if (dterr == DTERR_FIELD_OVERFLOW)
dterr = DTERR_INTERVAL_OVERFLOW;
DateTimeParseError(dterr, str, "interval");
}
result = (Interval *) palloc(sizeof(Interval));
switch (dtype)
{
case DTK_DELTA:
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range"),
errOmitLocation(true)));
break;
case DTK_INVALID:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("date/time value \"%s\" is no longer supported", str),
errOmitLocation(true)));
break;
default:
elog(ERROR, "unexpected dtype %d while parsing interval \"%s\"",
dtype, str);
}
AdjustIntervalForTypmod(result, typmod);
PG_RETURN_INTERVAL_P(result);
}
/* interval_out()
* Convert a time span to external form.
*/
Datum
interval_out(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
char *result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
char buf[MAXDATELEN + 1];
if (interval2tm(*span, tm, &fsec) != 0)
elog(ERROR, "could not convert interval to tm");
EncodeInterval(tm, fsec, IntervalStyle, buf);
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* interval_recv - converts external binary format to interval
*/
Datum
interval_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Interval *interval;
interval = (Interval *) palloc(sizeof(Interval));
#ifdef HAVE_INT64_TIMESTAMP
interval->time = pq_getmsgint64(buf);
#else
interval->time = pq_getmsgfloat8(buf);
#endif
interval->day = pq_getmsgint(buf, sizeof(interval->day));
interval->month = pq_getmsgint(buf, sizeof(interval->month));
AdjustIntervalForTypmod(interval, typmod);
PG_RETURN_INTERVAL_P(interval);
}
/*
* interval_send - converts interval to binary format
*/
Datum
interval_send(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
StringInfoData buf;
pq_begintypsend(&buf);
#ifdef HAVE_INT64_TIMESTAMP
pq_sendint64(&buf, interval->time);
#else
pq_sendfloat8(&buf, interval->time);
#endif
pq_sendint(&buf, interval->day, sizeof(interval->day));
pq_sendint(&buf, interval->month, sizeof(interval->month));
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum
intervaltypmodin(PG_FUNCTION_ARGS)
{
ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0);
int32 *tl;
int n;
int32 typmod;
tl = ArrayGetIntegerTypmods(ta, &n);
/*
* tl[0] - interval range (fields bitmask) tl[1] - precision (optional)
*
* Note we must validate tl[0] even though it's normally guaranteed
* correct by the grammar --- consider SELECT 'foo'::"interval"(1000).
*/
if (n > 0)
{
switch (tl[0])
{
case INTERVAL_MASK(YEAR):
case INTERVAL_MASK(MONTH):
case INTERVAL_MASK(DAY):
case INTERVAL_MASK(HOUR):
case INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(SECOND):
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_FULL_RANGE:
/* all OK */
break;
default:
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid INTERVAL type modifier"),
errOmitLocation(true)));
}
}
if (n == 1)
{
if (tl[0] != INTERVAL_FULL_RANGE)
typmod = INTERVAL_TYPMOD(INTERVAL_FULL_PRECISION, tl[0]);
else
typmod = -1;
}
else if (n == 2)
{
if (tl[1] < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("INTERVAL(%d) precision must not be negative",
tl[1]),
errOmitLocation(true)));
if (tl[1] > MAX_INTERVAL_PRECISION)
{
ereport(WARNING,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("INTERVAL(%d) precision reduced to maximum allowed, %d",
tl[1], MAX_INTERVAL_PRECISION),
errOmitLocation(true)));
typmod = INTERVAL_TYPMOD(MAX_INTERVAL_PRECISION, tl[0]);
}
else
typmod = INTERVAL_TYPMOD(tl[1], tl[0]);
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid INTERVAL type modifier"),
errOmitLocation(true)));
typmod = 0; /* keep compiler quiet */
}
PG_RETURN_INT32(typmod);
}
Datum
intervaltypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
char *res = (char *) palloc(64);
int fields;
int precision;
const char *fieldstr;
if (typmod < 0)
{
*res = '\0';
PG_RETURN_CSTRING(res);
}
fields = INTERVAL_RANGE(typmod);
precision = INTERVAL_PRECISION(typmod);
switch (fields)
{
case INTERVAL_MASK(YEAR):
fieldstr = " year";
break;
case INTERVAL_MASK(MONTH):
fieldstr = " month";
break;
case INTERVAL_MASK(DAY):
fieldstr = " day";
break;
case INTERVAL_MASK(HOUR):
fieldstr = " hour";
break;
case INTERVAL_MASK(MINUTE):
fieldstr = " minute";
break;
case INTERVAL_MASK(SECOND):
fieldstr = " second";
break;
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
fieldstr = " year to month";
break;
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
fieldstr = " day to hour";
break;
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
fieldstr = " day to minute";
break;
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
fieldstr = " day to second";
break;
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
fieldstr = " hour to minute";
break;
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
fieldstr = " hour to second";
break;
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
fieldstr = " minute to second";
break;
case INTERVAL_FULL_RANGE:
fieldstr = "";
break;
default:
elog(ERROR, "invalid INTERVAL typmod: 0x%x", typmod);
fieldstr = "";
break;
}
if (precision != INTERVAL_FULL_PRECISION)
snprintf(res, 64, "%s(%d)", fieldstr, precision);
else
snprintf(res, 64, "%s", fieldstr);
PG_RETURN_CSTRING(res);
}
/* interval_scale()
* Adjust interval type for specified fields.
* Used by PostgreSQL type system to stuff columns.
*/
Datum
interval_scale(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
int32 typmod = PG_GETARG_INT32(1);
Interval *result;
result = palloc(sizeof(Interval));
*result = *interval;
AdjustIntervalForTypmod(result, typmod);
PG_RETURN_INTERVAL_P(result);
}
/*
* Adjust interval for specified precision, in both YEAR to SECOND
* range and sub-second precision.
*/
static void
AdjustIntervalForTypmod(Interval *interval, int32 typmod)
{
#ifdef HAVE_INT64_TIMESTAMP
static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
INT64CONST(10000),
INT64CONST(1000),
INT64CONST(100),
INT64CONST(10),
INT64CONST(1)
};
static const int64 IntervalOffsets[MAX_INTERVAL_PRECISION + 1] = {
INT64CONST(500000),
INT64CONST(50000),
INT64CONST(5000),
INT64CONST(500),
INT64CONST(50),
INT64CONST(5),
INT64CONST(0)
};
#else
static const double IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
1,
10,
100,
1000,
10000,
100000,
1000000
};
#endif
/*
* Unspecified range and precision? Then not necessary to adjust. Setting
* typmod to -1 is the convention for all data types.
*/
if (typmod >= 0)
{
int range = INTERVAL_RANGE(typmod);
int precision = INTERVAL_PRECISION(typmod);
/*
* Our interpretation of intervals with a limited set of fields is
* that fields to the right of the last one specified are zeroed out,
* but those to the left of it remain valid. Thus for example there
* is no operational difference between INTERVAL YEAR TO MONTH and
* INTERVAL MONTH. In some cases we could meaningfully enforce that
* higher-order fields are zero; for example INTERVAL DAY could reject
* nonzero "month" field. However that seems a bit pointless when we
* can't do it consistently. (We cannot enforce a range limit on the
* highest expected field, since we do not have any equivalent of
* SQL's <interval leading field precision>.)
*
* Note: before PG 8.4 we interpreted a limited set of fields as
* actually causing a "modulo" operation on a given value, potentially
* losing high-order as well as low-order information. But there is
* no support for such behavior in the standard, and it seems fairly
* undesirable on data consistency grounds anyway. Now we only
* perform truncation or rounding of low-order fields.
*/
if (range == INTERVAL_FULL_RANGE)
{
/* Do nothing... */
}
else if (range == INTERVAL_MASK(YEAR))
{
interval->month = (interval->month / MONTHS_PER_YEAR) * MONTHS_PER_YEAR;
interval->day = 0;
interval->time = 0;
}
else if (range == INTERVAL_MASK(MONTH))
{
interval->day = 0;
interval->time = 0;
}
/* YEAR TO MONTH */
else if (range == (INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH)))
{
interval->day = 0;
interval->time = 0;
}
else if (range == INTERVAL_MASK(DAY))
{
interval->time = 0;
}
else if (range == INTERVAL_MASK(HOUR))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
#else
interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
#endif
}
else if (range == INTERVAL_MASK(MINUTE))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
#else
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
#endif
}
else if (range == INTERVAL_MASK(SECOND))
{
/* fractional-second rounding will be dealt with below */
}
/* DAY TO HOUR */
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR)))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
#else
interval->time = ((int) (interval->time / SECS_PER_HOUR)) * (double) SECS_PER_HOUR;
#endif
}
/* DAY TO MINUTE */
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
#else
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
#endif
}
/* DAY TO SECOND */
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE) |
INTERVAL_MASK(SECOND)))
{
/* fractional-second rounding will be dealt with below */
}
/* HOUR TO MINUTE */
else if (range == (INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
#ifdef HAVE_INT64_TIMESTAMP
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
#else
interval->time = ((int) (interval->time / SECS_PER_MINUTE)) * (double) SECS_PER_MINUTE;
#endif
}
/* HOUR TO SECOND */
else if (range == (INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE) |
INTERVAL_MASK(SECOND)))
{
/* fractional-second rounding will be dealt with below */
}
/* MINUTE TO SECOND */
else if (range == (INTERVAL_MASK(MINUTE) |
INTERVAL_MASK(SECOND)))
{
/* fractional-second rounding will be dealt with below */
}
else
elog(ERROR, "unrecognized interval typmod: %d", typmod);
/* Need to adjust subsecond precision? */
if (precision != INTERVAL_FULL_PRECISION)
{
if (precision < 0 || precision > MAX_INTERVAL_PRECISION)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval(%d) precision must be between %d and %d",
precision, 0, MAX_INTERVAL_PRECISION),
errOmitLocation(true)));
/*
* Note: this round-to-nearest code is not completely consistent
* about rounding values that are exactly halfway between integral
* values. On most platforms, rint() will implement
* round-to-nearest-even, but the integer code always rounds up
* (away from zero). Is it worth trying to be consistent?
*/
#ifdef HAVE_INT64_TIMESTAMP
if (interval->time >= INT64CONST(0))
{
interval->time = ((interval->time +
IntervalOffsets[precision]) /
IntervalScales[precision]) *
IntervalScales[precision];
}
else
{
interval->time = -(((-interval->time +
IntervalOffsets[precision]) /
IntervalScales[precision]) *
IntervalScales[precision]);
}
#else
interval->time = rint(((double) interval->time) *
IntervalScales[precision]) /
IntervalScales[precision];
#endif
}
}
}
/* EncodeSpecialTimestamp()
* Convert reserved timestamp data type to string.
*/
static void
EncodeSpecialTimestamp(Timestamp dt, char *str)
{
if (TIMESTAMP_IS_NOBEGIN(dt))
strcpy(str, EARLY);
else if (TIMESTAMP_IS_NOEND(dt))
strcpy(str, LATE);
else /* shouldn't happen */
elog(ERROR, "invalid argument for EncodeSpecialTimestamp");
}
Datum
now(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentTransactionStartTimestamp());
}
Datum
statement_timestamp(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentStatementStartTimestamp());
}
Datum
clock_timestamp(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentTimestamp());
}
Datum
pg_postmaster_start_time(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(PgStartTime);
}
/* Old version */
Datum
pgsql_postmaster_start_time(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(PgStartTime);
}
Datum
pg_conf_load_time(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(PgReloadTime);
}
/*
* GetCurrentTimestamp -- get the current operating system time
*
* Result is in the form of a TimestampTz value, and is expressed to the
* full precision of the gettimeofday() syscall
*/
TimestampTz
GetCurrentTimestamp(void)
{
TimestampTz result;
struct timeval tp;
gettimeofday(&tp, NULL);
result = (TimestampTz) tp.tv_sec -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
result = (result * USECS_PER_SEC) + tp.tv_usec;
#else
result = result + (tp.tv_usec / 1000000.0);
#endif
return result;
}
/*
* TimestampDifference -- convert the difference between two timestamps
* into integer seconds and microseconds
*
* Both inputs must be ordinary finite timestamps (in current usage,
* they'll be results from GetCurrentTimestamp()).
*
* We expect start_time <= stop_time. If not, we return zeroes; for current
* callers there is no need to be tense about which way division rounds on
* negative inputs.
*/
void
TimestampDifference(TimestampTz start_time, TimestampTz stop_time,
long *secs, int *microsecs)
{
TimestampTz diff = stop_time - start_time;
if (diff <= 0)
{
*secs = 0;
*microsecs = 0;
}
else
{
#ifdef HAVE_INT64_TIMESTAMP
*secs = (long) (diff / USECS_PER_SEC);
*microsecs = (int) (diff % USECS_PER_SEC);
#else
*secs = (long) diff;
*microsecs = (int) ((diff - *secs) * 1000000.0);
#endif
}
}
/*
* TimestampDifferenceExceeds -- report whether the difference between two
* timestamps is >= a threshold (expressed in milliseconds)
*
* Both inputs must be ordinary finite timestamps (in current usage,
* they'll be results from GetCurrentTimestamp()).
*/
bool
TimestampDifferenceExceeds(TimestampTz start_time,
TimestampTz stop_time,
int msec)
{
TimestampTz diff = stop_time - start_time;
#ifdef HAVE_INT64_TIMESTAMP
return (diff >= msec * INT64CONST(1000));
#else
return (diff * 1000.0 >= msec);
#endif
}
/*
* Convert a time_t to TimestampTz.
*
* We do not use time_t internally in Postgres, but this is provided for use
* by functions that need to interpret, say, a stat(2) result.
*
* To avoid having the function's ABI vary depending on the width of time_t,
* we declare the argument as pg_time_t, which is cast-compatible with
* time_t but always 64 bits wide (unless the platform has no 64-bit type).
* This detail should be invisible to callers, at least at source code level.
*/
TimestampTz
time_t_to_timestamptz(pg_time_t tm)
{
TimestampTz result;
result = (TimestampTz) tm -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#ifdef HAVE_INT64_TIMESTAMP
result *= USECS_PER_SEC;
#endif
return result;
}
/*
* Convert a TimestampTz to time_t.
*
* This too is just marginally useful, but some places need it.
*
* To avoid having the function's ABI vary depending on the width of time_t,
* we declare the result as pg_time_t, which is cast-compatible with
* time_t but always 64 bits wide (unless the platform has no 64-bit type).
* This detail should be invisible to callers, at least at source code level.
*/
pg_time_t
timestamptz_to_time_t(TimestampTz t)
{
pg_time_t result;
#ifdef HAVE_INT64_TIMESTAMP
result = (pg_time_t) (t / USECS_PER_SEC +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#else
result = (pg_time_t) (t +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
#endif
return result;
}
/*
* Produce a C-string representation of a TimestampTz.
*
* This is mostly for use in emitting messages. The primary difference
* from timestamptz_out is that we force the output format to ISO. Note
* also that the result is in a static buffer, not pstrdup'd.
*/
const char *
timestamptz_to_str(TimestampTz t)
{
static char buf[MAXDATELEN + 1];
int tz;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
char *tzn;
if (TIMESTAMP_NOT_FINITE(t))
EncodeSpecialTimestamp(t, buf);
else if (timestamp2tm(t, &tz, tm, &fsec, &tzn, NULL) == 0)
EncodeDateTime(tm, fsec, &tz, &tzn, USE_ISO_DATES, buf);
else
strlcpy(buf, "(timestamp out of range)", sizeof(buf));
return buf;
}
void
dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
{
TimeOffset time;
time = jd;
#ifdef HAVE_INT64_TIMESTAMP
*hour = time / USECS_PER_HOUR;
time -= (*hour) * USECS_PER_HOUR;
*min = time / USECS_PER_MINUTE;
time -= (*min) * USECS_PER_MINUTE;
*sec = time / USECS_PER_SEC;
*fsec = time - (*sec * USECS_PER_SEC);
#else
*hour = time / SECS_PER_HOUR;
time -= (*hour) * SECS_PER_HOUR;
*min = time / SECS_PER_MINUTE;
time -= (*min) * SECS_PER_MINUTE;
*sec = time;
*fsec = time - *sec;
#endif
} /* dt2time() */
/*
* timestamp2tm() - Convert timestamp data type to POSIX time structure.
*
* Note that year is _not_ 1900-based, but is an explicit full value.
* Also, month is one-based, _not_ zero-based.
* Returns:
* 0 on success
* -1 on out of range
*
* If attimezone is NULL, the global timezone (including possibly brute forced
* timezone) will be used.
*/
int
timestamp2tm(Timestamp dt, int *tzp, struct pg_tm * tm, fsec_t *fsec, char **tzn, pg_tz *attimezone)
{
Timestamp date;
Timestamp time;
pg_time_t utime;
/*
* If HasCTZSet is true then we have a brute force time zone specified. Go
* ahead and rotate to the local time zone since we will later bypass any
* calls which adjust the tm fields.
*/
if (attimezone == NULL && HasCTZSet && tzp != NULL)
{
#ifdef HAVE_INT64_TIMESTAMP
dt -= CTimeZone * USECS_PER_SEC;
#else
dt -= CTimeZone;
#endif
}
#ifdef HAVE_INT64_TIMESTAMP
time = dt;
TMODULO(time, date, USECS_PER_DAY);
if (time < INT64CONST(0))
{
time += USECS_PER_DAY;
date -= 1;
}
/* add offset to go from J2000 back to standard Julian date */
date += POSTGRES_EPOCH_JDATE;
/* Julian day routine does not work for negative Julian days */
if (date < 0 || date > (Timestamp) INT_MAX)
return -1;
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
#else
time = dt;
TMODULO(time, date, (double) SECS_PER_DAY);
if (time < 0)
{
time += SECS_PER_DAY;
date -= 1;
}
/* add offset to go from J2000 back to standard Julian date */
date += POSTGRES_EPOCH_JDATE;
recalc_d:
/* Julian day routine does not work for negative Julian days */
if (date < 0 || date > (Timestamp) INT_MAX)
return -1;
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
recalc_t:
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
*fsec = TSROUND(*fsec);
/* roundoff may need to propagate to higher-order fields */
if (*fsec >= 1.0)
{
time = ceil(time);
if (time >= (double) SECS_PER_DAY)
{
time = 0;
date += 1;
goto recalc_d;
}
goto recalc_t;
}
#endif
/* Done if no TZ conversion wanted */
if (tzp == NULL)
{
tm->tm_isdst = -1;
tm->tm_gmtoff = 0;
tm->tm_zone = NULL;
if (tzn != NULL)
*tzn = NULL;
return 0;
}
/*
* We have a brute force time zone per SQL99? Then use it without change
* since we have already rotated to the time zone.
*/
if (attimezone == NULL && HasCTZSet)
{
*tzp = CTimeZone;
tm->tm_isdst = 0;
tm->tm_gmtoff = CTimeZone;
tm->tm_zone = NULL;
if (tzn != NULL)
*tzn = NULL;
return 0;
}
/*
* If the time falls within the range of pg_time_t, use pg_localtime() to
* rotate to the local time zone.
*
* First, convert to an integral timestamp, avoiding possibly
* platform-specific roundoff-in-wrong-direction errors, and adjust to
* Unix epoch. Then see if we can convert to pg_time_t without loss. This
* coding avoids hardwiring any assumptions about the width of pg_time_t,
* so it should behave sanely on machines without int64.
*/
#ifdef HAVE_INT64_TIMESTAMP
dt = (dt - *fsec) / USECS_PER_SEC +
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
#else
dt = rint(dt - *fsec +
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
#endif
utime = (pg_time_t) dt;
if ((Timestamp) utime == dt)
{
struct pg_tm *tx = pg_localtime(&utime,
attimezone ? attimezone : session_timezone);
tm->tm_year = tx->tm_year + 1900;
tm->tm_mon = tx->tm_mon + 1;
tm->tm_mday = tx->tm_mday;
tm->tm_hour = tx->tm_hour;
tm->tm_min = tx->tm_min;
tm->tm_sec = tx->tm_sec;
tm->tm_isdst = tx->tm_isdst;
tm->tm_gmtoff = tx->tm_gmtoff;
tm->tm_zone = tx->tm_zone;
*tzp = -tm->tm_gmtoff;
if (tzn != NULL)
*tzn = (char *) tm->tm_zone;
}
else
{
/*
* When out of range of pg_time_t, treat as GMT
*/
*tzp = 0;
/* Mark this as *no* time zone available */
tm->tm_isdst = -1;
tm->tm_gmtoff = 0;
tm->tm_zone = NULL;
if (tzn != NULL)
*tzn = NULL;
}
return 0;
}
/* tm2timestamp()
* Convert a tm structure to a timestamp data type.
* Note that year is _not_ 1900-based, but is an explicit full value.
* Also, month is one-based, _not_ zero-based.
*
* Returns -1 on failure (value out of range).
*/
int
tm2timestamp(struct pg_tm * tm, fsec_t fsec, int *tzp, Timestamp *result)
{
TimeOffset date;
TimeOffset time;
/* Julian day routines are not correct for negative Julian days */
if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
{
*result = 0; /* keep compiler quiet */
return -1;
}
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec);
#ifdef HAVE_INT64_TIMESTAMP
*result = date * USECS_PER_DAY + time;
/* check for major overflow */
if ((*result - time) / USECS_PER_DAY != date)
{
*result = 0; /* keep compiler quiet */
return -1;
}
/* check for just-barely overflow (okay except time-of-day wraps) */
if ((*result < 0 && date >= 0) ||
(*result >= 0 && date < 0))
{
*result = 0; /* keep compiler quiet */
return -1;
}
#else
*result = date * SECS_PER_DAY + time;
#endif
if (tzp != NULL)
*result = dt2local(*result, -(*tzp));
return 0;
}
/* interval2tm()
* Convert a interval data type to a tm structure.
*/
int
interval2tm(Interval span, struct pg_tm * tm, fsec_t *fsec)
{
TimeOffset time;
TimeOffset tfrac;
tm->tm_year = span.month / MONTHS_PER_YEAR;
tm->tm_mon = span.month % MONTHS_PER_YEAR;
tm->tm_mday = span.day;
time = span.time;
#ifdef HAVE_INT64_TIMESTAMP
tfrac = time / USECS_PER_HOUR;
time -= tfrac * USECS_PER_HOUR;
tm->tm_hour = tfrac; /* could overflow ... */
tfrac = time / USECS_PER_MINUTE;
time -= tfrac * USECS_PER_MINUTE;
tm->tm_min = tfrac;
tfrac = time / USECS_PER_SEC;
*fsec = time - (tfrac * USECS_PER_SEC);
tm->tm_sec = tfrac;
#else
recalc:
TMODULO(time, tfrac, (double) SECS_PER_HOUR);
tm->tm_hour = tfrac; /* could overflow ... */
TMODULO(time, tfrac, (double) SECS_PER_MINUTE);
tm->tm_min = tfrac;
TMODULO(time, tfrac, 1.0);
tm->tm_sec = tfrac;
time = TSROUND(time);
/* roundoff may need to propagate to higher-order fields */
if (time >= 1.0)
{
time = ceil(span.time);
goto recalc;
}
*fsec = time;
#endif
return 0;
}
int
tm2interval(struct pg_tm * tm, fsec_t fsec, Interval *span)
{
span->month = tm->tm_year * MONTHS_PER_YEAR + tm->tm_mon;
span->day = tm->tm_mday;
#ifdef HAVE_INT64_TIMESTAMP
span->time = (((((tm->tm_hour * INT64CONST(60)) +
tm->tm_min) * INT64CONST(60)) +
tm->tm_sec) * USECS_PER_SEC) + fsec;
#else
span->time = (((tm->tm_hour * (double) MINS_PER_HOUR) +
tm->tm_min) * (double) SECS_PER_MINUTE) +
tm->tm_sec + fsec;
#endif
return 0;
}
static TimeOffset
time2t(const int hour, const int min, const int sec, const fsec_t fsec)
{
#ifdef HAVE_INT64_TIMESTAMP
return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec;
#else
return (((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec + fsec;
#endif
}
static Timestamp
dt2local(Timestamp dt, int tz)
{
#ifdef HAVE_INT64_TIMESTAMP
dt -= (tz * USECS_PER_SEC);
#else
dt -= tz;
#endif
return dt;
}
/*****************************************************************************
* PUBLIC ROUTINES *
*****************************************************************************/
Datum
timestamp_finite(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
PG_RETURN_BOOL(!TIMESTAMP_NOT_FINITE(timestamp));
}
Datum
interval_finite(PG_FUNCTION_ARGS)
{
PG_RETURN_BOOL(true);
}
/*----------------------------------------------------------
* Relational operators for timestamp.
*---------------------------------------------------------*/
void
GetEpochTime(struct pg_tm * tm)
{
struct pg_tm *t0;
pg_time_t epoch = 0;
t0 = pg_gmtime(&epoch);
tm->tm_year = t0->tm_year;
tm->tm_mon = t0->tm_mon;
tm->tm_mday = t0->tm_mday;
tm->tm_hour = t0->tm_hour;
tm->tm_min = t0->tm_min;
tm->tm_sec = t0->tm_sec;
tm->tm_year += 1900;
tm->tm_mon++;
}
Timestamp
SetEpochTimestamp(void)
{
Timestamp dt;
struct pg_tm tt,
*tm = &tt;
GetEpochTime(tm);
/* we don't bother to test for failure ... */
tm2timestamp(tm, 0, NULL, &dt);
return dt;
} /* SetEpochTimestamp() */
/*
* We are currently sharing some code between timestamp and timestamptz.
* The comparison functions are among them. - thomas 2001-09-25
*
* timestamp_relop - is timestamp1 relop timestamp2
*
* collate invalid timestamp at the end
*/
int
timestamp_cmp_internal(Timestamp dt1, Timestamp dt2)
{
#ifdef HAVE_INT64_TIMESTAMP
return (dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0);
#else
/*
* When using float representation, we have to be wary of NaNs.
*
* We consider all NANs to be equal and larger than any non-NAN. This is
* somewhat arbitrary; the important thing is to have a consistent sort
* order.
*/
if (isnan(dt1))
{
if (isnan(dt2))
return 0; /* NAN = NAN */
else
return 1; /* NAN > non-NAN */
}
else if (isnan(dt2))
{
return -1; /* non-NAN < NAN */
}
else
{
if (dt1 > dt2)
return 1;
else if (dt1 < dt2)
return -1;
else
return 0;
}
#endif
}
Datum
timestamp_eq(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum
timestamp_ne(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum
timestamp_lt(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum
timestamp_gt(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum
timestamp_le(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum
timestamp_ge(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum
timestamp_cmp(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
Datum
timestamp_hash(PG_FUNCTION_ARGS)
{
/* We can use either hashint8 or hashfloat8 directly */
#ifdef HAVE_INT64_TIMESTAMP
return hashint8(fcinfo);
#else
return hashfloat8(fcinfo);
#endif
}
/*
* Crosstype comparison functions for timestamp vs timestamptz
*/
Datum
timestamp_eq_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum
timestamp_ne_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum
timestamp_lt_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum
timestamp_gt_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum
timestamp_le_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum
timestamp_ge_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum
timestamp_cmp_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
Datum
timestamptz_eq_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum
timestamptz_ne_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum
timestamptz_lt_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum
timestamptz_gt_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum
timestamptz_le_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum
timestamptz_ge_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum
timestamptz_cmp_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
/*
* interval_relop - is interval1 relop interval2
*
* collate invalid interval at the end
*/
static inline TimeOffset
interval_cmp_value(const Interval *interval)
{
TimeOffset span;
span = interval->time;
#ifdef HAVE_INT64_TIMESTAMP
span += interval->month * INT64CONST(30) * USECS_PER_DAY;
span += interval->day * INT64CONST(24) * USECS_PER_HOUR;
#else
span += interval->month * ((double) DAYS_PER_MONTH * SECS_PER_DAY);
span += interval->day * ((double) HOURS_PER_DAY * SECS_PER_HOUR);
#endif
return span;
}
static int
interval_cmp_internal(Interval *interval1, Interval *interval2)
{
TimeOffset span1 = interval_cmp_value(interval1);
TimeOffset span2 = interval_cmp_value(interval2);
return ((span1 < span2) ? -1 : (span1 > span2) ? 1 : 0);
}
Datum
interval_eq(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) == 0);
}
Datum
interval_ne(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) != 0);
}
Datum
interval_lt(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) < 0);
}
Datum
interval_gt(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) > 0);
}
Datum
interval_le(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) <= 0);
}
Datum
interval_ge(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) >= 0);
}
Datum
interval_cmp(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_INT32(interval_cmp_internal(interval1, interval2));
}
/*
* Hashing for intervals
*
* We must produce equal hashvals for values that interval_cmp_internal()
* considers equal. So, compute the net span the same way it does,
* and then hash that, using either int64 or float8 hashing.
*/
Datum
interval_hash(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
TimeOffset span = interval_cmp_value(interval);
#ifdef HAVE_INT64_TIMESTAMP
return DirectFunctionCall1(hashint8, Int64GetDatumFast(span));
#else
return DirectFunctionCall1(hashfloat8, Float8GetDatumFast(span));
#endif
}
/* overlaps_timestamp() --- implements the SQL92 OVERLAPS operator.
*
* Algorithm is per SQL92 spec. This is much harder than you'd think
* because the spec requires us to deliver a non-null answer in some cases
* where some of the inputs are null.
*/
Datum
overlaps_timestamp(PG_FUNCTION_ARGS)
{
/*
* The arguments are Timestamps, but we leave them as generic Datums to
* avoid unnecessary conversions between value and reference forms --- not
* to mention possible dereferences of null pointers.
*/
Datum ts1 = PG_GETARG_DATUM(0);
Datum te1 = PG_GETARG_DATUM(1);
Datum ts2 = PG_GETARG_DATUM(2);
Datum te2 = PG_GETARG_DATUM(3);
bool ts1IsNull = PG_ARGISNULL(0);
bool te1IsNull = PG_ARGISNULL(1);
bool ts2IsNull = PG_ARGISNULL(2);
bool te2IsNull = PG_ARGISNULL(3);
#define TIMESTAMP_GT(t1,t2) \
DatumGetBool(DirectFunctionCall2(timestamp_gt,t1,t2))
#define TIMESTAMP_LT(t1,t2) \
DatumGetBool(DirectFunctionCall2(timestamp_lt,t1,t2))
/*
* If both endpoints of interval 1 are null, the result is null (unknown).
* If just one endpoint is null, take ts1 as the non-null one. Otherwise,
* take ts1 as the lesser endpoint.
*/
if (ts1IsNull)
{
if (te1IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts1 = te1;
te1IsNull = true;
}
else if (!te1IsNull)
{
if (TIMESTAMP_GT(ts1, te1))
{
Datum tt = ts1;
ts1 = te1;
te1 = tt;
}
}
/* Likewise for interval 2. */
if (ts2IsNull)
{
if (te2IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts2 = te2;
te2IsNull = true;
}
else if (!te2IsNull)
{
if (TIMESTAMP_GT(ts2, te2))
{
Datum tt = ts2;
ts2 = te2;
te2 = tt;
}
}
/*
* At this point neither ts1 nor ts2 is null, so we can consider three
* cases: ts1 > ts2, ts1 < ts2, ts1 = ts2
*/
if (TIMESTAMP_GT(ts1, ts2))
{
/*
* This case is ts1 < te2 OR te1 < te2, which may look redundant but
* in the presence of nulls it's not quite completely so.
*/
if (te2IsNull)
PG_RETURN_NULL();
if (TIMESTAMP_LT(ts1, te2))
PG_RETURN_BOOL(true);
if (te1IsNull)
PG_RETURN_NULL();
/*
* If te1 is not null then we had ts1 <= te1 above, and we just found
* ts1 >= te2, hence te1 >= te2.
*/
PG_RETURN_BOOL(false);
}
else if (TIMESTAMP_LT(ts1, ts2))
{
/* This case is ts2 < te1 OR te2 < te1 */
if (te1IsNull)
PG_RETURN_NULL();
if (TIMESTAMP_LT(ts2, te1))
PG_RETURN_BOOL(true);
if (te2IsNull)
PG_RETURN_NULL();
/*
* If te2 is not null then we had ts2 <= te2 above, and we just found
* ts2 >= te1, hence te2 >= te1.
*/
PG_RETURN_BOOL(false);
}
else
{
/*
* For ts1 = ts2 the spec says te1 <> te2 OR te1 = te2, which is a
* rather silly way of saying "true if both are nonnull, else null".
*/
if (te1IsNull || te2IsNull)
PG_RETURN_NULL();
PG_RETURN_BOOL(true);
}
#undef TIMESTAMP_GT
#undef TIMESTAMP_LT
}
/*----------------------------------------------------------
* "Arithmetic" operators on date/times.
*---------------------------------------------------------*/
Datum
timestamp_smaller(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Timestamp result;
/* use timestamp_cmp_internal to be sure this agrees with comparisons */
if (timestamp_cmp_internal(dt1, dt2) < 0)
result = dt1;
else
result = dt2;
PG_RETURN_TIMESTAMP(result);
}
Datum
timestamp_larger(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Timestamp result;
if (timestamp_cmp_internal(dt1, dt2) > 0)
result = dt1;
else
result = dt2;
PG_RETURN_TIMESTAMP(result);
}
Datum
timestamp_mi(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
if (TIMESTAMP_NOT_FINITE(dt1) || TIMESTAMP_NOT_FINITE(dt2))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("cannot subtract infinite timestamps"),
errOmitLocation(true)));
result->time = dt1 - dt2;
result->month = 0;
result->day = 0;
/*----------
* This is wrong, but removing it breaks a lot of regression tests.
* For example:
*
* test=> SET timezone = 'EST5EDT';
* test=> SELECT
* test-> ('2005-10-30 13:22:00-05'::timestamptz -
* test(> '2005-10-29 13:22:00-04'::timestamptz);
* ?column?
* ----------------
* 1 day 01:00:00
* (1 row)
*
* so adding that to the first timestamp gets:
*
* test=> SELECT
* test-> ('2005-10-29 13:22:00-04'::timestamptz +
* test(> ('2005-10-30 13:22:00-05'::timestamptz -
* test(> '2005-10-29 13:22:00-04'::timestamptz)) at time zone 'EST';
* timezone
* --------------------
* 2005-10-30 14:22:00
* (1 row)
*----------
*/
result = DatumGetIntervalP(DirectFunctionCall1(interval_justify_hours,
IntervalPGetDatum(result)));
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_justify_interval()
*
* Adjust interval so 'month', 'day', and 'time' portions are within
* customary bounds. Specifically:
*
* 0 <= abs(time) < 24 hours
* 0 <= abs(day) < 30 days
*
* Also, the sign bit on all three fields is made equal, so either
* all three fields are negative or all are positive.
*/
Datum
interval_justify_interval(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
Interval *result;
TimeOffset wholeday;
int32 wholemonth;
result = (Interval *) palloc(sizeof(Interval));
result->month = span->month;
result->day = span->day;
result->time = span->time;
#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
#else
TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
#endif
result->day += wholeday; /* could overflow... */
wholemonth = result->day / DAYS_PER_MONTH;
result->day -= wholemonth * DAYS_PER_MONTH;
result->month += wholemonth;
if (result->month > 0 &&
(result->day < 0 || (result->day == 0 && result->time < 0)))
{
result->day += DAYS_PER_MONTH;
result->month--;
}
else if (result->month < 0 &&
(result->day > 0 || (result->day == 0 && result->time > 0)))
{
result->day -= DAYS_PER_MONTH;
result->month++;
}
if (result->day > 0 && result->time < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
#else
result->time += (double) SECS_PER_DAY;
#endif
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
#else
result->time -= (double) SECS_PER_DAY;
#endif
result->day++;
}
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_justify_hours()
*
* Adjust interval so 'time' contains less than a whole day, adding
* the excess to 'day'. This is useful for
* situations (such as non-TZ) where '1 day' = '24 hours' is valid,
* e.g. interval subtraction and division.
*/
Datum
interval_justify_hours(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
Interval *result;
TimeOffset wholeday;
result = (Interval *) palloc(sizeof(Interval));
result->month = span->month;
result->day = span->day;
result->time = span->time;
#ifdef HAVE_INT64_TIMESTAMP
TMODULO(result->time, wholeday, USECS_PER_DAY);
#else
TMODULO(result->time, wholeday, (double) SECS_PER_DAY);
#endif
result->day += wholeday; /* could overflow... */
if (result->day > 0 && result->time < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time += USECS_PER_DAY;
#else
result->time += (double) SECS_PER_DAY;
#endif
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
#ifdef HAVE_INT64_TIMESTAMP
result->time -= USECS_PER_DAY;
#else
result->time -= (double) SECS_PER_DAY;
#endif
result->day++;
}
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_justify_days()
*
* Adjust interval so 'day' contains less than 30 days, adding
* the excess to 'month'.
*/
Datum
interval_justify_days(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
Interval *result;
int32 wholemonth;
result = (Interval *) palloc(sizeof(Interval));
result->month = span->month;
result->day = span->day;
result->time = span->time;
wholemonth = result->day / DAYS_PER_MONTH;
result->day -= wholemonth * DAYS_PER_MONTH;
result->month += wholemonth;
if (result->month > 0 && result->day < 0)
{
result->day += DAYS_PER_MONTH;
result->month--;
}
else if (result->month < 0 && result->day > 0)
{
result->day -= DAYS_PER_MONTH;
result->month++;
}
PG_RETURN_INTERVAL_P(result);
}
/* timestamp_pl_interval()
* Add a interval to a timestamp data type.
* Note that interval has provisions for qualitative year/month and day
* units, so try to do the right thing with them.
* To add a month, increment the month, and use the same day of month.
* Then, if the next month has fewer days, set the day of month
* to the last day of month.
* To add a day, increment the mday, and use the same time of day.
* Lastly, add in the "quantitative time".
*/
Datum
timestamp_pl_interval(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
Timestamp result;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else
{
if (span->month != 0)
{
struct pg_tm tt,
*tm = &tt;
fsec_t fsec = 0;
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
tm->tm_mon += span->month;
if (tm->tm_mon > MONTHS_PER_YEAR)
{
tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR;
tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1;
}
else if (tm->tm_mon < 1)
{
tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1;
tm->tm_mon = tm->tm_mon % MONTHS_PER_YEAR + MONTHS_PER_YEAR;
}
/* adjust for end of month boundary problems... */
if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]);
if (tm2timestamp(tm, fsec, NULL, &timestamp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
}
if (span->day != 0)
{
struct pg_tm tt,
*tm = &tt;
fsec_t fsec = 0;
int julian;
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
/* Add days by converting to and from julian */
julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + span->day;
j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
if (tm2timestamp(tm, fsec, NULL, &timestamp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
}
timestamp += span->time;
result = timestamp;
}
PG_RETURN_TIMESTAMP(result);
}
Datum
timestamp_mi_interval(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
Interval tspan;
tspan.month = -span->month;
tspan.day = -span->day;
tspan.time = -span->time;
return DirectFunctionCall2(timestamp_pl_interval,
TimestampGetDatum(timestamp),
PointerGetDatum(&tspan));
}
/* timestamptz_pl_interval()
* Add a interval to a timestamp with time zone data type.
* Note that interval has provisions for qualitative year/month
* units, so try to do the right thing with them.
* To add a month, increment the month, and use the same day of month.
* Then, if the next month has fewer days, set the day of month
* to the last day of month.
* Lastly, add in the "quantitative time".
*/
Datum
timestamptz_pl_interval(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
TimestampTz result;
int tz;
char *tzn;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else
{
if (span->month != 0)
{
struct pg_tm tt,
*tm = &tt;
fsec_t fsec = 0;
if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
tm->tm_mon += span->month;
if (tm->tm_mon > MONTHS_PER_YEAR)
{
tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR;
tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1;
}
else if (tm->tm_mon < 1)
{
tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1;
tm->tm_mon = tm->tm_mon % MONTHS_PER_YEAR + MONTHS_PER_YEAR;
}
/* adjust for end of month boundary problems... */
if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]);
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &timestamp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
}
if (span->day != 0)
{
struct pg_tm tt,
*tm = &tt;
fsec_t fsec = 0;
int julian;
if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
/* Add days by converting to and from julian */
julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + span->day;
j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &timestamp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
}
timestamp += span->time;
result = timestamp;
}
PG_RETURN_TIMESTAMP(result);
}
Datum
timestamptz_mi_interval(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
Interval tspan;
tspan.month = -span->month;
tspan.day = -span->day;
tspan.time = -span->time;
return DirectFunctionCall2(timestamptz_pl_interval,
TimestampGetDatum(timestamp),
PointerGetDatum(&tspan));
}
Datum
interval_um(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result->time = -interval->time;
result->day = -interval->day;
result->month = -interval->month;
PG_RETURN_INTERVAL_P(result);
}
Datum
interval_smaller(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
Interval *result;
/* use interval_cmp_internal to be sure this agrees with comparisons */
if (interval_cmp_internal(interval1, interval2) < 0)
result = interval1;
else
result = interval2;
PG_RETURN_INTERVAL_P(result);
}
Datum
interval_larger(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
Interval *result;
if (interval_cmp_internal(interval1, interval2) > 0)
result = interval1;
else
result = interval2;
PG_RETURN_INTERVAL_P(result);
}
Datum
interval_pl(PG_FUNCTION_ARGS)
{
Interval *span1 = PG_GETARG_INTERVAL_P(0);
Interval *span2 = PG_GETARG_INTERVAL_P(1);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result->month = span1->month + span2->month;
result->day = span1->day + span2->day;
result->time = span1->time + span2->time;
PG_RETURN_INTERVAL_P(result);
}
Datum
interval_mi(PG_FUNCTION_ARGS)
{
Interval *span1 = PG_GETARG_INTERVAL_P(0);
Interval *span2 = PG_GETARG_INTERVAL_P(1);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result->month = span1->month - span2->month;
result->day = span1->day - span2->day;
result->time = span1->time - span2->time;
PG_RETURN_INTERVAL_P(result);
}
Datum
interval_mul(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
float8 factor = PG_GETARG_FLOAT8(1);
double month_remainder_days,
sec_remainder;
int32 orig_month = span->month,
orig_day = span->day;
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result->month = (int32) (span->month * factor);
result->day = (int32) (span->day * factor);
/*
* The above correctly handles the whole-number part of the month and day
* products, but we have to do something with any fractional part
* resulting when the factor is nonintegral. We cascade the fractions
* down to lower units using the conversion factors DAYS_PER_MONTH and
* SECS_PER_DAY. Note we do NOT cascade up, since we are not forced to do
* so by the representation. The user can choose to cascade up later,
* using justify_hours and/or justify_days.
*/
/*
* Fractional months full days into days.
*
* Floating point calculation are inherently inprecise, so these
* calculations are crafted to produce the most reliable result possible.
* TSROUND() is needed to more accurately produce whole numbers where
* appropriate.
*/
month_remainder_days = (orig_month * factor - result->month) * DAYS_PER_MONTH;
month_remainder_days = TSROUND(month_remainder_days);
sec_remainder = (orig_day * factor - result->day +
month_remainder_days - (int) month_remainder_days) * SECS_PER_DAY;
sec_remainder = TSROUND(sec_remainder);
/*
* Might have 24:00:00 hours due to rounding, or >24 hours because of time
* cascade from months and days. It might still be >24 if the combination
* of cascade and the seconds factor operation itself.
*/
if (Abs(sec_remainder) >= SECS_PER_DAY)
{
result->day += (int) (sec_remainder / SECS_PER_DAY);
sec_remainder -= (int) (sec_remainder / SECS_PER_DAY) * SECS_PER_DAY;
}
/* cascade units down */
result->day += (int32) month_remainder_days;
#ifdef HAVE_INT64_TIMESTAMP
result->time = rint(span->time * factor + sec_remainder * USECS_PER_SEC);
#else
result->time = span->time * factor + sec_remainder;
#endif
PG_RETURN_INTERVAL_P(result);
}
Datum
mul_d_interval(PG_FUNCTION_ARGS)
{
/* Args are float8 and Interval *, but leave them as generic Datum */
Datum factor = PG_GETARG_DATUM(0);
Datum span = PG_GETARG_DATUM(1);
return DirectFunctionCall2(interval_mul, span, factor);
}
Datum
interval_div(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
float8 factor = PG_GETARG_FLOAT8(1);
double month_remainder_days,
sec_remainder;
int32 orig_month = span->month,
orig_day = span->day;
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
if (factor == 0.0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero"),
errOmitLocation(true)));
result->month = (int32) (span->month / factor);
result->day = (int32) (span->day / factor);
/*
* Fractional months full days into days. See comment in interval_mul().
*/
month_remainder_days = (orig_month / factor - result->month) * DAYS_PER_MONTH;
month_remainder_days = TSROUND(month_remainder_days);
sec_remainder = (orig_day / factor - result->day +
month_remainder_days - (int) month_remainder_days) * SECS_PER_DAY;
sec_remainder = TSROUND(sec_remainder);
if (Abs(sec_remainder) >= SECS_PER_DAY)
{
result->day += (int) (sec_remainder / SECS_PER_DAY);
sec_remainder -= (int) (sec_remainder / SECS_PER_DAY) * SECS_PER_DAY;
}
/* cascade units down */
result->day += (int32) month_remainder_days;
#ifdef HAVE_INT64_TIMESTAMP
result->time = rint(span->time / factor + sec_remainder * USECS_PER_SEC);
#else
/* See TSROUND comment in interval_mul(). */
result->time = span->time / factor + sec_remainder;
#endif
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_accum and interval_avg implement the AVG(interval) aggregate.
*
* The transition datatype for this aggregate is a 2-element array of
* intervals, where the first is the running sum and the second contains
* the number of values so far in its 'time' field. This is a bit ugly
* but it beats inventing a specialized datatype for the purpose.
*/
Datum
interval_accum(PG_FUNCTION_ARGS)
{
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
Interval *newval = PG_GETARG_INTERVAL_P(1);
Datum *transdatums;
int ndatums;
Interval sumX,
N;
Interval *newsum;
ArrayType *result;
deconstruct_array(transarray,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums, NULL, &ndatums);
if (ndatums != 2)
elog(ERROR, "expected 2-element interval array");
/*
* XXX memcpy, instead of just extracting a pointer, to work around buggy
* array code: it won't ensure proper alignment of Interval objects on
* machines where double requires 8-byte alignment. That should be fixed,
* but in the meantime...
*
* Note: must use DatumGetPointer here, not DatumGetIntervalP, else some
* compilers optimize into double-aligned load/store anyway.
*/
memcpy((void *) &sumX, DatumGetPointer(transdatums[0]), sizeof(Interval));
memcpy((void *) &N, DatumGetPointer(transdatums[1]), sizeof(Interval));
newsum = DatumGetIntervalP(DirectFunctionCall2(interval_pl,
IntervalPGetDatum(&sumX),
IntervalPGetDatum(newval)));
N.time += 1;
transdatums[0] = IntervalPGetDatum(newsum);
transdatums[1] = IntervalPGetDatum(&N);
result = construct_array(transdatums, 2,
INTERVALOID, sizeof(Interval), false, 'd');
PG_RETURN_ARRAYTYPE_P(result);
}
Datum
interval_avg(PG_FUNCTION_ARGS)
{
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
Datum *transdatums;
int ndatums;
Interval sumX,
N;
deconstruct_array(transarray,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums, NULL, &ndatums);
if (ndatums != 2)
elog(ERROR, "expected 2-element interval array");
/*
* XXX memcpy, instead of just extracting a pointer, to work around buggy
* array code: it won't ensure proper alignment of Interval objects on
* machines where double requires 8-byte alignment. That should be fixed,
* but in the meantime...
*
* Note: must use DatumGetPointer here, not DatumGetIntervalP, else some
* compilers optimize into double-aligned load/store anyway.
*/
memcpy((void *) &sumX, DatumGetPointer(transdatums[0]), sizeof(Interval));
memcpy((void *) &N, DatumGetPointer(transdatums[1]), sizeof(Interval));
/* SQL92 defines AVG of no values to be NULL */
if (N.time == 0)
PG_RETURN_NULL();
return DirectFunctionCall2(interval_div,
IntervalPGetDatum(&sumX),
Float8GetDatum(N.time));
}
Datum
interval_decum(PG_FUNCTION_ARGS)
{
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
Interval *newval = PG_GETARG_INTERVAL_P(1);
Datum *transdatums;
int ndatums;
Interval miX,
N;
Interval *newmi;
ArrayType *result;
deconstruct_array(transarray,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums, NULL, &ndatums);
if (ndatums != 2)
elog(ERROR, "expected 2-element interval array");
/*
* XXX memcpy, instead of just extracting a pointer, to work around buggy
* array code: it won't ensure proper alignment of Interval objects on
* machines where double requires 8-byte alignment. That should be fixed,
* but in the meantime...
*
* Note: must use DatumGetPointer here, not DatumGetIntervalP, else some
* compilers optimize into double-aligned load/store anyway.
*/
memcpy((void *) &miX, DatumGetPointer(transdatums[0]), sizeof(Interval));
memcpy((void *) &N, DatumGetPointer(transdatums[1]), sizeof(Interval));
newmi = DatumGetIntervalP(DirectFunctionCall2(interval_mi,
IntervalPGetDatum(&miX),
IntervalPGetDatum(newval)));
N.time -= 1;
transdatums[0] = IntervalPGetDatum(newmi);
transdatums[1] = IntervalPGetDatum(&N);
result = construct_array(transdatums, 2,
INTERVALOID, sizeof(Interval), false, 'd');
PG_RETURN_ARRAYTYPE_P(result);
}
/* timestamp_age()
* Calculate time difference while retaining year/month fields.
* Note that this does not result in an accurate absolute time span
* since year and month are out of context once the arithmetic
* is done.
*/
Datum
timestamp_age(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Interval *result;
fsec_t fsec,
fsec1 = 0,
fsec2 = 0;
struct pg_tm tt,
*tm = &tt;
struct pg_tm tt1,
*tm1 = &tt1;
struct pg_tm tt2,
*tm2 = &tt2;
result = (Interval *) palloc(sizeof(Interval));
if (timestamp2tm(dt1, NULL, tm1, &fsec1, NULL, NULL) == 0 &&
timestamp2tm(dt2, NULL, tm2, &fsec2, NULL, NULL) == 0)
{
/* form the symbolic difference */
fsec = fsec1 - fsec2;
tm->tm_sec = tm1->tm_sec - tm2->tm_sec;
tm->tm_min = tm1->tm_min - tm2->tm_min;
tm->tm_hour = tm1->tm_hour - tm2->tm_hour;
tm->tm_mday = tm1->tm_mday - tm2->tm_mday;
tm->tm_mon = tm1->tm_mon - tm2->tm_mon;
tm->tm_year = tm1->tm_year - tm2->tm_year;
/* flip sign if necessary... */
if (dt1 < dt2)
{
fsec = -fsec;
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
fsec += USECS_PER_SEC;
#else
fsec += 1.0;
#endif
tm->tm_sec--;
}
while (tm->tm_sec < 0)
{
tm->tm_sec += SECS_PER_MINUTE;
tm->tm_min--;
}
while (tm->tm_min < 0)
{
tm->tm_min += MINS_PER_HOUR;
tm->tm_hour--;
}
while (tm->tm_hour < 0)
{
tm->tm_hour += HOURS_PER_DAY;
tm->tm_mday--;
}
while (tm->tm_mday < 0)
{
if (dt1 < dt2)
{
tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1];
tm->tm_mon--;
}
else
{
tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1];
tm->tm_mon--;
}
}
while (tm->tm_mon < 0)
{
tm->tm_mon += MONTHS_PER_YEAR;
tm->tm_year--;
}
/* recover sign if necessary... */
if (dt1 < dt2)
{
fsec = -fsec;
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range"),
errOmitLocation(true)));
}
else
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
PG_RETURN_INTERVAL_P(result);
}
/* timestamptz_age()
* Calculate time difference while retaining year/month fields.
* Note that this does not result in an accurate absolute time span
* since year and month are out of context once the arithmetic
* is done.
*/
Datum
timestamptz_age(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
Interval *result;
fsec_t fsec,
fsec1,
fsec2;
struct pg_tm tt,
*tm = &tt;
struct pg_tm tt1,
*tm1 = &tt1;
struct pg_tm tt2,
*tm2 = &tt2;
int tz1;
int tz2;
char *tzn;
result = (Interval *) palloc(sizeof(Interval));
if (timestamp2tm(dt1, &tz1, tm1, &fsec1, &tzn, NULL) == 0 &&
timestamp2tm(dt2, &tz2, tm2, &fsec2, &tzn, NULL) == 0)
{
/* form the symbolic difference */
fsec = fsec1 - fsec2;
tm->tm_sec = tm1->tm_sec - tm2->tm_sec;
tm->tm_min = tm1->tm_min - tm2->tm_min;
tm->tm_hour = tm1->tm_hour - tm2->tm_hour;
tm->tm_mday = tm1->tm_mday - tm2->tm_mday;
tm->tm_mon = tm1->tm_mon - tm2->tm_mon;
tm->tm_year = tm1->tm_year - tm2->tm_year;
/* flip sign if necessary... */
if (dt1 < dt2)
{
fsec = -fsec;
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
#ifdef HAVE_INT64_TIMESTAMP
fsec += USECS_PER_SEC;
#else
fsec += 1.0;
#endif
tm->tm_sec--;
}
while (tm->tm_sec < 0)
{
tm->tm_sec += SECS_PER_MINUTE;
tm->tm_min--;
}
while (tm->tm_min < 0)
{
tm->tm_min += MINS_PER_HOUR;
tm->tm_hour--;
}
while (tm->tm_hour < 0)
{
tm->tm_hour += HOURS_PER_DAY;
tm->tm_mday--;
}
while (tm->tm_mday < 0)
{
if (dt1 < dt2)
{
tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1];
tm->tm_mon--;
}
else
{
tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1];
tm->tm_mon--;
}
}
while (tm->tm_mon < 0)
{
tm->tm_mon += MONTHS_PER_YEAR;
tm->tm_year--;
}
/*
* Note: we deliberately ignore any difference between tz1 and tz2.
*/
/* recover sign if necessary... */
if (dt1 < dt2)
{
fsec = -fsec;
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range"),
errOmitLocation(true)));
}
else
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
PG_RETURN_INTERVAL_P(result);
}
/*----------------------------------------------------------
* Conversion operators.
*---------------------------------------------------------*/
/* timestamp_text()
* Convert timestamp to text data type.
*/
Datum
timestamp_text(PG_FUNCTION_ARGS)
{
/* Input is a Timestamp, but may as well leave it in Datum form */
Datum timestamp = PG_GETARG_DATUM(0);
text *result;
char *str;
int len;
str = DatumGetCString(DirectFunctionCall1(timestamp_out, timestamp));
len = (strlen(str) + VARHDRSZ);
result = palloc(len);
SET_VARSIZE(result, len);
memcpy(VARDATA(result), str, (len - VARHDRSZ));
pfree(str);
PG_RETURN_TEXT_P(result);
}
/* text_timestamp()
* Convert text string to timestamp.
* Text type is not null terminated, so use temporary string
* then call the standard input routine.
*/
Datum
text_timestamp(PG_FUNCTION_ARGS)
{
text *str = PG_GETARG_TEXT_P(0);
int i;
char *sp,
*dp,
dstr[MAXDATELEN + 1];
if (VARSIZE(str) - VARHDRSZ > MAXDATELEN)
ereport(ERROR,
(errcode(ERRCODE_INVALID_DATETIME_FORMAT),
errmsg("invalid input syntax for type timestamp: \"%s\"",
DatumGetCString(DirectFunctionCall1(textout,
PointerGetDatum(str)))),
errOmitLocation(true)));
sp = VARDATA(str);
dp = dstr;
for (i = 0; i < VARSIZE(str) - VARHDRSZ; i++)
*dp++ = *sp++;
*dp = '\0';
return DirectFunctionCall3(timestamp_in,
CStringGetDatum(dstr),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1));
}
/* timestamptz_text()
* Convert timestamp with time zone to text data type.
*/
Datum
timestamptz_text(PG_FUNCTION_ARGS)
{
/* Input is a Timestamp, but may as well leave it in Datum form */
Datum timestamp = PG_GETARG_DATUM(0);
text *result;
char *str;
int len;
str = DatumGetCString(DirectFunctionCall1(timestamptz_out, timestamp));
len = strlen(str) + VARHDRSZ;
result = palloc(len);
SET_VARSIZE(result, len);
memcpy(VARDATA(result), str, (len - VARHDRSZ));
pfree(str);
PG_RETURN_TEXT_P(result);
}
/* text_timestamptz()
* Convert text string to timestamp with time zone.
* Text type is not null terminated, so use temporary string
* then call the standard input routine.
*/
Datum
text_timestamptz(PG_FUNCTION_ARGS)
{
text *str = PG_GETARG_TEXT_P(0);
int i;
char *sp,
*dp,
dstr[MAXDATELEN + 1];
if (VARSIZE(str) - VARHDRSZ > MAXDATELEN)
ereport(ERROR,
(errcode(ERRCODE_INVALID_DATETIME_FORMAT),
errmsg("invalid input syntax for type timestamp with time zone: \"%s\"",
DatumGetCString(DirectFunctionCall1(textout,
PointerGetDatum(str)))),
errOmitLocation(true)));
sp = VARDATA(str);
dp = dstr;
for (i = 0; i < VARSIZE(str) - VARHDRSZ; i++)
*dp++ = *sp++;
*dp = '\0';
return DirectFunctionCall3(timestamptz_in,
CStringGetDatum(dstr),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1));
}
/* interval_text()
* Convert interval to text data type.
*/
Datum
interval_text(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
text *result;
char *str;
int len;
str = DatumGetCString(DirectFunctionCall1(interval_out,
IntervalPGetDatum(interval)));
len = strlen(str) + VARHDRSZ;
result = palloc(len);
SET_VARSIZE(result, len);
memcpy(VARDATA(result), str, len - VARHDRSZ);
pfree(str);
PG_RETURN_TEXT_P(result);
}
/* text_interval()
* Convert text string to interval.
* Text type may not be null terminated, so copy to temporary string
* then call the standard input routine.
*/
Datum
text_interval(PG_FUNCTION_ARGS)
{
text *str = PG_GETARG_TEXT_P(0);
int i;
char *sp,
*dp,
dstr[MAXDATELEN + 1];
if (VARSIZE(str) - VARHDRSZ > MAXDATELEN)
ereport(ERROR,
(errcode(ERRCODE_INVALID_DATETIME_FORMAT),
errmsg("invalid input syntax for type interval: \"%s\"",
DatumGetCString(DirectFunctionCall1(textout,
PointerGetDatum(str)))),
errOmitLocation(true)));
sp = VARDATA(str);
dp = dstr;
for (i = 0; i < (VARSIZE(str) - VARHDRSZ); i++)
*dp++ = *sp++;
*dp = '\0';
return DirectFunctionCall3(interval_in,
CStringGetDatum(dstr),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1));
}
/* timestamp_trunc()
* Truncate timestamp to specified units.
*/
Datum
timestamp_trunc(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_P(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
Timestamp result;
int type,
val;
char *lowunits;
fsec_t fsec = 0;
struct pg_tm tt,
*tm = &tt;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
lowunits = downcase_truncate_identifier(VARDATA(units),
VARSIZE(units) - VARHDRSZ,
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNITS)
{
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
switch (val)
{
case DTK_WEEK:
{
int woy;
woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
/*
* If it is week 52/53 and the month is January, then the
* week must belong to the previous year. Also, some
* December dates belong to the next year.
*/
if (woy >= 52 && tm->tm_mon == 1)
--tm->tm_year;
if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR)
++tm->tm_year;
isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
fsec = 0;
break;
}
case DTK_MILLENNIUM:
/* see comments in timestamptz_trunc */
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999;
else
tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1;
case DTK_CENTURY:
/* see comments in timestamptz_trunc */
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99;
else
tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1;
case DTK_DECADE:
/* see comments in timestamptz_trunc */
if (val != DTK_MILLENNIUM && val != DTK_CENTURY)
{
if (tm->tm_year > 0)
tm->tm_year = (tm->tm_year / 10) * 10;
else
tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10;
}
case DTK_YEAR:
tm->tm_mon = 1;
case DTK_QUARTER:
tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1;
case DTK_MONTH:
tm->tm_mday = 1;
case DTK_DAY:
tm->tm_hour = 0;
case DTK_HOUR:
tm->tm_min = 0;
case DTK_MINUTE:
tm->tm_sec = 0;
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = rint(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = rint(fsec * 1000000) / 1000000;
#endif
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp units \"%s\" not supported",
lowunits),
errOmitLocation(true)));
result = 0;
}
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp units \"%s\" not recognized",
lowunits),
errOmitLocation(true)));
result = 0;
}
PG_RETURN_TIMESTAMP(result);
}
/* timestamptz_trunc()
* Truncate timestamp to specified units.
*/
Datum
timestamptz_trunc(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_P(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz result;
int tz = 0;
int type,
val;
bool redotz = false;
char *lowunits;
fsec_t fsec = 0;
char *tzn;
struct pg_tm tt,
*tm = &tt;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMPTZ(timestamp);
lowunits = downcase_truncate_identifier(VARDATA(units),
VARSIZE(units) - VARHDRSZ,
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNITS)
{
if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
switch (val)
{
case DTK_WEEK:
{
int woy;
woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
/*
* If it is week 52/53 and the month is January, then the
* week must belong to the previous year. Also, some
* December dates belong to the next year.
*/
if (woy >= 52 && tm->tm_mon == 1)
--tm->tm_year;
if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR)
++tm->tm_year;
isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
fsec = 0;
redotz = true;
break;
}
/* one may consider DTK_THOUSAND and DTK_HUNDRED... */
case DTK_MILLENNIUM:
/*
* truncating to the millennium? what is this supposed to
* mean? let us put the first year of the millennium... i.e.
* -1000, 1, 1001, 2001...
*/
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999;
else
tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1;
/* FALL THRU */
case DTK_CENTURY:
/* truncating to the century? as above: -100, 1, 101... */
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99;
else
tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1;
/* FALL THRU */
case DTK_DECADE:
/*
* truncating to the decade? first year of the decade. must
* not be applied if year was truncated before!
*/
if (val != DTK_MILLENNIUM && val != DTK_CENTURY)
{
if (tm->tm_year > 0)
tm->tm_year = (tm->tm_year / 10) * 10;
else
tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10;
}
/* FALL THRU */
case DTK_YEAR:
tm->tm_mon = 1;
/* FALL THRU */
case DTK_QUARTER:
tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1;
/* FALL THRU */
case DTK_MONTH:
tm->tm_mday = 1;
/* FALL THRU */
case DTK_DAY:
tm->tm_hour = 0;
redotz = true; /* for all cases >= DAY */
/* FALL THRU */
case DTK_HOUR:
tm->tm_min = 0;
/* FALL THRU */
case DTK_MINUTE:
tm->tm_sec = 0;
/* FALL THRU */
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = rint(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = rint(fsec * 1000000) / 1000000;
#endif
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not "
"supported", lowunits),
errOmitLocation(true)));
result = 0;
}
if (redotz)
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp with time zone units \"%s\" not recognized",
lowunits),
errOmitLocation(true)));
result = 0;
}
PG_RETURN_TIMESTAMPTZ(result);
}
/* interval_trunc()
* Extract specified field from interval.
*/
Datum
interval_trunc(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_P(0);
Interval *interval = PG_GETARG_INTERVAL_P(1);
Interval *result;
int type,
val;
char *lowunits;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
result = (Interval *) palloc(sizeof(Interval));
lowunits = downcase_truncate_identifier(VARDATA(units),
VARSIZE(units) - VARHDRSZ,
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNITS)
{
if (interval2tm(*interval, tm, &fsec) == 0)
{
switch (val)
{
/* fall through */
case DTK_MILLENNIUM:
/* caution: C division may have negative remainder */
tm->tm_year = (tm->tm_year / 1000) * 1000;
case DTK_CENTURY:
/* caution: C division may have negative remainder */
tm->tm_year = (tm->tm_year / 100) * 100;
case DTK_DECADE:
/* caution: C division may have negative remainder */
tm->tm_year = (tm->tm_year / 10) * 10;
case DTK_YEAR:
tm->tm_mon = 0;
case DTK_QUARTER:
tm->tm_mon = 3 * (tm->tm_mon / 3);
case DTK_MONTH:
tm->tm_mday = 0;
case DTK_DAY:
tm->tm_hour = 0;
case DTK_HOUR:
tm->tm_min = 0;
case DTK_MINUTE:
tm->tm_sec = 0;
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
fsec = (fsec / 1000) * 1000;
#else
fsec = rint(fsec * 1000) / 1000;
#endif
break;
case DTK_MICROSEC:
#ifndef HAVE_INT64_TIMESTAMP
fsec = rint(fsec * 1000000) / 1000000;
#endif
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("interval units \"%s\" not supported",
lowunits),
errOmitLocation(true)));
}
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range"),
errOmitLocation(true)));
}
else
elog(ERROR, "could not convert interval to tm");
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval units \"%s\" not recognized",
lowunits),
errOmitLocation(true)));
}
PG_RETURN_INTERVAL_P(result);
}
/* isoweek2j()
*
* Return the Julian day which corresponds to the first day (Monday) of the given ISO 8601 year and week.
* Julian days are used to convert between ISO week dates and Gregorian dates.
*/
int
isoweek2j(int year, int week)
{
int day0,
day4;
/* fourth day of current year */
day4 = date2j(year, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
return ((week - 1) * 7) + (day4 - day0);
}
/* isoweek2date()
* Convert ISO week of year number to date.
* The year field must be specified with the ISO year!
* karel 2000/08/07
*/
void
isoweek2date(int woy, int *year, int *mon, int *mday)
{
j2date(isoweek2j(*year, woy), year, mon, mday);
}
/* isoweekdate2date()
*
* Convert an ISO 8601 week date (ISO year, ISO week and day of week) into a Gregorian date.
* Populates year, mon, and mday with the correct Gregorian values.
* year must be passed in as the ISO year.
*/
void
isoweekdate2date(int isoweek, int isowday, int *year, int *mon, int *mday)
{
int jday;
jday = isoweek2j(*year, isoweek);
jday += isowday - 1;
j2date(jday, year, mon, mday);
}
/* date2isoweek()
*
* Returns ISO week number of year.
*/
int
date2isoweek(int year, int mon, int mday)
{
float8 result;
int day0,
day4,
dayn;
/* current day */
dayn = date2j(year, mon, mday);
/* fourth day of current year */
day4 = date2j(year, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
/*
* We need the first week containing a Thursday, otherwise this day falls
* into the previous year for purposes of counting weeks
*/
if (dayn < day4 - day0)
{
day4 = date2j(year - 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
}
result = (dayn - (day4 - day0)) / 7 + 1;
/*
* Sometimes the last few days in a year will fall into the first week of
* the next year, so check for this.
*/
if (result >= 52)
{
day4 = date2j(year + 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
if (dayn >= day4 - day0)
result = (dayn - (day4 - day0)) / 7 + 1;
}
return (int) result;
}
/* date2isoyear()
*
* Returns ISO 8601 year number.
*/
int
date2isoyear(int year, int mon, int mday)
{
float8 result;
int day0,
day4,
dayn;
/* current day */
dayn = date2j(year, mon, mday);
/* fourth day of current year */
day4 = date2j(year, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
/*
* We need the first week containing a Thursday, otherwise this day falls
* into the previous year for purposes of counting weeks
*/
if (dayn < day4 - day0)
{
day4 = date2j(year - 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
year--;
}
result = (dayn - (day4 - day0)) / 7 + 1;
/*
* Sometimes the last few days in a year will fall into the first week of
* the next year, so check for this.
*/
if (result >= 52)
{
day4 = date2j(year + 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
if (dayn >= day4 - day0)
year++;
}
return year;
}
/* date2isoyearday()
*
* Returns the ISO 8601 day-of-year, given a Gregorian year, month and day.
* Possible return values are 1 through 371 (364 in non-leap years).
*/
int
date2isoyearday(int year, int mon, int mday)
{
return date2j(year, mon, mday) - isoweek2j(date2isoyear(year, mon, mday), 1) + 1;
}
/* timestamp_part()
* Extract specified field from timestamp.
*/
Datum
timestamp_part(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_P(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
float8 result;
int type,
val;
char *lowunits;
fsec_t fsec = 0;
struct pg_tm tt,
*tm = &tt;
if (TIMESTAMP_NOT_FINITE(timestamp))
{
result = 0;
PG_RETURN_FLOAT8(result);
}
lowunits = downcase_truncate_identifier(VARDATA(units),
VARSIZE(units) - VARHDRSZ,
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS)
{
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
switch (val)
{
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
result = tm->tm_min;
break;
case DTK_HOUR:
result = tm->tm_hour;
break;
case DTK_DAY:
result = tm->tm_mday;
break;
case DTK_MONTH:
result = tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_mon - 1) / 3 + 1;
break;
case DTK_WEEK:
result = (float8) date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
case DTK_YEAR:
if (tm->tm_year > 0)
result = tm->tm_year;
else
/* there is no year 0, just 1 BC and 1 AD */
result = tm->tm_year - 1;
break;
case DTK_DECADE:
/*
* what is a decade wrt dates? let us assume that decade 199
* is 1990 thru 1999... decade 0 starts on year 1 BC, and -1
* is 11 BC thru 2 BC...
*/
if (tm->tm_year >= 0)
result = tm->tm_year / 10;
else
result = -((8 - (tm->tm_year - 1)) / 10);
break;
case DTK_CENTURY:
/* ----
* centuries AD, c>0: year in [ (c-1)* 100 + 1 : c*100 ]
* centuries BC, c<0: year in [ c*100 : (c+1) * 100 - 1]
* there is no number 0 century.
* ----
*/
if (tm->tm_year > 0)
result = (tm->tm_year + 99) / 100;
else
/* caution: C division may have negative remainder */
result = -((99 - (tm->tm_year - 1)) / 100);
break;
case DTK_MILLENNIUM:
/* see comments above. */
if (tm->tm_year > 0)
result = (tm->tm_year + 999) / 1000;
else
result = -((999 - (tm->tm_year - 1)) / 1000);
break;
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
#else
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + fsec) / (double) SECS_PER_DAY;
#endif
break;
case DTK_ISOYEAR:
result = date2isoyear(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
case DTK_TZ:
case DTK_TZ_MINUTE:
case DTK_TZ_HOUR:
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp units \"%s\" not supported",
lowunits)));
result = 0;
}
}
else if (type == RESERV)
{
switch (val)
{
case DTK_EPOCH:
{
int tz;
TimestampTz timestamptz;
/*
* convert to timestamptz to produce consistent results
*/
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &timestamptz) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
#ifdef HAVE_INT64_TIMESTAMP
result = (timestamptz - SetEpochTimestamp()) / 1000000.0;
#else
result = timestamptz - SetEpochTimestamp();
#endif
break;
}
case DTK_DOW:
case DTK_ISODOW:
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
result = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday));
if (val == DTK_ISODOW && result == 0)
result = 7;
break;
case DTK_DOY:
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
result = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)
- date2j(tm->tm_year, 1, 1) + 1);
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp units \"%s\" not supported",
lowunits),
errOmitLocation(true)));
result = 0;
}
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp units \"%s\" not recognized", lowunits),
errOmitLocation(true)));
result = 0;
}
PG_RETURN_FLOAT8(result);
}
/* timestamptz_part()
* Extract specified field from timestamp with time zone.
*/
Datum
timestamptz_part(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_P(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
float8 result;
int tz = 0;
int type,
val;
char *lowunits;
double dummy;
fsec_t fsec = 0;
char *tzn;
struct pg_tm tt,
*tm = &tt;
if (TIMESTAMP_NOT_FINITE(timestamp))
{
result = 0;
PG_RETURN_FLOAT8(result);
}
lowunits = downcase_truncate_identifier(VARDATA(units),
VARSIZE(units) - VARHDRSZ,
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS)
{
if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
switch (val)
{
case DTK_TZ:
result = -tz;
break;
case DTK_TZ_MINUTE:
result = -tz;
result /= MINS_PER_HOUR;
FMODULO(result, dummy, (double) MINS_PER_HOUR);
break;
case DTK_TZ_HOUR:
dummy = -tz;
FMODULO(dummy, result, (double) SECS_PER_HOUR);
break;
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
result = tm->tm_min;
break;
case DTK_HOUR:
result = tm->tm_hour;
break;
case DTK_DAY:
result = tm->tm_mday;
break;
case DTK_MONTH:
result = tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_mon - 1) / 3 + 1;
break;
case DTK_WEEK:
result = (float8) date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
case DTK_YEAR:
if (tm->tm_year > 0)
result = tm->tm_year;
else
/* there is no year 0, just 1 BC and 1 AD */
result = tm->tm_year - 1;
break;
case DTK_DECADE:
/* see comments in timestamp_part */
if (tm->tm_year > 0)
result = tm->tm_year / 10;
else
result = -((8 - (tm->tm_year - 1)) / 10);
break;
case DTK_CENTURY:
/* see comments in timestamp_part */
if (tm->tm_year > 0)
result = (tm->tm_year + 99) / 100;
else
result = -((99 - (tm->tm_year - 1)) / 100);
break;
case DTK_MILLENNIUM:
/* see comments in timestamp_part */
if (tm->tm_year > 0)
result = (tm->tm_year + 999) / 1000;
else
result = -((999 - (tm->tm_year - 1)) / 1000);
break;
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
#ifdef HAVE_INT64_TIMESTAMP
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
#else
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + fsec) / (double) SECS_PER_DAY;
#endif
break;
case DTK_ISOYEAR:
result = date2isoyear(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not supported",
lowunits),
errOmitLocation(true)));
result = 0;
}
}
else if (type == RESERV)
{
switch (val)
{
case DTK_EPOCH:
#ifdef HAVE_INT64_TIMESTAMP
result = (timestamp - SetEpochTimestamp()) / 1000000.0;
#else
result = timestamp - SetEpochTimestamp();
#endif
break;
case DTK_DOW:
case DTK_ISODOW:
if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
result = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday));
if (val == DTK_ISODOW && result == 0)
result = 7;
break;
case DTK_DOY:
if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
result = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)
- date2j(tm->tm_year, 1, 1) + 1);
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not supported",
lowunits),
errOmitLocation(true)));
result = 0;
}
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp with time zone units \"%s\" not recognized",
lowunits),
errOmitLocation(true)));
result = 0;
}
PG_RETURN_FLOAT8(result);
}
/* interval_part()
* Extract specified field from interval.
*/
Datum
interval_part(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_P(0);
Interval *interval = PG_GETARG_INTERVAL_P(1);
float8 result;
int type,
val;
char *lowunits;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
lowunits = downcase_truncate_identifier(VARDATA(units),
VARSIZE(units) - VARHDRSZ,
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS)
{
if (interval2tm(*interval, tm, &fsec) == 0)
{
switch (val)
{
case DTK_MICROSEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000000.0 + fsec;
#else
result = (tm->tm_sec + fsec) * 1000000;
#endif
break;
case DTK_MILLISEC:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
#else
result = (tm->tm_sec + fsec) * 1000;
#endif
break;
case DTK_SECOND:
#ifdef HAVE_INT64_TIMESTAMP
result = tm->tm_sec + fsec / 1000000.0;
#else
result = tm->tm_sec + fsec;
#endif
break;
case DTK_MINUTE:
result = tm->tm_min;
break;
case DTK_HOUR:
result = tm->tm_hour;
break;
case DTK_DAY:
result = tm->tm_mday;
break;
case DTK_MONTH:
result = tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_mon / 3) + 1;
break;
case DTK_YEAR:
result = tm->tm_year;
break;
case DTK_DECADE:
/* caution: C division may have negative remainder */
result = tm->tm_year / 10;
break;
case DTK_CENTURY:
/* caution: C division may have negative remainder */
result = tm->tm_year / 100;
break;
case DTK_MILLENNIUM:
/* caution: C division may have negative remainder */
result = tm->tm_year / 1000;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("interval units \"%s\" not supported",
lowunits),
errOmitLocation(true)));
result = 0;
}
}
else
{
elog(ERROR, "could not convert interval to tm");
result = 0;
}
}
else if (type == RESERV && val == DTK_EPOCH)
{
#ifdef HAVE_INT64_TIMESTAMP
result = interval->time / 1000000.0;
#else
result = interval->time;
#endif
result += ((double) DAYS_PER_YEAR * SECS_PER_DAY) * (interval->month / MONTHS_PER_YEAR);
result += ((double) DAYS_PER_MONTH * SECS_PER_DAY) * (interval->month % MONTHS_PER_YEAR);
result += ((double) SECS_PER_DAY) * interval->day;
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval units \"%s\" not recognized",
lowunits),
errOmitLocation(true)));
result = 0;
}
PG_RETURN_FLOAT8(result);
}
/* timestamp_zone()
* Encode timestamp type with specified time zone.
* This function is just timestamp2timestamptz() except instead of
* shifting to the global timezone, we shift to the specified timezone.
* This is different from the other AT TIME ZONE cases because instead
* of shifting to a _to_ a new time zone, it sets the time to _be_ the
* specified timezone.
*/
Datum
timestamp_zone(PG_FUNCTION_ARGS)
{
text *zone = PG_GETARG_TEXT_P(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
TimestampTz result;
int tz;
char tzname[TZ_STRLEN_MAX + 1];
char *lowzone;
int type,
val;
pg_tz *tzp;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMPTZ(timestamp);
/*
* Look up the requested timezone. First we look in the date token table
* (to handle cases like "EST"), and if that fails, we look in the
* timezone database (to handle cases like "America/New_York"). (This
* matches the order in which timestamp input checks the cases; it's
* important because the timezone database unwisely uses a few zone names
* that are identical to offset abbreviations.)
*/
text_to_cstring_buffer(zone, tzname, sizeof(tzname));
lowzone = downcase_truncate_identifier(tzname,
strlen(tzname),
false);
type = DecodeSpecial(0, lowzone, &val);
if (type == TZ || type == DTZ)
{
tz = -(val * 60);
result = dt2local(timestamp, tz);
}
else
{
tzp = pg_tzset(tzname);
if (tzp)
{
/* Apply the timezone change */
struct pg_tm tm;
fsec_t fsec = 0;
if (timestamp2tm(timestamp, NULL, &tm, &fsec, NULL, tzp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
tz = DetermineTimeZoneOffset(&tm, tzp);
if (tm2timestamp(&tm, fsec, &tz, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("could not convert to time zone \"%s\"",
tzname),
errOmitLocation(true)));
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized", tzname),
errOmitLocation(true)));
result = 0; /* keep compiler quiet */
}
}
PG_RETURN_TIMESTAMPTZ(result);
}
/* timestamp_izone()
* Encode timestamp type with specified time interval as time zone.
*/
Datum
timestamp_izone(PG_FUNCTION_ARGS)
{
Interval *zone = PG_GETARG_INTERVAL_P(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
TimestampTz result;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMPTZ(timestamp);
if (zone->month != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval time zone \"%s\" must not specify month",
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone)))),
errOmitLocation(true)));
#ifdef HAVE_INT64_TIMESTAMP
tz = zone->time / USECS_PER_SEC;
#else
tz = zone->time;
#endif
result = dt2local(timestamp, tz);
PG_RETURN_TIMESTAMPTZ(result);
} /* timestamp_izone() */
/* timestamp_timestamptz()
* Convert local timestamp to timestamp at GMT
*/
Datum
timestamp_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
PG_RETURN_TIMESTAMPTZ(timestamp2timestamptz(timestamp));
}
static TimestampTz
timestamp2timestamptz(Timestamp timestamp)
{
TimestampTz result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec = 0;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else
{
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
}
return result;
}
/* timestamptz_timestamp()
* Convert timestamp at GMT to local timestamp
*/
Datum
timestamptz_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
Timestamp result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec = 0;
char *tzn;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else
{
if (timestamp2tm(timestamp, &tz, tm, &fsec, &tzn, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
}
PG_RETURN_TIMESTAMP(result);
}
/* timestamptz_zone()
* Evaluate timestamp with time zone type at the specified time zone.
* Returns a timestamp without time zone.
*/
Datum
timestamptz_zone(PG_FUNCTION_ARGS)
{
text *zone = PG_GETARG_TEXT_P(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
Timestamp result;
int tz;
char tzname[TZ_STRLEN_MAX + 1];
char *lowzone;
int type,
val;
pg_tz *tzp;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
/*
* Look up the requested timezone. First we look in the date token table
* (to handle cases like "EST"), and if that fails, we look in the
* timezone database (to handle cases like "America/New_York"). (This
* matches the order in which timestamp input checks the cases; it's
* important because the timezone database unwisely uses a few zone names
* that are identical to offset abbreviations.)
*/
text_to_cstring_buffer(zone, tzname, sizeof(tzname));
lowzone = downcase_truncate_identifier(tzname,
strlen(tzname),
false);
type = DecodeSpecial(0, lowzone, &val);
if (type == TZ || type == DTZ)
{
tz = val * 60;
result = dt2local(timestamp, tz);
}
else
{
tzp = pg_tzset(tzname);
if (tzp)
{
/* Apply the timezone change */
struct pg_tm tm;
fsec_t fsec = 0;
if (timestamp2tm(timestamp, &tz, &tm, &fsec, NULL, tzp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range"),
errOmitLocation(true)));
if (tm2timestamp(&tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("could not convert to time zone \"%s\"",
tzname)));
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized", tzname),
errOmitLocation(true)));
result = 0; /* keep compiler quiet */
}
}
PG_RETURN_TIMESTAMP(result);
}
/* timestamptz_izone()
* Encode timestamp with time zone type with specified time interval as time zone.
* Returns a timestamp without time zone.
*/
Datum
timestamptz_izone(PG_FUNCTION_ARGS)
{
Interval *zone = PG_GETARG_INTERVAL_P(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
Timestamp result;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
if (zone->month != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval time zone \"%s\" must not specify month",
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone)))),
errOmitLocation(true)));
#ifdef HAVE_INT64_TIMESTAMP
tz = -(zone->time / USECS_PER_SEC);
#else
tz = -zone->time;
#endif
result = dt2local(timestamp, tz);
PG_RETURN_TIMESTAMP(result);
}
/* generate_series_timestamp()
* Generate the set of timestamps from start to finish by step
*/
Datum
generate_series_timestamp(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
generate_series_timestamp_fctx *fctx;
Timestamp result;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
Timestamp start = PG_GETARG_TIMESTAMP(0);
Timestamp finish = PG_GETARG_TIMESTAMP(1);
Interval *step = PG_GETARG_INTERVAL_P(2);
MemoryContext oldcontext;
Interval interval_zero;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_timestamp_fctx *)
palloc(sizeof(generate_series_timestamp_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = *step;
/* Determine sign of the interval */
MemSet(&interval_zero, 0, sizeof(Interval));
fctx->step_sign = interval_cmp_internal(&fctx->step, &interval_zero);
if (fctx->step_sign == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size cannot equal zero"),
errOmitLocation(true)));
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if (fctx->step_sign > 0 ?
timestamp_cmp_internal(result, fctx->finish) <= 0 :
timestamp_cmp_internal(result, fctx->finish) >= 0)
{
/* increment current in preparation for next iteration */
fctx->current = DatumGetTimestamp(
DirectFunctionCall2(timestamp_pl_interval,
TimestampGetDatum(fctx->current),
PointerGetDatum(&fctx->step)));
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, TimestampGetDatum(result));
}
else
{
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
}
/* generate_series_timestamptz()
* Generate the set of timestamps from start to finish by step
*/
Datum
generate_series_timestamptz(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
generate_series_timestamptz_fctx *fctx;
TimestampTz result;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
TimestampTz start = PG_GETARG_TIMESTAMPTZ(0);
TimestampTz finish = PG_GETARG_TIMESTAMPTZ(1);
Interval *step = PG_GETARG_INTERVAL_P(2);
MemoryContext oldcontext;
Interval interval_zero;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_timestamptz_fctx *)
palloc(sizeof(generate_series_timestamptz_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = *step;
/* Determine sign of the interval */
MemSet(&interval_zero, 0, sizeof(Interval));
fctx->step_sign = interval_cmp_internal(&fctx->step, &interval_zero);
if (fctx->step_sign == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size cannot equal zero"),
errOmitLocation(true)));
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if (fctx->step_sign > 0 ?
timestamp_cmp_internal(result, fctx->finish) <= 0 :
timestamp_cmp_internal(result, fctx->finish) >= 0)
{
/* increment current in preparation for next iteration */
fctx->current = DatumGetTimestampTz(
DirectFunctionCall2(timestamptz_pl_interval,
TimestampTzGetDatum(fctx->current),
PointerGetDatum(&fctx->step)));
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, TimestampTzGetDatum(result));
}
else
{
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
}
/* ----------------------------------------------------------------------
*
* Aggregate functions -- Greenplum Database Extensions
*
* Greenplum Database adds some builtin functions to amalgamate transition type
* instances for two-stage aggregation.
*
* ----------------------------------------------------------------------
*/
Datum
interval_amalg(PG_FUNCTION_ARGS)
{
ArrayType *aTransArray = PG_GETARG_ARRAYTYPE_P(0);
ArrayType *bTransArray = PG_GETARG_ARRAYTYPE_P(1);
PG_RETURN_ARRAYTYPE_P(interval_amalg_demalg(aTransArray, bTransArray,
true));
}
Datum
interval_demalg(PG_FUNCTION_ARGS)
{
ArrayType *aTransArray = PG_GETARG_ARRAYTYPE_P(0);
ArrayType *bTransArray = PG_GETARG_ARRAYTYPE_P(1);
PG_RETURN_ARRAYTYPE_P(interval_amalg_demalg(aTransArray, bTransArray,
false));
}
static ArrayType *
interval_amalg_demalg(ArrayType *aTransArray,
ArrayType *bTransArray,
bool is_amalg)
{
Datum *transdatums;
int ndatums;
Interval aSumMiX, bSumMiX,
aN, bN;
Interval *newsummi;
ArrayType *result;
deconstruct_array(aTransArray,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums, NULL, &ndatums);
if (ndatums != 2)
elog(ERROR, "expected 2-element interval array");
/*
* XXX memcpy, instead of just extracting a pointer, to work around buggy
* array code: it won't ensure proper alignment of Interval objects on
* machines where double requires 8-byte alignment. That should be fixed,
* but in the meantime...
*
* Note: must use DatumGetPointer here, not DatumGetIntervalP, else some
* compilers optimize into double-aligned load/store anyway.
*/
memcpy((void *) &aSumMiX, DatumGetPointer(transdatums[0]), sizeof(Interval));
memcpy((void *) &aN, DatumGetPointer(transdatums[1]), sizeof(Interval));
deconstruct_array(bTransArray,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums, NULL, &ndatums);
if (ndatums != 2)
elog(ERROR, "expected 2-element interval array");
memcpy((void *) &bSumMiX, DatumGetPointer(transdatums[0]), sizeof(Interval));
memcpy((void *) &bN, DatumGetPointer(transdatums[1]), sizeof(Interval));
if (is_amalg)
{
newsummi = DatumGetIntervalP(DirectFunctionCall2(interval_pl,
IntervalPGetDatum(&aSumMiX),
IntervalPGetDatum(&bSumMiX)));
aN.time += bN.time;
}
else
{
newsummi = DatumGetIntervalP(DirectFunctionCall2(interval_mi,
IntervalPGetDatum(&aSumMiX),
IntervalPGetDatum(&bSumMiX)));
aN.time -= bN.time;
}
transdatums[0] = IntervalPGetDatum(newsummi);
transdatums[1] = IntervalPGetDatum(&aN);
result = construct_array(transdatums, 2,
INTERVALOID, sizeof(Interval), false, 'd');
return result;
}