blob: 538ea83171bde91bf87d3c6e0e2ea781f983b1e5 [file] [log] [blame]
/*-------------------------------------------------------------------------
*
* int8.c
* Internal 64-bit integer operations
*
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/int8.c,v 1.62 2006/10/04 00:29:59 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "nodes/nodes.h"
#include "utils/int8.h"
#define MAXINT8LEN 25
#define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
typedef struct
{
int64 current;
int64 finish;
int64 step;
} generate_series_fctx;
/***********************************************************************
**
** Routines for 64-bit integers.
**
***********************************************************************/
/*----------------------------------------------------------
* Formatting and conversion routines.
*---------------------------------------------------------*/
/*
* scanint8 --- try to parse a string into an int8.
*
* If errorOK is false, ereport a useful error message if the string is bad.
* If errorOK is true, just return "false" for bad input.
*/
bool
scanint8(const char *str, bool errorOK, int64 *result)
{
const char *ptr = str;
int64 tmp = 0;
int sign = 1;
/*
* Do our own scan, rather than relying on sscanf which might be broken
* for long long.
*/
/* skip leading spaces */
while (*ptr && isspace((unsigned char) *ptr))
ptr++;
/* handle sign */
if (*ptr == '-')
{
ptr++;
/*
* Do an explicit check for INT64_MIN. Ugly though this is, it's
* cleaner than trying to get the loop below to handle it portably.
*/
#ifndef INT64_IS_BUSTED
if (strncmp(ptr, "9223372036854775808", 19) == 0)
{
tmp = -INT64CONST(0x7fffffffffffffff) - 1;
ptr += 19;
goto gotdigits;
}
#endif
sign = -1;
}
else if (*ptr == '+')
ptr++;
/* require at least one digit */
if (!isdigit((unsigned char) *ptr))
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for integer: \"%s\"",str),
errOmitLocation(true)));
}
/* process digits */
while (*ptr && isdigit((unsigned char) *ptr))
{
int64 newtmp = tmp * 10 + (*ptr++ - '0');
if ((newtmp / 10) != tmp) /* overflow? */
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("value \"%s\" is out of range for type bigint",str),
errOmitLocation(true)));
}
tmp = newtmp;
}
gotdigits:
/* allow trailing whitespace, but not other trailing chars */
while (*ptr != '\0' && isspace((unsigned char) *ptr))
ptr++;
if (*ptr != '\0')
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for integer: \"%s\"",
str),
errOmitLocation(true)));
}
*result = (sign < 0) ? -tmp : tmp;
return true;
}
/* int8in()
*/
Datum
int8in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
int64 result;
(void) scanint8(str, false, &result);
PG_RETURN_INT64(result);
}
/* int8out()
*/
Datum
int8out(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
char *result;
int len;
char buf[MAXINT8LEN + 1];
if ((len = snprintf(buf, MAXINT8LEN, INT64_FORMAT, val)) < 0)
elog(ERROR, "could not format int8");
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* int8recv - converts external binary format to int8
*/
Datum
int8recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
PG_RETURN_INT64(pq_getmsgint64(buf));
}
/*
* int8send - converts int8 to binary format
*/
Datum
int8send(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, arg1);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*----------------------------------------------------------
* Relational operators for int8s, including cross-data-type comparisons.
*---------------------------------------------------------*/
/* int8relop()
* Is val1 relop val2?
*/
Datum
int8eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int8ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int8lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int8gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int8le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int8ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int84relop()
* Is 64-bit val1 relop 32-bit val2?
*/
Datum
int84eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int84ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int84lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int84gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int84le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int84ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int48relop()
* Is 32-bit val1 relop 64-bit val2?
*/
Datum
int48eq(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int48ne(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int48lt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int48gt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int48le(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int48ge(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int82relop()
* Is 64-bit val1 relop 16-bit val2?
*/
Datum
int82eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int82ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int82lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int82gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int82le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int82ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int28relop()
* Is 16-bit val1 relop 64-bit val2?
*/
Datum
int28eq(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int28ne(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int28lt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int28gt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int28le(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int28ge(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/*----------------------------------------------------------
* Arithmetic operators on 64-bit integers.
*---------------------------------------------------------*/
Datum
int8um(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int64 result;
result = -arg;
/* overflow check (needed for INT64_MIN) */
if (arg != 0 && SAMESIGN(result, arg))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int8up(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
PG_RETURN_INT64(arg);
}
Datum
int8pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int8mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int8mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg2 gives arg1
* again. There are two cases where this fails: arg2 = 0 (which cannot
* overflow) and arg1 = INT64_MIN, arg2 = -1 (where the division itself
* will overflow and thus incorrectly match).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible. (But that only works if we
* really have a 64-bit int64 datatype...)
*/
if (arg2 != 0 &&
(result / arg2 != arg1 || (arg2 == -1 && arg1 < 0 && result < 0)))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int8div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
if (arg2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero"),
errOmitLocation(true)));
result = arg1 / arg2;
/*
* Overflow check. The only possible overflow case is for arg1 =
* INT64_MIN, arg2 = -1, where the correct result is -INT64_MIN, which
* can't be represented on a two's-complement machine. Most machines
* produce INT64_MIN but it seems some produce zero.
*/
if (arg2 == -1 && arg1 < 0 && result <= 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
/* int8abs()
* Absolute value
*/
Datum
int8abs(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 result;
result = (arg1 < 0) ? -arg1 : arg1;
/* overflow check (needed for INT64_MIN) */
if (result < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
/* int8mod()
* Modulo operation.
*/
Datum
int8mod(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
if (arg2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero"),
errOmitLocation(true)));
/* No overflow is possible */
PG_RETURN_INT64(arg1 % arg2);
}
Datum
int8inc(PG_FUNCTION_ARGS)
{
/* Assume int8 is byval */
int64 arg = PG_GETARG_INT64(0);
int64 result;
result = arg + 1;
/* Overflow check */
if (result < 0 && arg > 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int8dec(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int64 result;
result = arg - 1;
/* Overflow check */
if (result > 0 && arg < 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
/*
* These functions are exactly like int8inc but are used for aggregates that
* count only non-null values. Since the functions are declared strict,
* the null checks happen before we ever get here, and all we need do is
* increment the state value. We could actually make these pg_proc entries
* point right at int8inc, but then the opr_sanity regression test would
* complain about mismatched entries for a built-in function.
*/
Datum
int8inc_any(PG_FUNCTION_ARGS)
{
return int8inc(fcinfo);
}
Datum
int8inc_float8_float8(PG_FUNCTION_ARGS)
{
return int8inc(fcinfo);
}
Datum
int8larger(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = ((arg1 > arg2) ? arg1 : arg2);
PG_RETURN_INT64(result);
}
Datum
int8smaller(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = ((arg1 < arg2) ? arg1 : arg2);
PG_RETURN_INT64(result);
}
Datum
int84pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int84mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int84mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg1 gives arg2
* again. There is one case where this fails: arg1 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg1 != (int64) ((int32) arg1) &&
result / arg1 != arg2)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int84div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
int64 result;
if (arg2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero"),
errOmitLocation(true)));
result = arg1 / arg2;
/*
* Overflow check. The only possible overflow case is for arg1 =
* INT64_MIN, arg2 = -1, where the correct result is -INT64_MIN, which
* can't be represented on a two's-complement machine. Most machines
* produce INT64_MIN but it seems some produce zero.
*/
if (arg2 == -1 && arg1 < 0 && result <= 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int48pl(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int48mi(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int48mul(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg2 gives arg1
* again. There is one case where this fails: arg2 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg2 != (int64) ((int32) arg2) &&
result / arg2 != arg1)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int48div(PG_FUNCTION_ARGS)
{
int32 arg1 = PG_GETARG_INT32(0);
int64 arg2 = PG_GETARG_INT64(1);
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero"),
errOmitLocation(true)));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/* No overflow is possible */
PG_RETURN_INT64((int64) arg1 / arg2);
}
Datum
int82pl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int82mi(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int82mul(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg1 gives arg2
* again. There is one case where this fails: arg1 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg1 != (int64) ((int32) arg1) &&
result / arg1 != arg2)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int82div(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int16 arg2 = PG_GETARG_INT16(1);
int64 result;
if (arg2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero"),
errOmitLocation(true)));
result = arg1 / arg2;
/*
* Overflow check. The only possible overflow case is for arg1 =
* INT64_MIN, arg2 = -1, where the correct result is -INT64_MIN, which
* can't be represented on a two's-complement machine. Most machines
* produce INT64_MIN but it seems some produce zero.
*/
if (arg2 == -1 && arg1 < 0 && result <= 0)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int28pl(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 + arg2;
/*
* Overflow check. If the inputs are of different signs then their sum
* cannot overflow. If the inputs are of the same sign, their sum had
* better be that sign too.
*/
if (SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int28mi(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 - arg2;
/*
* Overflow check. If the inputs are of the same sign then their
* difference cannot overflow. If they are of different signs then the
* result should be of the same sign as the first input.
*/
if (!SAMESIGN(arg1, arg2) && !SAMESIGN(result, arg1))
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int28mul(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
int64 result;
result = arg1 * arg2;
/*
* Overflow check. We basically check to see if result / arg2 gives arg1
* again. There is one case where this fails: arg2 = 0 (which cannot
* overflow).
*
* Since the division is likely much more expensive than the actual
* multiplication, we'd like to skip it where possible. The best bang for
* the buck seems to be to check whether both inputs are in the int32
* range; if so, no overflow is possible.
*/
if (arg2 != (int64) ((int32) arg2) &&
result / arg2 != arg1)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
int28div(PG_FUNCTION_ARGS)
{
int16 arg1 = PG_GETARG_INT16(0);
int64 arg2 = PG_GETARG_INT64(1);
if (arg2 == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero"),
errOmitLocation(true)));
/* ensure compiler realizes we mustn't reach the division (gcc bug) */
PG_RETURN_NULL();
}
/* No overflow is possible */
PG_RETURN_INT64((int64) arg1 / arg2);
}
/* Binary arithmetics
*
* int8and - returns arg1 & arg2
* int8or - returns arg1 | arg2
* int8xor - returns arg1 # arg2
* int8not - returns ~arg1
* int8shl - returns arg1 << arg2
* int8shr - returns arg1 >> arg2
*/
Datum
int8and(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 & arg2);
}
Datum
int8or(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 | arg2);
}
Datum
int8xor(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 ^ arg2);
}
Datum
int8not(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
PG_RETURN_INT64(~arg1);
}
Datum
int8shl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 << arg2);
}
Datum
int8shr(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 >> arg2);
}
/*----------------------------------------------------------
* Conversion operators.
*---------------------------------------------------------*/
Datum
int48(PG_FUNCTION_ARGS)
{
int32 arg = PG_GETARG_INT32(0);
PG_RETURN_INT64((int64) arg);
}
Datum
int84(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int32 result;
result = (int32) arg;
/* Test for overflow by reverse-conversion. */
if ((int64) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range"),
errOmitLocation(true)));
PG_RETURN_INT32(result);
}
Datum
int28(PG_FUNCTION_ARGS)
{
int16 arg = PG_GETARG_INT16(0);
PG_RETURN_INT64((int64) arg);
}
Datum
int82(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
int16 result;
result = (int16) arg;
/* Test for overflow by reverse-conversion. */
if ((int64) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("smallint out of range"),
errOmitLocation(true)));
PG_RETURN_INT16(result);
}
Datum
i8tod(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
float8 result;
result = arg;
PG_RETURN_FLOAT8(result);
}
/* dtoi8()
* Convert float8 to 8-byte integer.
*/
Datum
dtoi8(PG_FUNCTION_ARGS)
{
float8 arg = PG_GETARG_FLOAT8(0);
int64 result;
/* Round arg to nearest integer (but it's still in float form) */
arg = rint(arg);
/*
* Does it fit in an int64? Avoid assuming that we have handy constants
* defined for the range boundaries, instead test for overflow by
* reverse-conversion.
*/
result = (int64) arg;
if ((float8) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
i8tof(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
float4 result;
result = arg;
PG_RETURN_FLOAT4(result);
}
/* ftoi8()
* Convert float4 to 8-byte integer.
*/
Datum
ftoi8(PG_FUNCTION_ARGS)
{
float4 arg = PG_GETARG_FLOAT4(0);
int64 result;
float8 darg;
/* Round arg to nearest integer (but it's still in float form) */
darg = rint(arg);
/*
* Does it fit in an int64? Avoid assuming that we have handy constants
* defined for the range boundaries, instead test for overflow by
* reverse-conversion.
*/
result = (int64) darg;
if ((float8) result != darg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("bigint out of range"),
errOmitLocation(true)));
PG_RETURN_INT64(result);
}
Datum
i8tooid(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
Oid result;
result = (Oid) arg;
/* Test for overflow by reverse-conversion. */
if ((int64) result != arg)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("OID out of range"),
errOmitLocation(true)));
PG_RETURN_OID(result);
}
Datum
oidtoi8(PG_FUNCTION_ARGS)
{
Oid arg = PG_GETARG_OID(0);
PG_RETURN_INT64((int64) arg);
}
Datum
text_int8(PG_FUNCTION_ARGS)
{
text *str = PG_GETARG_TEXT_P(0);
int len;
char *s;
Datum result;
len = (VARSIZE(str) - VARHDRSZ);
s = palloc(len + 1);
memcpy(s, VARDATA(str), len);
*(s + len) = '\0';
result = DirectFunctionCall1(int8in, CStringGetDatum(s));
pfree(s);
return result;
}
Datum
int8_text(PG_FUNCTION_ARGS)
{
/* arg is int64, but easier to leave it as Datum */
Datum arg = PG_GETARG_DATUM(0);
char *s;
int len;
text *result;
s = DatumGetCString(DirectFunctionCall1(int8out, arg));
len = strlen(s);
result = (text *) palloc(VARHDRSZ + len);
SET_VARSIZE(result, VARHDRSZ + len);
memcpy(VARDATA(result), s, len);
pfree(s);
PG_RETURN_TEXT_P(result);
}
/*
* non-persistent numeric series generator
*/
Datum
generate_series_int8(PG_FUNCTION_ARGS)
{
return generate_series_step_int8(fcinfo);
}
Datum
generate_series_step_int8(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
generate_series_fctx *fctx;
int64 result;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
int64 start = PG_GETARG_INT64(0);
int64 finish = PG_GETARG_INT64(1);
int64 step = 1;
/* see if we were given an explicit step size */
if (PG_NARGS() == 3)
step = PG_GETARG_INT64(2);
if (step == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size cannot equal zero")));
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = step;
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
(fctx->step < 0 && fctx->current >= fctx->finish))
{
/* increment current in preparation for next iteration */
fctx->current += fctx->step;
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, Int64GetDatum(result));
}
else
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}