blob: dc9f527b77e7a277525f4ab0ef16b4b4ad57b429 [file] [log] [blame]
/*-------------------------------------------------------------------------
*
* execQual.c
* Routines to evaluate qualification and targetlist expressions
*
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/executor/execQual.c,v 1.199.2.3 2007/08/31 18:33:47 tgl Exp $
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecEvalExpr - (now a macro) evaluate an expression, return a datum
* ExecEvalExprSwitchContext - same, but switch into eval memory context
* ExecQual - return true/false if qualification is satisfied
* ExecProject - form a new tuple by projecting the given tuple
*
* NOTES
* The more heavily used ExecEvalExpr routines, such as ExecEvalVar(),
* are hotspots. Making these faster will speed up the entire system.
*
* ExecProject() is used to make tuple projections. Rather then
* trying to speed it up, the execution plan should be pre-processed
* to facilitate attribute sharing between nodes wherever possible,
* instead of doing needless copying. -cim 5/31/91
*
* During expression evaluation, we check_stack_depth only in
* ExecMakeFunctionResult (and substitute routines) rather than at every
* single node. This is a compromise that trades off precision of the
* stack limit setting to gain speed.
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/nbtree.h"
#include "access/tuptoaster.h"
#include "catalog/pg_type.h"
#include "cdb/cdbvars.h"
#include "cdb/partitionselection.h"
#include "commands/typecmds.h"
#include "executor/execdebug.h"
#include "executor/nodeAgg.h"
#include "executor/nodeSubplan.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/planmain.h"
#include "parser/parse_expr.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/typcache.h"
/* static function decls */
static Datum ExecEvalArrayRef(ArrayRefExprState *astate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalAggref(AggrefExprState *aggref,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalGroupingFunc(GroupingFuncExprState *gstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalGrouping(ExprState *gstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalGroupId(ExprState *gstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalWindowRef(WindowRefExprState *winref,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalVar(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalScalarVar(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalWholeRowVar(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalWholeRowSlow(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalConst(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalParam(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static void ShutdownFuncExpr(Datum arg);
static TupleDesc get_cached_rowtype(Oid type_id, int32 typmod,
TupleDesc *cache_field, ExprContext *econtext);
static void ShutdownTupleDescRef(Datum arg);
static void ExecPrepareTuplestoreResult(FuncExprState *fcache,
ExprContext *econtext,
Tuplestorestate *resultStore,
TupleDesc resultDesc);
static void tupledesc_match(TupleDesc dst_tupdesc, TupleDesc src_tupdesc);
static Datum ExecMakeFunctionResult(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone);
static Datum ExecMakeFunctionResultNoSets(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalFunc(FuncExprState *fcache, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalOper(FuncExprState *fcache, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalDistinct(FuncExprState *fcache, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalNot(BoolExprState *notclause, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalOr(BoolExprState *orExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalAnd(BoolExprState *andExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalConvertRowtype(ConvertRowtypeExprState *cstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCase(CaseExprState *caseExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCaseTestExpr(ExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalArray(ArrayExprState *astate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalRow(RowExprState *rstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalRowCompare(RowCompareExprState *rstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalTableValue(ExprState *estate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCoalesce(CoalesceExprState *coalesceExpr,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalMinMax(MinMaxExprState *minmaxExpr,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalNullIf(FuncExprState *nullIfExpr,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalNullTest(NullTestState *nstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalBooleanTest(GenericExprState *bstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCoerceToDomain(CoerceToDomainState *cstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalCoerceToDomainValue(ExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalPercentileExpr(PercentileExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalFieldSelect(FieldSelectState *fstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalFieldStore(FieldStoreState *fstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalRelabelType(GenericExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalPartOidExpr(PartOidExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalPartDefaultExpr(PartDefaultExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalPartBoundExpr(PartBoundExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalPartBoundInclusionExpr(PartBoundInclusionExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static Datum ExecEvalPartBoundOpenExpr(PartBoundOpenExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone);
static bool ExecIsExprUnsafeToConst_walker(Node *node, void *context);
static bool ExecIsExprUnsafeToConst(Node *node);
/* ----------------------------------------------------------------
* ExecEvalExpr routines
*
* Recursively evaluate a targetlist or qualification expression.
*
* Each of the following routines having the signature
* Datum ExecEvalFoo(ExprState *expression,
* ExprContext *econtext,
* bool *isNull,
* ExprDoneCond *isDone);
* is responsible for evaluating one type or subtype of ExprState node.
* They are normally called via the ExecEvalExpr macro, which makes use of
* the function pointer set up when the ExprState node was built by
* ExecInitExpr. (In some cases, we change this pointer later to avoid
* re-executing one-time overhead.)
*
* Note: for notational simplicity we declare these functions as taking the
* specific type of ExprState that they work on. This requires casting when
* assigning the function pointer in ExecInitExpr. Be careful that the
* function signature is declared correctly, because the cast suppresses
* automatic checking!
*
*
* All these functions share this calling convention:
*
* Inputs:
* expression: the expression state tree to evaluate
* econtext: evaluation context information
*
* Outputs:
* return value: Datum value of result
* *isNull: set to TRUE if result is NULL (actual return value is
* meaningless if so); set to FALSE if non-null result
* *isDone: set to indicator of set-result status
*
* A caller that can only accept a singleton (non-set) result should pass
* NULL for isDone; if the expression computes a set result then an error
* will be reported via ereport. If the caller does pass an isDone pointer
* then *isDone is set to one of these three states:
* ExprSingleResult singleton result (not a set)
* ExprMultipleResult return value is one element of a set
* ExprEndResult there are no more elements in the set
* When ExprMultipleResult is returned, the caller should invoke
* ExecEvalExpr() repeatedly until ExprEndResult is returned. ExprEndResult
* is returned after the last real set element. For convenience isNull will
* always be set TRUE when ExprEndResult is returned, but this should not be
* taken as indicating a NULL element of the set. Note that these return
* conventions allow us to distinguish among a singleton NULL, a NULL element
* of a set, and an empty set.
*
* The caller should already have switched into the temporary memory
* context econtext->ecxt_per_tuple_memory. The convenience entry point
* ExecEvalExprSwitchContext() is provided for callers who don't prefer to
* do the switch in an outer loop. We do not do the switch in these routines
* because it'd be a waste of cycles during nested expression evaluation.
* ----------------------------------------------------------------
*/
/*----------
* ExecEvalArrayRef
*
* This function takes an ArrayRef and returns the extracted Datum
* if it's a simple reference, or the modified array value if it's
* an array assignment (i.e., array element or slice insertion).
*
* NOTE: if we get a NULL result from a subscript expression, we return NULL
* when it's an array reference, or raise an error when it's an assignment.
*
* NOTE: we deliberately refrain from applying DatumGetArrayTypeP() here,
* even though that might seem natural, because this code needs to support
* both varlena arrays and fixed-length array types. DatumGetArrayTypeP()
* only works for the varlena kind. The routines we call in arrayfuncs.c
* have to know the difference (that's what they need refattrlength for).
*----------
*/
static Datum
ExecEvalArrayRef(ArrayRefExprState *astate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
ArrayRef *arrayRef = (ArrayRef *) astate->xprstate.expr;
ArrayType *array_source;
ArrayType *resultArray;
bool isAssignment = (arrayRef->refassgnexpr != NULL);
bool eisnull;
ListCell *l;
int i = 0,
j = 0;
IntArray upper,
lower;
int *lIndex;
array_source = (ArrayType *)
DatumGetPointer(ExecEvalExpr(astate->refexpr,
econtext,
isNull,
isDone));
/*
* If refexpr yields NULL, and it's a fetch, then result is NULL. In the
* assignment case, we'll cons up something below.
*/
if (*isNull)
{
if (isDone && *isDone == ExprEndResult)
return 0; /* end of set result */
if (!isAssignment)
return 0;
}
foreach(l, astate->refupperindexpr)
{
ExprState *eltstate = (ExprState *) lfirst(l);
if (i >= MAXDIM)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
i, MAXDIM)));
upper.indx[i++] = DatumGetInt32(ExecEvalExpr(eltstate,
econtext,
&eisnull,
NULL));
/* If any index expr yields NULL, result is NULL or error */
if (eisnull)
{
if (isAssignment)
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("array subscript in assignment must not be null")));
*isNull = true;
return 0;
}
}
if (astate->reflowerindexpr != NIL)
{
foreach(l, astate->reflowerindexpr)
{
ExprState *eltstate = (ExprState *) lfirst(l);
if (j >= MAXDIM)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)",
i, MAXDIM)));
lower.indx[j++] = DatumGetInt32(ExecEvalExpr(eltstate,
econtext,
&eisnull,
NULL));
/* If any index expr yields NULL, result is NULL or error */
if (eisnull)
{
if (isAssignment)
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("array subscript in assignment must not be null")));
*isNull = true;
return 0;
}
}
/* this can't happen unless parser messed up */
if (i != j)
elog(ERROR, "upper and lower index lists are not same length");
lIndex = lower.indx;
}
else
lIndex = NULL;
if (isAssignment)
{
Datum sourceData;
/*
* Evaluate the value to be assigned into the array.
*
* XXX At some point we'll need to look into making the old value of
* the array element available via CaseTestExpr, as is done by
* ExecEvalFieldStore. This is not needed now but will be needed to
* support arrays of composite types; in an assignment to a field of
* an array member, the parser would generate a FieldStore that
* expects to fetch its input tuple via CaseTestExpr.
*/
sourceData = ExecEvalExpr(astate->refassgnexpr,
econtext,
&eisnull,
NULL);
/*
* For an assignment to a fixed-length array type, both the original
* array and the value to be assigned into it must be non-NULL, else
* we punt and return the original array.
*/
if (astate->refattrlength > 0) /* fixed-length array? */
if (eisnull || *isNull)
return PointerGetDatum(array_source);
/*
* For assignment to varlena arrays, we handle a NULL original array
* by substituting an empty (zero-dimensional) array; insertion of the
* new element will result in a singleton array value. It does not
* matter whether the new element is NULL.
*/
if (*isNull)
{
array_source = construct_empty_array(arrayRef->refelemtype);
*isNull = false;
}
if (lIndex == NULL)
resultArray = array_set(array_source, i,
upper.indx,
sourceData,
eisnull,
astate->refattrlength,
astate->refelemlength,
astate->refelembyval,
astate->refelemalign);
else
resultArray = array_set_slice(array_source, i,
upper.indx, lower.indx,
(ArrayType *) DatumGetPointer(sourceData),
eisnull,
astate->refattrlength,
astate->refelemlength,
astate->refelembyval,
astate->refelemalign);
return PointerGetDatum(resultArray);
}
if (lIndex == NULL)
return array_ref(array_source, i, upper.indx,
astate->refattrlength,
astate->refelemlength,
astate->refelembyval,
astate->refelemalign,
isNull);
else
{
resultArray = array_get_slice(array_source, i,
upper.indx, lower.indx,
astate->refattrlength,
astate->refelemlength,
astate->refelembyval,
astate->refelemalign);
return PointerGetDatum(resultArray);
}
}
/* ----------------------------------------------------------------
* ExecEvalAggref
*
* Returns a Datum whose value is the value of the precomputed
* aggregate found in the given expression context.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalAggref(AggrefExprState *aggref, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
if (isDone)
*isDone = ExprSingleResult;
if (econtext->ecxt_aggvalues == NULL) /* safety check */
elog(ERROR, "no aggregates in this expression context");
*isNull = econtext->ecxt_aggnulls[aggref->aggno];
return econtext->ecxt_aggvalues[aggref->aggno];
}
/*----------------------------------------------------------------
* ExecEvalGroupingFunc
*
* Returns a Datum whose value is the value of a GROUPING_ID
* with respect to the given context.
*/
static Datum
ExecEvalGroupingFunc(GroupingFuncExprState *gstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
uint64 grpid = 0;
ListCell *tmp;
int num_args = list_length(gstate->args);
int argno = 0;
if (isDone)
*isDone = ExprSingleResult;
foreach(tmp, gstate->args)
{
int arg = (int)intVal(lfirst(tmp));
int pos_in_grpcols = gstate->ngrpcols - arg - 1;
int pos_in_grpingfunc = num_args - argno - 1;
Assert(pos_in_grpcols >= 0 && pos_in_grpingfunc >= 0);
if (econtext->grouping & ( ((uint64)1) << pos_in_grpcols))
grpid |= ( ((uint64)1) << pos_in_grpingfunc);
argno++;
}
*isNull = false;
return Int64GetDatum(grpid);
}
/*----------------------------------------------------------------
* ExecEvalGrouping
*
* Returns a Datum whose value is the value of a GROUPING
* with respect to the given context.
*/
static Datum
ExecEvalGrouping(ExprState *gstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
if (isDone)
*isDone = ExprSingleResult;
*isNull = false;
return Int64GetDatum(econtext->grouping);
}
/*----------------------------------------------------------------
* ExecEvalGroupId
*
* Returns a Datum whose value is the value of a GROUP_ID
* with respect to the given context.
*/
static Datum
ExecEvalGroupId(ExprState *gstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
if (isDone)
*isDone = ExprSingleResult;
*isNull = false;
return UInt32GetDatum(econtext->group_id);
}
/* ----------------------------------------------------------------
* ExecEvalWindowRef
*
* Returns a Datum whose value is the value of the window
* function with respect to the given context.
*
* XXX Note that this routine is essentially the same as
* ExecEvalAggref since we use the same buffers. However,
* since the state structures for WindowRef and Aggref
* are different, we separate the execution routines, too.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalWindowRef(WindowRefExprState *winref, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
if (isDone)
*isDone = ExprSingleResult;
if (econtext->ecxt_aggvalues == NULL) /* safety check */
elog(ERROR, "no window functions in this expression context");
*isNull = econtext->ecxt_aggnulls[winref->funcno];
return econtext->ecxt_aggvalues[winref->funcno];
}
/* ----------------------------------------------------------------
* ExecEvalVar
*
* Returns a Datum whose value is the value of a range
* variable with respect to given expression context.
*
* Note: ExecEvalVar is executed only the first time through in a given plan;
* it changes the ExprState's function pointer to pass control directly to
* ExecEvalScalarVar, ExecEvalWholeRowVar, or ExecEvalWholeRowSlow after
* making one-time checks.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalVar(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Var *variable = (Var *) exprstate->expr;
TupleTableSlot *slot;
AttrNumber attnum;
if (isDone)
*isDone = ExprSingleResult;
Assert(econtext->ecxt_scantuple != NULL || econtext->ecxt_innertuple != NULL || econtext->ecxt_outertuple != NULL);
/*
* Get the input slot and attribute number we want
*
* The asserts check that references to system attributes only appear at
* the level of a relation scan; at higher levels, system attributes must
* be treated as ordinary variables (since we no longer have access to the
* original tuple).
*/
attnum = variable->varattno;
switch (variable->varno)
{
case INNER: /* get the tuple from the inner node */
slot = econtext->ecxt_innertuple;
Assert(attnum > 0);
break;
case OUTER: /* get the tuple from the outer node */
slot = econtext->ecxt_outertuple;
Assert(attnum > 0);
break;
default: /* get the tuple from the relation being
* scanned */
slot = econtext->ecxt_scantuple;
break;
}
if (attnum != InvalidAttrNumber)
{
/*
* Scalar variable case.
*
* If it's a user attribute, check validity (bogus system attnums will
* be caught inside slot_getattr). What we have to check for here
* is the possibility of an attribute having been changed in type
* since the plan tree was created. Ideally the plan would get
* invalidated and not re-used, but until that day arrives, we need
* defenses. Fortunately it's sufficient to check once on the first
* time through.
*
* Note: we allow a reference to a dropped attribute. slot_getattr
* will force a NULL result in such cases.
*
* Note: ideally we'd check typmod as well as typid, but that seems
* impractical at the moment: in many cases the tupdesc will have
* been generated by ExecTypeFromTL(), and that can't guarantee to
* generate an accurate typmod in all cases, because some expression
* node types don't carry typmod.
*/
if (attnum > 0)
{
TupleDesc slot_tupdesc = slot->tts_tupleDescriptor;
Form_pg_attribute attr;
if (attnum > slot_tupdesc->natts) /* should never happen */
elog(ERROR, "attribute number %d exceeds number of columns %d",
attnum, slot_tupdesc->natts);
attr = slot_tupdesc->attrs[attnum - 1];
/* can't check type if dropped, since atttypid is probably 0 */
if (!attr->attisdropped)
{
if (variable->vartype != attr->atttypid)
ereport(ERROR,
(errmsg("attribute %d has wrong type", attnum),
errdetail("Table has type %s, but query expects %s.",
format_type_be(attr->atttypid),
format_type_be(variable->vartype))));
}
}
/* Skip the checking on future executions of node */
exprstate->evalfunc = ExecEvalScalarVar;
/* Fetch the value from the slot */
return slot_getattr(slot, attnum, isNull);
}
else
{
/*
* Whole-row variable.
*
* If it's a RECORD Var, we'll use the slot's type ID info. It's
* likely that the slot's type is also RECORD; if so, make sure it's
* been "blessed", so that the Datum can be interpreted later.
*
* If the Var identifies a named composite type, we must check that
* the actual tuple type is compatible with it.
*/
TupleDesc slot_tupdesc = slot->tts_tupleDescriptor;
bool needslow = false;
if (variable->vartype == RECORDOID)
{
if (slot_tupdesc->tdtypeid == RECORDOID &&
slot_tupdesc->tdtypmod < 0)
assign_record_type_typmod(slot_tupdesc);
}
else
{
TupleDesc var_tupdesc;
int i;
/*
* We really only care about number of attributes and data type.
* Also, we can ignore type mismatch on columns that are dropped
* in the destination type, so long as the physical storage
* matches. This is helpful in some cases involving out-of-date
* cached plans. Also, we have to allow the case that the slot
* has more columns than the Var's type, because we might be
* looking at the output of a subplan that includes resjunk
* columns. (XXX it would be nice to verify that the extra
* columns are all marked resjunk, but we haven't got access to
* the subplan targetlist here...) Resjunk columns should always
* be at the end of a targetlist, so it's sufficient to ignore
* them here; but we need to use ExecEvalWholeRowSlow to get
* rid of them in the eventual output tuples.
*/
var_tupdesc = lookup_rowtype_tupdesc(variable->vartype, -1);
if (var_tupdesc->natts > slot_tupdesc->natts)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Table row contains %d attributes, but query expects %d.",
slot_tupdesc->natts, var_tupdesc->natts)));
else if (var_tupdesc->natts < slot_tupdesc->natts)
needslow = true;
for (i = 0; i < var_tupdesc->natts; i++)
{
Form_pg_attribute vattr = var_tupdesc->attrs[i];
Form_pg_attribute sattr = slot_tupdesc->attrs[i];
if (vattr->atttypid == sattr->atttypid)
continue; /* no worries */
if (!vattr->attisdropped)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Table has type %s at ordinal position %d, but query expects %s.",
format_type_be(sattr->atttypid),
i + 1,
format_type_be(vattr->atttypid))));
if (vattr->attlen != sattr->attlen ||
vattr->attalign != sattr->attalign)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("table row type and query-specified row type do not match"),
errdetail("Physical storage mismatch on dropped attribute at ordinal position %d.",
i + 1)));
}
ReleaseTupleDesc(var_tupdesc);
}
/* Skip the checking on future executions of node */
if (needslow)
exprstate->evalfunc = ExecEvalWholeRowSlow;
else
exprstate->evalfunc = ExecEvalWholeRowVar;
/* Fetch the value */
return ExecEvalWholeRowVar(exprstate, econtext, isNull, isDone);
}
}
/* ----------------------------------------------------------------
* ExecEvalScalarVar
*
* Returns a Datum for a scalar variable.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalScalarVar(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Var *variable = (Var *) exprstate->expr;
TupleTableSlot *slot;
AttrNumber attnum;
if (isDone)
*isDone = ExprSingleResult;
/* Get the input slot and attribute number we want */
switch (variable->varno)
{
case INNER: /* get the tuple from the inner node */
slot = econtext->ecxt_innertuple;
break;
case OUTER: /* get the tuple from the outer node */
slot = econtext->ecxt_outertuple;
break;
default: /* get the tuple from the relation being
* scanned */
slot = econtext->ecxt_scantuple;
break;
}
attnum = variable->varattno;
/* Fetch the value from the slot */
return slot_getattr(slot, attnum, isNull);
}
/* ----------------------------------------------------------------
* ExecEvalWholeRowVar
*
* Returns a Datum for a whole-row variable.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalWholeRowVar(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Var *variable = (Var *) exprstate->expr;
TupleTableSlot *slot = econtext->ecxt_scantuple;
HeapTuple tuple;
TupleDesc tupleDesc;
HeapTupleHeader dtuple;
if (isDone)
*isDone = ExprSingleResult;
*isNull = false;
tuple = ExecFetchSlotHeapTuple(slot);
tupleDesc = slot->tts_tupleDescriptor;
/*
* We have to make a copy of the tuple so we can safely insert the Datum
* overhead fields, which are not set in on-disk tuples.
*/
dtuple = (HeapTupleHeader) palloc(tuple->t_len);
memcpy((char *) dtuple, (char *) tuple->t_data, tuple->t_len);
HeapTupleHeaderSetDatumLength(dtuple, tuple->t_len);
/*
* If the Var identifies a named composite type, label the tuple with that
* type; otherwise use what is in the tupleDesc.
*/
if (variable->vartype != RECORDOID)
{
HeapTupleHeaderSetTypeId(dtuple, variable->vartype);
HeapTupleHeaderSetTypMod(dtuple, variable->vartypmod);
}
else
{
HeapTupleHeaderSetTypeId(dtuple, tupleDesc->tdtypeid);
HeapTupleHeaderSetTypMod(dtuple, tupleDesc->tdtypmod);
}
return PointerGetDatum(dtuple);
}
/* ----------------------------------------------------------------
* ExecEvalWholeRowSlow
*
* Returns a Datum for a whole-row variable, in the "slow" case where
* we can't just copy the subplan's output.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalWholeRowSlow(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Var *variable = (Var *) exprstate->expr;
TupleTableSlot *slot = econtext->ecxt_scantuple;
HeapTuple tuple;
TupleDesc var_tupdesc;
HeapTupleHeader dtuple;
if (isDone)
*isDone = ExprSingleResult;
*isNull = false;
/*
* Currently, the only case handled here is stripping of trailing
* resjunk fields, which we do in a slightly chintzy way by just
* adjusting the tuple's natts header field. Possibly there will someday
* be a need for more-extensive rearrangements, in which case it'd
* be worth disassembling and reassembling the tuple (perhaps use a
* JunkFilter for that?)
*/
Assert(variable->vartype != RECORDOID);
var_tupdesc = lookup_rowtype_tupdesc(variable->vartype, -1);
tuple = ExecFetchSlotHeapTuple(slot);
/*
* We have to make a copy of the tuple so we can safely insert the Datum
* overhead fields, which are not set in on-disk tuples; not to mention
* fooling with its natts field.
*/
dtuple = (HeapTupleHeader) palloc(tuple->t_len);
memcpy((char *) dtuple, (char *) tuple->t_data, tuple->t_len);
HeapTupleHeaderSetDatumLength(dtuple, tuple->t_len);
HeapTupleHeaderSetTypeId(dtuple, variable->vartype);
HeapTupleHeaderSetTypMod(dtuple, variable->vartypmod);
Assert(HeapTupleHeaderGetNatts(dtuple) >= var_tupdesc->natts);
HeapTupleHeaderSetNatts(dtuple, var_tupdesc->natts);
ReleaseTupleDesc(var_tupdesc);
return PointerGetDatum(dtuple);
}
/* ----------------------------------------------------------------
* ExecEvalConst
*
* Returns the value of a constant.
*
* Note that for pass-by-ref datatypes, we return a pointer to the
* actual constant node. This is one of the reasons why functions
* must treat their input arguments as read-only.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalConst(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Const *con = (Const *) exprstate->expr;
if (isDone)
*isDone = ExprSingleResult;
*isNull = con->constisnull;
return con->constvalue;
}
/* ----------------------------------------------------------------
* ExecEvalParam
*
* Returns the value of a parameter. A param node contains
* something like ($.name) and the expression context contains
* the current parameter bindings (name = "sam") (age = 34)...
* so our job is to find and return the appropriate datum ("sam").
* ----------------------------------------------------------------
*/
/*
* Greenplum Database Changes:
* In executor mode, a PARAM_EXEC parameter can not be evaluated by executing
* the subplan. The subplan was executed on the dispatcher prior to
* launching the main query. The value of the result is passed to the qExec
* in the ParamInfo, with a kind of PARAM_EXEC_REMOTE.
* So, this function was changed to just do a lookup in that case.
*/
static Datum
ExecEvalParam(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Param *expression = (Param *) exprstate->expr;
int thisParamId = expression->paramid;
if (isDone)
*isDone = ExprSingleResult;
if (expression->paramkind == PARAM_EXEC)
{
/*
* PARAM_EXEC params (internal executor parameters) are stored in the
* ecxt_param_exec_vals array, and can be accessed by array index.
*/
ParamExecData *prmExec = &(econtext->ecxt_param_exec_vals[thisParamId]);
/*
* Maybe this parameter has already been evaluated. If so, execPlan
* would be NULL.
*/
if (prmExec->execPlan != NULL)
{
/* Parameter not evaluated yet, so go do it */
ExecSetParamPlan(prmExec->execPlan, econtext, NULL);
/* ExecSetParamPlan should have processed this param... */
Assert(prmExec->execPlan == NULL);
}
*isNull = prmExec->isnull;
return prmExec->value;
}
else
{
/*
* PARAM_EXTERN parameters must be sought in ecxt_param_list_info.
*/
ParamListInfo paramInfo = econtext->ecxt_param_list_info;
Assert(expression->paramkind == PARAM_EXTERN);
if (paramInfo &&
thisParamId > 0 && thisParamId <= paramInfo->numParams)
{
ParamExternData *prm = &paramInfo->params[thisParamId - 1];
if (OidIsValid(prm->ptype))
{
Assert(prm->ptype == expression->paramtype);
*isNull = prm->isnull;
return prm->value;
}
}
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("no value found for parameter %d", thisParamId)));
return (Datum) 0; /* keep compiler quiet */
}
}
/* ----------------------------------------------------------------
* ExecEvalOper / ExecEvalFunc support routines
* ----------------------------------------------------------------
*/
/*
* GetAttributeByName
* GetAttributeByNum
*
* These functions return the value of the requested attribute
* out of the given tuple Datum.
* C functions which take a tuple as an argument are expected
* to use these. Ex: overpaid(EMP) might call GetAttributeByNum().
* Note: these are actually rather slow because they do a typcache
* lookup on each call.
*/
Datum
GetAttributeByNum(HeapTupleHeader tuple,
AttrNumber attrno,
bool *isNull)
{
Datum result;
Oid tupType;
int32 tupTypmod;
TupleDesc tupDesc;
HeapTupleData tmptup;
if (!AttributeNumberIsValid(attrno))
elog(ERROR, "invalid attribute number %d", attrno);
if (isNull == NULL)
elog(ERROR, "a NULL isNull pointer was passed");
if (tuple == NULL)
{
/* Kinda bogus but compatible with old behavior... */
*isNull = true;
return (Datum) 0;
}
tupType = HeapTupleHeaderGetTypeId(tuple);
tupTypmod = HeapTupleHeaderGetTypMod(tuple);
tupDesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
/*
* heap_getattr needs a HeapTuple not a bare HeapTupleHeader. We set all
* the fields in the struct just in case user tries to inspect system
* columns.
*/
tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
ItemPointerSetInvalid(&(tmptup.t_self));
tmptup.t_data = tuple;
result = heap_getattr(&tmptup,
attrno,
tupDesc,
isNull);
ReleaseTupleDesc(tupDesc);
return result;
}
Datum
GetAttributeByName(HeapTupleHeader tuple, const char *attname, bool *isNull)
{
AttrNumber attrno;
Datum result;
Oid tupType;
int32 tupTypmod;
TupleDesc tupDesc;
HeapTupleData tmptup;
int i;
if (attname == NULL)
elog(ERROR, "invalid attribute name");
if (isNull == NULL)
elog(ERROR, "a NULL isNull pointer was passed");
if (tuple == NULL)
{
/* Kinda bogus but compatible with old behavior... */
*isNull = true;
return (Datum) 0;
}
tupType = HeapTupleHeaderGetTypeId(tuple);
tupTypmod = HeapTupleHeaderGetTypMod(tuple);
tupDesc = lookup_rowtype_tupdesc(tupType, tupTypmod);
attrno = InvalidAttrNumber;
for (i = 0; i < tupDesc->natts; i++)
{
if (namestrcmp(&(tupDesc->attrs[i]->attname), attname) == 0)
{
attrno = tupDesc->attrs[i]->attnum;
break;
}
}
if (attrno == InvalidAttrNumber)
elog(ERROR, "attribute \"%s\" does not exist", attname);
/*
* heap_getattr needs a HeapTuple not a bare HeapTupleHeader. We set all
* the fields in the struct just in case user tries to inspect system
* columns.
*/
tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
ItemPointerSetInvalid(&(tmptup.t_self));
tmptup.t_data = tuple;
result = heap_getattr(&tmptup,
attrno,
tupDesc,
isNull);
ReleaseTupleDesc(tupDesc);
return result;
}
/*
* init_fcache - initialize a FuncExprState node during first use
*/
void
init_fcache(Oid foid, FuncExprState *fcache,
MemoryContext fcacheCxt, bool needDescForSets)
{
AclResult aclresult;
/* Check permission to call function */
aclresult = pg_proc_aclcheck(foid, GetUserId(), ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_PROC, get_func_name(foid));
/*
* Safety check on nargs. Under normal circumstances this should never
* fail, as parser should check sooner. But possibly it might fail if
* server has been compiled with FUNC_MAX_ARGS smaller than some functions
* declared in pg_proc?
*/
if (list_length(fcache->args) > FUNC_MAX_ARGS)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
errmsg("cannot pass more than %d arguments to a function",
FUNC_MAX_ARGS)));
/* Set up the primary fmgr lookup information */
fmgr_info_cxt(foid, &(fcache->func), fcacheCxt);
fcache->func.fn_expr = (Node *) fcache->xprstate.expr;
/* If function returns set, prepare expected tuple descriptor */
if (fcache->func.fn_retset && needDescForSets)
{
TypeFuncClass functypclass;
Oid funcrettype;
TupleDesc tupdesc;
MemoryContext oldcontext;
functypclass = get_expr_result_type(fcache->func.fn_expr,
&funcrettype,
&tupdesc);
/* Must save tupdesc in fcache's context */
oldcontext = MemoryContextSwitchTo(fcacheCxt);
if (functypclass == TYPEFUNC_COMPOSITE)
{
/* Composite data type, e.g. a table's row type */
Assert(tupdesc);
/* Must copy it out of typcache for safety */
fcache->funcResultDesc = CreateTupleDescCopy(tupdesc);
fcache->funcReturnsTuple = true;
}
else if (functypclass == TYPEFUNC_SCALAR)
{
/* Base data type, i.e. scalar */
tupdesc = CreateTemplateTupleDesc(1, false);
TupleDescInitEntry(tupdesc,
(AttrNumber) 1,
NULL,
funcrettype,
-1,
0);
fcache->funcResultDesc = tupdesc;
fcache->funcReturnsTuple = false;
}
else
{
/* Else, we will complain if function wants materialize mode */
fcache->funcResultDesc = NULL;
}
MemoryContextSwitchTo(oldcontext);
}
else
{
fcache->funcResultDesc = NULL;
}
/* Initialize additional state */
fcache->funcResultStore = NULL;
fcache->funcResultSlot = NULL;
fcache->setArgsValid = false;
fcache->shutdown_reg = false;
}
/*
* callback function in case a FuncExpr returning a set needs to be shut down
* before it has been run to completion
*/
static void
ShutdownFuncExpr(Datum arg)
{
FuncExprState *fcache = (FuncExprState *) DatumGetPointer(arg);
/* If we have a slot, make sure it's let go of any tuplestore pointer */
if (fcache->funcResultSlot)
ExecClearTuple(fcache->funcResultSlot);
/* Release any open tuplestore */
if (fcache->funcResultStore)
tuplestore_end(fcache->funcResultStore);
fcache->funcResultStore = NULL;
/* Clear any active set-argument state */
fcache->setArgsValid = false;
/* execUtils will deregister the callback... */
fcache->shutdown_reg = false;
}
/*
* get_cached_rowtype: utility function to lookup a rowtype tupdesc
*
* type_id, typmod: identity of the rowtype
* cache_field: where to cache the TupleDesc pointer in expression state node
* (field must be initialized to NULL)
* econtext: expression context we are executing in
*
* NOTE: because the shutdown callback will be called during plan rescan,
* must be prepared to re-do this during any node execution; cannot call
* just once during expression initialization
*/
static TupleDesc
get_cached_rowtype(Oid type_id, int32 typmod,
TupleDesc *cache_field, ExprContext *econtext)
{
TupleDesc tupDesc = *cache_field;
/* Do lookup if no cached value or if requested type changed */
if (tupDesc == NULL ||
type_id != tupDesc->tdtypeid ||
typmod != tupDesc->tdtypmod)
{
tupDesc = lookup_rowtype_tupdesc(type_id, typmod);
if (*cache_field)
{
/* Release old tupdesc; but callback is already registered */
ReleaseTupleDesc(*cache_field);
}
else
{
/* Need to register shutdown callback to release tupdesc */
RegisterExprContextCallback(econtext,
ShutdownTupleDescRef,
PointerGetDatum(cache_field));
}
*cache_field = tupDesc;
}
return tupDesc;
}
/*
* Callback function to release a tupdesc refcount at expression tree shutdown
*/
static void
ShutdownTupleDescRef(Datum arg)
{
TupleDesc *cache_field = (TupleDesc *) DatumGetPointer(arg);
if (*cache_field)
ReleaseTupleDesc(*cache_field);
*cache_field = NULL;
}
/*
* Evaluate arguments for a function.
*/
ExprDoneCond
ExecEvalFuncArgs(FunctionCallInfo fcinfo,
List *argList,
ExprContext *econtext)
{
ExprDoneCond argIsDone;
int i;
ListCell *arg;
argIsDone = ExprSingleResult; /* default assumption */
i = 0;
foreach(arg, argList)
{
ExprState *argstate = (ExprState *) lfirst(arg);
ExprDoneCond thisArgIsDone;
fcinfo->arg[i] = ExecEvalExpr(argstate,
econtext,
&fcinfo->argnull[i],
&thisArgIsDone);
if (thisArgIsDone != ExprSingleResult)
{
/*
* We allow only one argument to have a set value; we'd need much
* more complexity to keep track of multiple set arguments (cf.
* ExecTargetList) and it doesn't seem worth it.
*/
if (argIsDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("functions and operators can take at most one set argument")));
argIsDone = thisArgIsDone;
}
i++;
}
fcinfo->nargs = i;
return argIsDone;
}
/*
* ExecPrepareTuplestoreResult
*
* Subroutine for ExecMakeFunctionResult: prepare to extract rows from a
* tuplestore function result. We must set up a funcResultSlot (unless
* already done in a previous call cycle) and verify that the function
* returned the expected tuple descriptor.
*/
static void
ExecPrepareTuplestoreResult(FuncExprState *fcache,
ExprContext *econtext,
Tuplestorestate *resultStore,
TupleDesc resultDesc)
{
fcache->funcResultStore = resultStore;
if (fcache->funcResultSlot == NULL)
{
/* Create a slot so we can read data out of the tuplestore */
MemoryContext oldcontext;
/* We must have been able to determine the result rowtype */
if (fcache->funcResultDesc == NULL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("function returning setof record called in "
"context that cannot accept type record")));
oldcontext = MemoryContextSwitchTo(fcache->func.fn_mcxt);
fcache->funcResultSlot =
MakeSingleTupleTableSlot(fcache->funcResultDesc);
MemoryContextSwitchTo(oldcontext);
}
/*
* If function provided a tupdesc, cross-check it. We only really
* need to do this for functions returning RECORD, but might as well
* do it always.
*/
if (resultDesc)
{
if (fcache->funcResultDesc)
tupledesc_match(fcache->funcResultDesc, resultDesc);
/*
* If it is a dynamically-allocated TupleDesc, free it: it is
* typically allocated in a per-query context, so we must avoid
* leaking it across multiple usages.
*/
if (resultDesc->tdrefcount == -1)
FreeTupleDesc(resultDesc);
}
/* Register cleanup callback if we didn't already */
if (!fcache->shutdown_reg)
{
RegisterExprContextCallback(econtext,
ShutdownFuncExpr,
PointerGetDatum(fcache));
fcache->shutdown_reg = true;
}
}
/*
* Check that function result tuple type (src_tupdesc) matches or can
* be considered to match what the query expects (dst_tupdesc). If
* they don't match, ereport.
*
* We really only care about number of attributes and data type.
* Also, we can ignore type mismatch on columns that are dropped in the
* destination type, so long as the physical storage matches. This is
* helpful in some cases involving out-of-date cached plans.
*/
static void
tupledesc_match(TupleDesc dst_tupdesc, TupleDesc src_tupdesc)
{
int i;
if (dst_tupdesc->natts != src_tupdesc->natts)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("function return row and query-specified return row do not match"),
errdetail("Returned row contains %d attributes, but query expects %d.",
src_tupdesc->natts, dst_tupdesc->natts)));
for (i = 0; i < dst_tupdesc->natts; i++)
{
Form_pg_attribute dattr = dst_tupdesc->attrs[i];
Form_pg_attribute sattr = src_tupdesc->attrs[i];
if (dattr->atttypid == sattr->atttypid)
continue; /* no worries */
if (!dattr->attisdropped)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("function return row and query-specified return row do not match"),
errdetail("Returned type %s at ordinal position %d, but query expects %s.",
format_type_be(sattr->atttypid),
i + 1,
format_type_be(dattr->atttypid))));
if (dattr->attlen != sattr->attlen ||
dattr->attalign != sattr->attalign)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("function return row and query-specified return row do not match"),
errdetail("Physical storage mismatch on dropped attribute at ordinal position %d.",
i + 1)));
}
}
/*
* ExecMakeFunctionResult
*
* Evaluate the arguments to a function and then the function itself.
* init_fcache is presumed already run on the FuncExprState.
*
* This function handles the most general case, wherein the function or
* one of its arguments might (or might not) return a set. If we find
* no sets involved, we will change the FuncExprState's function pointer
* to use a simpler method on subsequent calls.
*/
static Datum
ExecMakeFunctionResult(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
Datum result;
FunctionCallInfoData fcinfo;
ReturnSetInfo rsinfo; /* for functions returning sets */
ExprDoneCond argDone;
bool hasSetArg;
int i;
restart:
/* Guard against stack overflow due to overly complex expressions */
check_stack_depth();
/*
* If a previous call of the function returned a set result in the form
* of a tuplestore, continue reading rows from the tuplestore until it's
* empty.
*/
if (fcache->funcResultStore)
{
Assert(isDone); /* it was provided before ... */
if (tuplestore_gettupleslot(fcache->funcResultStore, true,
fcache->funcResultSlot))
{
*isDone = ExprMultipleResult;
if (fcache->funcReturnsTuple)
{
/* We must return the whole tuple as a Datum. */
*isNull = false;
return ExecFetchSlotTupleDatum(fcache->funcResultSlot);
}
else
{
/* Extract the first column and return it as a scalar. */
return slot_getattr(fcache->funcResultSlot, 1, isNull);
}
}
/* Exhausted the tuplestore, so clean up */
tuplestore_end(fcache->funcResultStore);
fcache->funcResultStore = NULL;
/* We are done unless there was a set-valued argument */
if (!fcache->setHasSetArg)
{
*isDone = ExprEndResult;
*isNull = true;
return (Datum) 0;
}
/* If there was, continue evaluating the argument values */
Assert(!fcache->setArgsValid);
}
/*
* arguments is a list of expressions to evaluate before passing to the
* function manager. We skip the evaluation if it was already done in the
* previous call (ie, we are continuing the evaluation of a set-valued
* function). Otherwise, collect the current argument values into fcinfo.
*/
List *arguments = fcache->args;
if (!fcache->setArgsValid)
{
/* Need to prep callinfo structure */
InitFunctionCallInfoData(fcinfo, &(fcache->func), 0, NULL, NULL);
argDone = ExecEvalFuncArgs(&fcinfo, arguments, econtext);
if (argDone == ExprEndResult)
{
/* input is an empty set, so return an empty set. */
*isNull = true;
if (isDone)
*isDone = ExprEndResult;
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
return (Datum) 0;
}
hasSetArg = (argDone != ExprSingleResult);
}
else
{
/* Copy callinfo from previous evaluation */
memcpy(&fcinfo, &fcache->setArgs, sizeof(fcinfo));
hasSetArg = fcache->setHasSetArg;
/* Reset flag (we may set it again below) */
fcache->setArgsValid = false;
}
/*
* Prepare a resultinfo node for communication. If the function
* doesn't itself return set, we don't pass the resultinfo to the
* function, but we need to fill it in anyway for internal use.
*/
if (fcache->func.fn_retset)
{
fcinfo.resultinfo = (Node *) &rsinfo;
}
rsinfo.type = (fmNodeTag) T_ReturnSetInfo;
rsinfo.econtext = econtext;
rsinfo.expectedDesc = fcache->funcResultDesc;
rsinfo.allowedModes = (int) (SFRM_ValuePerCall | SFRM_Materialize);
/* note we do not set SFRM_Materialize_Random or _Preferred */
rsinfo.returnMode = SFRM_ValuePerCall;
/* isDone is filled below */
rsinfo.setResult = NULL;
rsinfo.setDesc = NULL;
/*
* Now call the function, passing the evaluated parameter values.
*/
if (fcache->func.fn_retset || hasSetArg)
{
/*
* We need to return a set result. Complain if caller not ready to
* accept one.
*/
if (isDone == NULL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
/*
* This loop handles the situation where we have both a set argument
* and a set-valued function. Once we have exhausted the function's
* value(s) for a particular argument value, we have to get the next
* argument value and start the function over again. We might have to
* do it more than once, if the function produces an empty result set
* for a particular input value.
*/
for (;;)
{
/*
* If function is strict, and there are any NULL arguments, skip
* calling the function (at least for this set of args).
*/
bool callit = true;
if (fcache->func.fn_strict)
{
for (i = 0; i < fcinfo.nargs; i++)
{
if (fcinfo.argnull[i])
{
callit = false;
break;
}
}
}
if (callit)
{
fcinfo.isnull = false;
rsinfo.isDone = ExprSingleResult;
bool savedImmediateInterruptOK = ImmediateInterruptOK;
/* Allow "die" interrupt to be processed while waiting */
ImmediateInterruptOK = true;
InterruptWhenCallingPLUDF = true;
result = FunctionCallInvoke(&fcinfo);
InterruptWhenCallingPLUDF = false;
ImmediateInterruptOK = savedImmediateInterruptOK;
*isNull = fcinfo.isnull;
*isDone = rsinfo.isDone;
}
else
{
result = (Datum) 0;
*isNull = true;
*isDone = ExprEndResult;
}
/* Which protocol does function want to use? */
if (rsinfo.returnMode == SFRM_ValuePerCall)
{
if (*isDone != ExprEndResult)
{
/*
* Got a result from current argument. If function itself
* returns set, save the current argument values to re-use
* on the next call.
*/
if (fcache->func.fn_retset &&
*isDone == ExprMultipleResult)
{
memcpy(&fcache->setArgs, &fcinfo, sizeof(fcinfo));
fcache->setHasSetArg = hasSetArg;
fcache->setArgsValid = true;
/* Register cleanup callback if we didn't already */
if (!fcache->shutdown_reg)
{
RegisterExprContextCallback(econtext,
ShutdownFuncExpr,
PointerGetDatum(fcache));
fcache->shutdown_reg = true;
}
}
/*
* Make sure we say we are returning a set, even if the
* function itself doesn't return sets.
*/
if (hasSetArg)
*isDone = ExprMultipleResult;
break;
}
}
else if (rsinfo.returnMode == SFRM_Materialize)
{
/* check we're on the same page as the function author */
if (rsinfo.isDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_E_R_I_E_SRF_PROTOCOL_VIOLATED),
errmsg("table-function protocol for materialize mode was not followed")));
if (rsinfo.setResult != NULL)
{
/* prepare to return values from the tuplestore */
ExecPrepareTuplestoreResult(fcache, econtext,
rsinfo.setResult,
rsinfo.setDesc);
/* remember whether we had set arguments */
fcache->setHasSetArg = hasSetArg;
/* loop back to top to start returning from tuplestore */
goto restart;
}
/* if setResult was left null, treat it as empty set */
*isDone = ExprEndResult;
*isNull = true;
result = (Datum) 0;
}
else
ereport(ERROR,
(errcode(ERRCODE_E_R_I_E_SRF_PROTOCOL_VIOLATED),
errmsg("unrecognized table-function returnMode: %d",
(int) rsinfo.returnMode)));
/* Else, done with this argument */
if (!hasSetArg)
break; /* input not a set, so done */
/* Re-eval args to get the next element of the input set */
argDone = ExecEvalFuncArgs(&fcinfo, arguments, econtext);
if (argDone != ExprMultipleResult)
{
/* End of argument set, so we're done. */
*isNull = true;
*isDone = ExprEndResult;
result = (Datum) 0;
break;
}
/*
* If we reach here, loop around to run the function on the new
* argument.
*/
}
}
else
{
/*
* Non-set case: much easier.
*
* We change the ExprState function pointer to use the simpler
* ExecMakeFunctionResultNoSets on subsequent calls. This amounts to
* assuming that no argument can return a set if it didn't do so the
* first time.
*/
fcache->xprstate.evalfunc = (ExprStateEvalFunc) ExecMakeFunctionResultNoSets;
if (isDone)
*isDone = ExprSingleResult;
/*
* If function is strict, and there are any NULL arguments, skip
* calling the function and return NULL.
*/
if (fcache->func.fn_strict)
{
for (i = 0; i < fcinfo.nargs; i++)
{
if (fcinfo.argnull[i])
{
*isNull = true;
return (Datum) 0;
}
}
}
fcinfo.isnull = false;
bool savedImmediateInterruptOK = ImmediateInterruptOK;
/* Allow "die" interrupt to be processed while waiting */
ImmediateInterruptOK = true;
InterruptWhenCallingPLUDF = true;
result = FunctionCallInvoke(&fcinfo);
InterruptWhenCallingPLUDF = false;
ImmediateInterruptOK = savedImmediateInterruptOK;
*isNull = fcinfo.isnull;
}
return result;
}
/*
* ExecMakeFunctionResultNoSets
*
* Simplified version of ExecMakeFunctionResult that can only handle
* non-set cases. Hand-tuned for speed.
*/
static Datum
ExecMakeFunctionResultNoSets(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
ListCell *arg;
Datum result;
FunctionCallInfoData fcinfo;
int i;
/* Guard against stack overflow due to overly complex expressions */
check_stack_depth();
if (isDone)
*isDone = ExprSingleResult;
/* inlined, simplified version of ExecEvalFuncArgs */
i = 0;
foreach(arg, fcache->args)
{
ExprState *argstate = (ExprState *) lfirst(arg);
fcinfo.arg[i] = ExecEvalExpr(argstate,
econtext,
&fcinfo.argnull[i],
NULL);
i++;
}
InitFunctionCallInfoData(fcinfo, &(fcache->func), i, NULL, NULL);
/*
* If function is strict, and there are any NULL arguments, skip calling
* the function and return NULL.
*/
if (fcache->func.fn_strict)
{
while (--i >= 0)
{
if (fcinfo.argnull[i])
{
*isNull = true;
return (Datum) 0;
}
}
}
/* fcinfo.isnull = false; */ /* handled by InitFunctionCallInfoData */
bool savedImmediateInterruptOK = ImmediateInterruptOK;
/* Allow "die" interrupt to be processed while waiting */
ImmediateInterruptOK = true;
InterruptWhenCallingPLUDF = true;
result = FunctionCallInvoke(&fcinfo);
InterruptWhenCallingPLUDF = false;
ImmediateInterruptOK = savedImmediateInterruptOK;
*isNull = fcinfo.isnull;
return result;
}
/*
* ExecMakeTableFunctionResult
*
* Evaluate a table function, producing a materialized result in a Tuplestore
* object.
*/
Tuplestorestate *
ExecMakeTableFunctionResult(ExprState *funcexpr,
ExprContext *econtext,
TupleDesc expectedDesc,
uint64 operatorMemKB)
{
Tuplestorestate *tupstore = NULL;
TupleDesc tupdesc = NULL;
MemTupleBinding *mt_bind = NULL;
Oid funcrettype;
bool returnsTuple;
bool returnsSet = false;
FunctionCallInfoData fcinfo;
ReturnSetInfo rsinfo;
HeapTupleData tmptup;
MemoryContext callerContext;
MemoryContext oldcontext;
bool direct_function_call;
bool first_time = true;
callerContext = CurrentMemoryContext;
funcrettype = exprType((Node *) funcexpr->expr);
returnsTuple = type_is_rowtype(funcrettype);
/*
* Prepare a resultinfo node for communication. We always do this even if
* not expecting a set result, so that we can pass expectedDesc. In the
* generic-expression case, the expression doesn't actually get to see the
* resultinfo, but set it up anyway because we use some of the fields as
* our own state variables.
*/
InitFunctionCallInfoData(fcinfo, NULL, 0, NULL, (Node *) &rsinfo);
rsinfo.type = (fmNodeTag) T_ReturnSetInfo;
rsinfo.econtext = econtext;
rsinfo.expectedDesc = expectedDesc;
rsinfo.allowedModes = (int) (SFRM_ValuePerCall | SFRM_Materialize);
rsinfo.returnMode = SFRM_ValuePerCall;
/* isDone is filled below */
rsinfo.setResult = NULL;
rsinfo.setDesc = NULL;
/*
* Normally the passed expression tree will be a FuncExprState, since the
* grammar only allows a function call at the top level of a table
* function reference. However, if the function doesn't return set then
* the planner might have replaced the function call via constant-folding
* or inlining. So if we see any other kind of expression node, execute
* it via the general ExecEvalExpr() code; the only difference is that we
* don't get a chance to pass a special ReturnSetInfo to any functions
* buried in the expression.
*/
if (funcexpr && IsA(funcexpr, FuncExprState) &&
IsA(funcexpr->expr, FuncExpr))
{
FuncExprState *fcache = (FuncExprState *) funcexpr;
ExprDoneCond argDone;
/*
* This path is similar to ExecMakeFunctionResult.
*/
direct_function_call = true;
/*
* Initialize function cache if first time through
*/
if (fcache->func.fn_oid == InvalidOid)
{
FuncExpr *func = (FuncExpr *) fcache->xprstate.expr;
init_fcache(func->funcid, fcache,
econtext->ecxt_per_query_memory, false);
}
returnsSet = fcache->func.fn_retset;
/*
* Evaluate the function's argument list.
*
* Note: ideally, we'd do this in the per-tuple context, but then the
* argument values would disappear when we reset the context in the
* inner loop. So do it in caller context. Perhaps we should make a
* separate context just to hold the evaluated arguments?
*/
fcinfo.flinfo = &(fcache->func);
argDone = ExecEvalFuncArgs(&fcinfo, fcache->args, econtext);
/* We don't allow sets in the arguments of the table function */
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
/*
* If function is strict, and there are any NULL arguments, skip
* calling the function and act like it returned NULL (or an empty
* set, in the returns-set case).
*/
if (fcache->func.fn_strict)
{
int i;
for (i = 0; i < fcinfo.nargs; i++)
{
if (fcinfo.argnull[i])
goto no_function_result;
}
}
}
else
{
/* Treat funcexpr as a generic expression */
direct_function_call = false;
}
/*
* Switch to short-lived context for calling the function or expression.
*/
MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
/*
* Loop to handle the ValuePerCall protocol (which is also the same
* behavior needed in the generic ExecEvalExpr path).
*/
for (;;)
{
Datum result;
MemTuple tuple;
CHECK_FOR_INTERRUPTS();
/*
* reset per-tuple memory context before each call of the function or
* expression. This cleans up any local memory the function may leak
* when called.
*/
ResetExprContext(econtext);
/* Call the function or expression one time */
if (direct_function_call)
{
fcinfo.isnull = false;
rsinfo.isDone = ExprSingleResult;
bool savedImmediateInterruptOK = ImmediateInterruptOK;
/* Allow "die" interrupt to be processed while waiting */
ImmediateInterruptOK = true;
InterruptWhenCallingPLUDF = true;
result = FunctionCallInvoke(&fcinfo);
InterruptWhenCallingPLUDF = false;
ImmediateInterruptOK = savedImmediateInterruptOK;
}
else
{
result = ExecEvalExpr(funcexpr, econtext,
&fcinfo.isnull, &rsinfo.isDone);
}
/* Which protocol does function want to use? */
if (rsinfo.returnMode == SFRM_ValuePerCall)
{
/*
* Check for end of result set.
*/
if (rsinfo.isDone == ExprEndResult)
break;
/*
* Can't do anything very useful with NULL rowtype values. For a
* function returning set, we consider this a protocol violation
* (but another alternative would be to just ignore the result and
* "continue" to get another row). For a function not returning
* set, we fall out of the loop; we'll cons up an all-nulls result
* row below.
*/
if (returnsTuple && fcinfo.isnull)
{
if (!returnsSet)
break;
ereport(ERROR,
(errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED),
errmsg("function returning set of rows cannot return null value")));
}
/*
* If first time through, build tupdesc and tuplestore for result
*/
if (first_time)
{
oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
if (returnsTuple)
{
/*
* Use the type info embedded in the rowtype Datum to look
* up the needed tupdesc. Make a copy for the query.
*/
HeapTupleHeader td;
td = DatumGetHeapTupleHeader(result);
tupdesc = lookup_rowtype_tupdesc_copy(HeapTupleHeaderGetTypeId(td),
HeapTupleHeaderGetTypMod(td));
}
else
{
/*
* Scalar type, so make a single-column descriptor
*/
tupdesc = CreateTemplateTupleDesc(1, false);
TupleDescInitEntry(tupdesc,
(AttrNumber) 1,
"column",
funcrettype,
-1,
0);
}
mt_bind = create_memtuple_binding(tupdesc);
tupstore = tuplestore_begin_heap(true, false, operatorMemKB);
MemoryContextSwitchTo(oldcontext);
rsinfo.setResult = tupstore;
rsinfo.setDesc = tupdesc;
}
/*
* Store current resultset item.
*/
if (returnsTuple)
{
const int staticBufferLimit = 200;
HeapTupleHeader td;
Datum staticPd[staticBufferLimit];
bool staticNull[staticBufferLimit];
Datum *pd;
bool *pn;
/**
* use memory on stack if possible, to save palloc calls
*/
if ( tupdesc->natts > staticBufferLimit)
{
pd = (Datum *) palloc(tupdesc->natts * sizeof(Datum));
pn = (bool *) palloc(tupdesc->natts * sizeof(bool));
}
else
{
pd = staticPd;
pn = staticNull;
}
td = DatumGetHeapTupleHeader(result);
/*
* tuplestore_puttuple needs a HeapTuple not a bare
* HeapTupleHeader, but it doesn't need all the fields.
*/
tmptup.t_len = HeapTupleHeaderGetDatumLength(td);
tmptup.t_data = td;
heap_deform_tuple(&tmptup, tupdesc, pd, pn);
tuple = memtuple_form_to(mt_bind, pd, pn, NULL, NULL, false);
}
else
{
tuple = memtuple_form_to(mt_bind, &result, &fcinfo.isnull, NULL, NULL, false);
}
oldcontext = MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
tuplestore_puttuple(tupstore, (HeapTuple) tuple);
MemoryContextSwitchTo(oldcontext);
/*
* Are we done?
*/
if (rsinfo.isDone != ExprMultipleResult)
break;
}
else if (rsinfo.returnMode == SFRM_Materialize)
{
/* check we're on the same page as the function author */
if (!first_time || rsinfo.isDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_E_R_I_E_SRF_PROTOCOL_VIOLATED),
errmsg("table-function protocol for materialize mode was not followed")));
/* Done evaluating the set result */
break;
}
else
ereport(ERROR,
(errcode(ERRCODE_E_R_I_E_SRF_PROTOCOL_VIOLATED),
errmsg("unrecognized table-function returnMode: %d",
(int) rsinfo.returnMode)));
first_time = false;
}
no_function_result:
/*
* If we got nothing from the function (ie, an empty-set or NULL result),
* we have to create the tuplestore to return, and if it's a
* non-set-returning function then insert a single all-nulls row.
*/
if (rsinfo.setResult == NULL)
{
MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
tupstore = tuplestore_begin_heap(true, false, operatorMemKB);
rsinfo.setResult = tupstore;
if (!returnsSet)
{
int natts = expectedDesc->natts;
Datum *nulldatums;
bool *nullflags;
HeapTuple tuple;
MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
nulldatums = (Datum *) palloc0(natts * sizeof(Datum));
nullflags = (bool *) palloc(natts * sizeof(bool));
MemSetAligned(nullflags, true, natts * sizeof(bool));
tuple = heap_form_tuple(expectedDesc, nulldatums, nullflags);
MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
tuplestore_puttuple(tupstore, tuple);
}
}
/*
* If function provided a tupdesc, cross-check it. We only really
* need to do this for functions returning RECORD, but might as well
* do it always.
*/
if (rsinfo.setDesc)
{
tupledesc_match(expectedDesc, rsinfo.setDesc);
/*
* If it is a dynamically-allocated TupleDesc, free it: it is
* typically allocated in a per-query context, so we must avoid
* leaking it across multiple usages.
*/
if (rsinfo.setDesc->tdrefcount == -1)
{
FreeTupleDesc(rsinfo.setDesc);
rsinfo.setDesc = NULL;
}
}
MemoryContextSwitchTo(callerContext);
/* All done, pass back the tuplestore */
return rsinfo.setResult;
}
/* ----------------------------------------------------------------
* ExecEvalFunc
* ExecEvalOper
*
* Evaluate the functional result of a list of arguments by calling the
* function manager.
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* ExecEvalFunc
* ----------------------------------------------------------------
*/
static Datum
ExecEvalFunc(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
/* This is called only the first time through */
FuncExpr *func = (FuncExpr *) fcache->xprstate.expr;
/* Initialize function lookup info */
init_fcache(func->funcid, fcache, econtext->ecxt_per_query_memory, true);
/* Go directly to ExecMakeFunctionResult on subsequent uses */
fcache->xprstate.evalfunc = (ExprStateEvalFunc) ExecMakeFunctionResult;
return ExecMakeFunctionResult(fcache, econtext, isNull, isDone);
}
/* ----------------------------------------------------------------
* ExecEvalOper
* ----------------------------------------------------------------
*/
static Datum
ExecEvalOper(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
/* This is called only the first time through */
OpExpr *op = (OpExpr *) fcache->xprstate.expr;
/* Initialize function lookup info */
init_fcache(op->opfuncid, fcache, econtext->ecxt_per_query_memory, true);
/* Go directly to ExecMakeFunctionResult on subsequent uses */
fcache->xprstate.evalfunc = (ExprStateEvalFunc) ExecMakeFunctionResult;
return ExecMakeFunctionResult(fcache, econtext, isNull, isDone);
}
/* ----------------------------------------------------------------
* ExecEvalDistinct
*
* IS DISTINCT FROM must evaluate arguments to determine whether
* they are NULL; if either is NULL then the result is already
* known. If neither is NULL, then proceed to evaluate the
* function. Note that this is *always* derived from the equals
* operator, but since we need special processing of the arguments
* we can not simply reuse ExecEvalOper() or ExecEvalFunc().
* ----------------------------------------------------------------
*/
static Datum
ExecEvalDistinct(FuncExprState *fcache,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
Datum result;
FunctionCallInfoData fcinfo;
ExprDoneCond argDone;
List *argList;
/* Set default values for result flags: non-null, not a set result */
*isNull = false;
if (isDone)
*isDone = ExprSingleResult;
/*
* Initialize function cache if first time through
*/
if (fcache->func.fn_oid == InvalidOid)
{
DistinctExpr *op = (DistinctExpr *) fcache->xprstate.expr;
init_fcache(op->opfuncid, fcache,
econtext->ecxt_per_query_memory, true);
Assert(!fcache->func.fn_retset);
}
/*
* extract info from fcache
*/
argList = fcache->args;
/* Need to prep callinfo structure */
InitFunctionCallInfoData(fcinfo, &(fcache->func), 0, NULL, NULL);
argDone = ExecEvalFuncArgs(&fcinfo, argList, econtext);
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("IS DISTINCT FROM does not support set arguments")));
Assert(fcinfo.nargs == 2);
if (fcinfo.argnull[0] && fcinfo.argnull[1])
{
/* Both NULL? Then is not distinct... */
result = BoolGetDatum(FALSE);
}
else if (fcinfo.argnull[0] || fcinfo.argnull[1])
{
/* Only one is NULL? Then is distinct... */
result = BoolGetDatum(TRUE);
}
else
{
fcinfo.isnull = false;
result = FunctionCallInvoke(&fcinfo);
*isNull = fcinfo.isnull;
/* Must invert result of "=" */
result = BoolGetDatum(!DatumGetBool(result));
}
return result;
}
static inline void ExecEvalFPStrict2Arg(FuncExprState *expr, ExprContext *econtext, bool *isNull, ExprDoneCond *isDone)
{
ExprDoneCond argDone[2];
Assert(expr->fp_arg[0] && expr->fp_arg[1]);
if(isDone)
*isDone = ExprSingleResult;
expr->fp_datum[0] = ExecEvalExpr(expr->fp_arg[0], econtext, &expr->fp_null[0], &argDone[0]);
expr->fp_datum[1] = ExecEvalExpr(expr->fp_arg[1], econtext, &expr->fp_null[1], &argDone[1]);
*isNull = expr->fp_null[0] || expr->fp_null[1];
}
static Datum ExecEvalFPStrict2_Int2Eq(FuncExprState *fstate, ExprContext *ctxt, bool *isNull, ExprDoneCond *isDone)
{
ExecEvalFPStrict2Arg(fstate, ctxt, isNull, isDone);
return BoolGetDatum(
DatumGetInt16(fstate->fp_datum[0]) == DatumGetInt16(fstate->fp_datum[1])
);
}
static Datum ExecEvalFPStrict2_Int4Eq(FuncExprState *fstate, ExprContext *ctxt, bool *isNull, ExprDoneCond *isDone)
{
ExecEvalFPStrict2Arg(fstate, ctxt, isNull, isDone);
return BoolGetDatum(
DatumGetInt32(fstate->fp_datum[0]) == DatumGetInt32(fstate->fp_datum[1])
);
}
static Datum ExecEvalFPStrict2_Int8Eq(FuncExprState *fstate, ExprContext *ctxt, bool *isNull, ExprDoneCond *isDone)
{
ExecEvalFPStrict2Arg(fstate, ctxt, isNull, isDone);
return BoolGetDatum(fstate->fp_datum[0] == fstate->fp_datum[1]);
}
/* Some Oids that we want to fast path. See pg_proc.h */
#define INT2EQ_OID 63
#define INT4EQ_OID 65
#define TEXTEQ_OID 67
#define INT8EQ_OID 467
#define BPCHAREQ_OID 1048
#define DATE_EQ_OID 1086
/* Optimize x op y if op has no side effect. Almost all our functions are
* strict, 2 args.
*
* NOTE: You need to implement the ExecEvalFPStrict2_FUNC FAITHFULLY.
* For example, before you fast path int4add, make sure your implementation
* is the same as the old int4add, that is, you need to handle under/over flow etc.
*/
static void FastPathStrict2Func(Oid funcoid, FuncExprState *fstate)
{
static Oid strict2oid[] = {
INT2EQ_OID,
INT4EQ_OID,
DATE_EQ_OID,
INT8EQ_OID,
};
static ExprStateEvalFunc strict2func[] = {
(ExprStateEvalFunc) ExecEvalFPStrict2_Int2Eq,
(ExprStateEvalFunc) ExecEvalFPStrict2_Int4Eq,
(ExprStateEvalFunc) ExecEvalFPStrict2_Int4Eq, /* date_eq is int4 eq */
(ExprStateEvalFunc) ExecEvalFPStrict2_Int8Eq,
};
int i;
COMPILE_ASSERT(ARRAY_SIZE(strict2oid) == ARRAY_SIZE(strict2func));
for(i=0; i<ARRAY_SIZE(strict2oid); ++i)
{
if (strict2oid[i] == funcoid)
{
fstate->xprstate.evalfunc = strict2func[i];
fstate->fp_arg[0] = linitial(fstate->args);
fstate->fp_arg[1] = lsecond(fstate->args);
return;
}
}
}
static Datum
ExecEvalFPScalarArrayInt(ScalarArrayOpExprState *sstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) sstate->fxprstate.xprstate.expr;
Oid fnoid = opexpr->opfuncid;
ExprState *arg = linitial(sstate->fxprstate.args);
ExprDoneCond argDone;
Datum d;
bool isnull;
int i;
d = ExecEvalExpr(arg, econtext, &isnull, &argDone);
Assert(argDone == ExprSingleResult);
if (isDone)
*isDone = ExprSingleResult;
if (isnull)
{
*isNull = true;
return 0;
}
*isNull = false;
if (fnoid == INT4EQ_OID || fnoid == DATE_EQ_OID)
d = Int32GetDatum(DatumGetInt32(d));
else if (fnoid != INT8EQ_OID)
{
Assert(fnoid == INT2EQ_OID);
d = Int16GetDatum(DatumGetInt16(d));
}
for(i=0; i<sstate->fp_n; ++i)
{
if(d == sstate->fp_datum[i])
return BoolGetDatum(true);
}
return BoolGetDatum(false);
}
static Datum
ExecEvalFPScalarArrayStr(ScalarArrayOpExprState *sstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) sstate->fxprstate.xprstate.expr;
Oid fnoid = opexpr->opfuncid;
ExprState *arg = linitial(sstate->fxprstate.args);
ExprDoneCond argDone;
Datum d;
bool isnull;
Datum ret;
char *p; void *tofree; int len;
int i;
d = ExecEvalExpr(arg, econtext, &isnull, &argDone);
Assert(argDone == ExprSingleResult);
if (isDone)
*isDone = ExprSingleResult;
if (isnull)
{
*isNull = true;
return 0;
}
*isNull = false;
ret = BoolGetDatum(false);
varattrib_untoast_ptr_len(d, &p, &len, &tofree);
/* bpchareq, rid of trailing white space. see bpeq and bcTruelen */
if(fnoid == BPCHAREQ_OID)
{
while(len > 0 && p[len-1] == ' ')
--len;
}
for(i=0; i<sstate->fp_n; ++i)
{
if(sstate->fp_len[i] != len)
continue;
if(memcmp(p, DatumGetPointer(sstate->fp_datum[i]), sstate->fp_len[i]) == 0)
{
ret = BoolGetDatum(true);
break;
}
}
if(tofree)
pfree(tofree);
return ret;
}
/* Optimize x in ('A', 'B', 'C') */
static void FastPathScalarArrayOp(ScalarArrayOpExpr *opexpr, ScalarArrayOpExprState *sstate)
{
ExprState *argstate;
Const *argconst;
ArrayType *arr;
char *s;
bits8 *bitmap;
int bitmask;
int16 typlen;
bool typbyval;
char typalign;
Oid fnoid = InvalidOid;
static int4 optimize_func_oid[] = {
INT2EQ_OID,
INT4EQ_OID,
TEXTEQ_OID,
INT8EQ_OID,
BPCHAREQ_OID,
DATE_EQ_OID,
};
int i;
/* IN will be evaluated as OR */
if (!opexpr->useOr)
return;
/* Check if we optimize these types */
for (i=0; i<ARRAY_SIZE(optimize_func_oid); ++i)
{
if (optimize_func_oid[i] == opexpr->opfuncid)
{
fnoid = opexpr->opfuncid;
break;
}
}
if(fnoid == InvalidOid)
return;
/* Better to have just two args */
Assert(list_length(sstate->fxprstate.args) == 2);
/* only if the second args are const */
argstate = (ExprState *) lsecond(sstate->fxprstate.args);
if (argstate->evalfunc != ExecEvalConst)
return;
argconst = (Const *) argstate->expr;
/* We do not handle null */
if (argconst->constisnull)
return;
arr = DatumGetArrayTypeP(argconst->constvalue);
sstate->fp_n = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
/* We do not handle this case */
if (sstate->fp_n <= 0)
return;
sstate->fp_len = (int *) palloc(sizeof(int) * sstate->fp_n);
sstate->fp_datum = (Datum *) palloc(sizeof(Datum) * sstate->fp_n);
/* Type stuff */
if (sstate->element_type != ARR_ELEMTYPE(arr))
{
get_typlenbyvalalign(ARR_ELEMTYPE(arr),
&sstate->typlen,
&sstate->typbyval,
&sstate->typalign);
sstate->element_type = ARR_ELEMTYPE(arr);
}
typlen = sstate->typlen;
typbyval = sstate->typbyval;
typalign = sstate->typalign;
/* Loop over the array elements */
s = (char *) ARR_DATA_PTR(arr);
bitmap = ARR_NULLBITMAP(arr);
bitmask = 1;
for (i = 0; i < sstate->fp_n; i++)
{
Datum elt;
/* Do not deal with null yet */
if (bitmap && (*bitmap & bitmask) == 0)
return;
elt = fetch_att(s, typbyval, typlen);
s = att_addlength(s, typlen, PointerGetDatum(s));
s = (char *) att_align(s, typalign);
/* int type */
if (fnoid == INT2EQ_OID)
sstate->fp_datum[i] = Int16GetDatum(DatumGetInt16(elt));
else if (fnoid == INT4EQ_OID || fnoid == DATE_EQ_OID)
sstate->fp_datum[i] = Int32GetDatum(DatumGetInt32(elt));
else if (fnoid == INT8EQ_OID)
sstate->fp_datum[i] = elt;
else if (fnoid == TEXTEQ_OID || fnoid == BPCHAREQ_OID)
{
char *p; void *tofree; int len;
char *pdest;
varattrib_untoast_ptr_len(elt, &p, &len, &tofree);
/* bpchareq, rid of trailing white space. see bpeq and bcTruelen */
if(fnoid == BPCHAREQ_OID)
{
while(len > 0 && p[len-1] == ' ')
--len;
}
sstate->fp_len[i] = len;
pdest = palloc(len);
sstate->fp_datum[i] = PointerGetDatum(pdest);
memcpy(pdest, p, len);
if(tofree)
pfree(tofree);
}
else
Assert(!"Wrong optimize_funcoid");
/* advance bitmap pointer if any */
if (bitmap)
{
bitmask <<= 1;
if (bitmask == 0x100 /* 1<<8 */)
{
bitmap++;
bitmask = 1;
}
}
}
/* Now we are sure we can fast path this */
if (fnoid == INT2EQ_OID || fnoid == INT4EQ_OID || fnoid == INT8EQ_OID || fnoid == DATE_EQ_OID)
sstate->fxprstate.xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalFPScalarArrayInt;
else if (fnoid == TEXTEQ_OID || fnoid == BPCHAREQ_OID)
sstate->fxprstate.xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalFPScalarArrayStr;
else
Assert(!"Wrong optimize_funcoid");
}
/*
* ExecEvalScalarArrayOp
*
* Evaluate "scalar op ANY/ALL (array)". The operator always yields boolean,
* and we combine the results across all array elements using OR and AND
* (for ANY and ALL respectively). Of course we short-circuit as soon as
* the result is known.
*/
static Datum
ExecEvalScalarArrayOp(ScalarArrayOpExprState *sstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) sstate->fxprstate.xprstate.expr;
bool useOr = opexpr->useOr;
ArrayType *arr;
int nitems;
Datum result;
bool resultnull;
FunctionCallInfoData fcinfo;
ExprDoneCond argDone;
int i;
int16 typlen;
bool typbyval;
char typalign;
char *s;
bits8 *bitmap;
int bitmask;
/* Set default values for result flags: non-null, not a set result */
*isNull = false;
if (isDone)
*isDone = ExprSingleResult;
/*
* Initialize function cache if first time through
*/
if (sstate->fxprstate.func.fn_oid == InvalidOid)
{
init_fcache(opexpr->opfuncid, &sstate->fxprstate,
econtext->ecxt_per_query_memory, true);
Assert(!sstate->fxprstate.func.fn_retset);
}
/* Need to prep callinfo structure */
InitFunctionCallInfoData(fcinfo, &(sstate->fxprstate.func), 0, NULL, NULL);
argDone = ExecEvalFuncArgs(&fcinfo, sstate->fxprstate.args, econtext);
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("op ANY/ALL (array) does not support set arguments")));
Assert(fcinfo.nargs == 2);
/*
* If the array is NULL then we return NULL --- it's not very meaningful
* to do anything else, even if the operator isn't strict.
*/
if (fcinfo.argnull[1])
{
*isNull = true;
return (Datum) 0;
}
/* Else okay to fetch and detoast the array */
arr = DatumGetArrayTypeP(fcinfo.arg[1]);
/*
* If the array is empty, we return either FALSE or TRUE per the useOr
* flag. This is correct even if the scalar is NULL; since we would
* evaluate the operator zero times, it matters not whether it would want
* to return NULL.
*/
nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));
if (nitems <= 0)
return BoolGetDatum(!useOr);
/*
* If the scalar is NULL, and the function is strict, return NULL; no
* point in iterating the loop.
*/
if (fcinfo.argnull[0] && sstate->fxprstate.func.fn_strict)
{
*isNull = true;
return (Datum) 0;
}
/*
* We arrange to look up info about the element type only once per series
* of calls, assuming the element type doesn't change underneath us.
*/
if (sstate->element_type != ARR_ELEMTYPE(arr))
{
get_typlenbyvalalign(ARR_ELEMTYPE(arr),
&sstate->typlen,
&sstate->typbyval,
&sstate->typalign);
sstate->element_type = ARR_ELEMTYPE(arr);
}
typlen = sstate->typlen;
typbyval = sstate->typbyval;
typalign = sstate->typalign;
result = BoolGetDatum(!useOr);
resultnull = false;
/* Loop over the array elements */
s = (char *) ARR_DATA_PTR(arr);
bitmap = ARR_NULLBITMAP(arr);
bitmask = 1;
for (i = 0; i < nitems; i++)
{
Datum elt;
Datum thisresult;
/* Get array element, checking for NULL */
if (bitmap && (*bitmap & bitmask) == 0)
{
fcinfo.arg[1] = (Datum) 0;
fcinfo.argnull[1] = true;
}
else
{
elt = fetch_att(s, typbyval, typlen);
s = att_addlength(s, typlen, PointerGetDatum(s));
s = (char *) att_align(s, typalign);
fcinfo.arg[1] = elt;
fcinfo.argnull[1] = false;
}
/* Call comparison function */
if (fcinfo.argnull[1] && sstate->fxprstate.func.fn_strict)
{
fcinfo.isnull = true;
thisresult = (Datum) 0;
}
else
{
fcinfo.isnull = false;
thisresult = FunctionCallInvoke(&fcinfo);
}
/* Combine results per OR or AND semantics */
if (fcinfo.isnull)
resultnull = true;
else if (useOr)
{
if (DatumGetBool(thisresult))
{
result = BoolGetDatum(true);
resultnull = false;
break; /* needn't look at any more elements */
}
}
else
{
if (!DatumGetBool(thisresult))
{
result = BoolGetDatum(false);
resultnull = false;
break; /* needn't look at any more elements */
}
}
/* advance bitmap pointer if any */
if (bitmap)
{
bitmask <<= 1;
if (bitmask == 0x100 /* 1<<8 */)
{
bitmap++;
bitmask = 1;
}
}
}
*isNull = resultnull;
return result;
}
/* ----------------------------------------------------------------
* ExecEvalNot
* ExecEvalOr
* ExecEvalAnd
*
* Evaluate boolean expressions, with appropriate short-circuiting.
*
* The query planner reformulates clause expressions in the
* qualification to conjunctive normal form. If we ever get
* an AND to evaluate, we can be sure that it's not a top-level
* clause in the qualification, but appears lower (as a function
* argument, for example), or in the target list. Not that you
* need to know this, mind you...
* ----------------------------------------------------------------
*/
static Datum
ExecEvalNot(BoolExprState *notclause, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
ExprState *clause = linitial(notclause->args);
Datum expr_value;
if (isDone)
*isDone = ExprSingleResult;
expr_value = ExecEvalExpr(clause, econtext, isNull, NULL);
/*
* if the expression evaluates to null, then we just cascade the null back
* to whoever called us.
*/
if (*isNull)
return expr_value;
/*
* evaluation of 'not' is simple.. expr is false, then return 'true' and
* vice versa.
*/
return BoolGetDatum(!DatumGetBool(expr_value));
}
/* ----------------------------------------------------------------
* ExecEvalOr
* ----------------------------------------------------------------
*/
static Datum
ExecEvalOr(BoolExprState *orExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
List *clauses = orExpr->args;
ListCell *clause;
bool AnyNull;
if (isDone)
*isDone = ExprSingleResult;
AnyNull = false;
/*
* If any of the clauses is TRUE, the OR result is TRUE regardless of the
* states of the rest of the clauses, so we can stop evaluating and return
* TRUE immediately. If none are TRUE and one or more is NULL, we return
* NULL; otherwise we return FALSE. This makes sense when you interpret
* NULL as "don't know": if we have a TRUE then the OR is TRUE even if we
* aren't sure about some of the other inputs. If all the known inputs are
* FALSE, but we have one or more "don't knows", then we have to report
* that we "don't know" what the OR's result should be --- perhaps one of
* the "don't knows" would have been TRUE if we'd known its value. Only
* when all the inputs are known to be FALSE can we state confidently that
* the OR's result is FALSE.
*/
foreach(clause, clauses)
{
ExprState *clausestate = (ExprState *) lfirst(clause);
Datum clause_value;
clause_value = ExecEvalExpr(clausestate, econtext, isNull, NULL);
/*
* if we have a non-null true result, then return it.
*/
if (*isNull)
AnyNull = true; /* remember we got a null */
else if (DatumGetBool(clause_value))
return clause_value;
}
/* AnyNull is true if at least one clause evaluated to NULL */
*isNull = AnyNull;
return BoolGetDatum(false);
}
/* ----------------------------------------------------------------
* ExecEvalAnd
* ----------------------------------------------------------------
*/
static Datum
ExecEvalAnd(BoolExprState *andExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
List *clauses = andExpr->args;
ListCell *clause;
bool AnyNull;
if (isDone)
*isDone = ExprSingleResult;
AnyNull = false;
/*
* If any of the clauses is FALSE, the AND result is FALSE regardless of
* the states of the rest of the clauses, so we can stop evaluating and
* return FALSE immediately. If none are FALSE and one or more is NULL,
* we return NULL; otherwise we return TRUE. This makes sense when you
* interpret NULL as "don't know", using the same sort of reasoning as for
* OR, above.
*/
foreach(clause, clauses)
{
ExprState *clausestate = (ExprState *) lfirst(clause);
Datum clause_value;
clause_value = ExecEvalExpr(clausestate, econtext, isNull, NULL);
/*
* if we have a non-null false result, then return it.
*/
if (*isNull)
AnyNull = true; /* remember we got a null */
else if (!DatumGetBool(clause_value))
return clause_value;
}
/* AnyNull is true if at least one clause evaluated to NULL */
*isNull = AnyNull;
return BoolGetDatum(!AnyNull);
}
/* ----------------------------------------------------------------
* ExecEvalConvertRowtype
*
* Evaluate a rowtype coercion operation. This may require
* rearranging field positions.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalConvertRowtype(ConvertRowtypeExprState *cstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
ConvertRowtypeExpr *convert = (ConvertRowtypeExpr *) cstate->xprstate.expr;
HeapTuple result;
Datum tupDatum;
HeapTupleHeader tuple;
HeapTupleData tmptup;
AttrNumber *attrMap;
Datum *invalues;
bool *inisnull;
Datum *outvalues;
bool *outisnull;
int i;
int outnatts;
tupDatum = ExecEvalExpr(cstate->arg, econtext, isNull, isDone);
/* this test covers the isDone exception too: */
if (*isNull)
return tupDatum;
tuple = DatumGetHeapTupleHeader(tupDatum);
/* Lookup tupdescs if first time through or after rescan */
if (cstate->indesc == NULL)
get_cached_rowtype(exprType((Node *) convert->arg), -1,
&cstate->indesc, econtext);
if (cstate->outdesc == NULL)
get_cached_rowtype(convert->resulttype, -1,
&cstate->outdesc, econtext);
Assert(HeapTupleHeaderGetTypeId(tuple) == cstate->indesc->tdtypeid);
Assert(HeapTupleHeaderGetTypMod(tuple) == cstate->indesc->tdtypmod);
/* if first time through, initialize */
if (cstate->attrMap == NULL)
{
MemoryContext old_cxt;
int n;
/* allocate state in long-lived memory context */
old_cxt = MemoryContextSwitchTo(econtext->ecxt_per_query_memory);
/* prepare map from old to new attribute numbers */
n = cstate->outdesc->natts;
cstate->attrMap = (AttrNumber *) palloc0(n * sizeof(AttrNumber));
for (i = 0; i < n; i++)
{
Form_pg_attribute att = cstate->outdesc->attrs[i];
char *attname;
Oid atttypid;
int32 atttypmod;
int j;
if (att->attisdropped)
continue; /* attrMap[i] is already 0 */
attname = NameStr(att->attname);
atttypid = att->atttypid;
atttypmod = att->atttypmod;
for (j = 0; j < cstate->indesc->natts; j++)
{
att = cstate->indesc->attrs[j];
if (att->attisdropped)
continue;
if (strcmp(attname, NameStr(att->attname)) == 0)
{
/* Found it, check type */
if (atttypid != att->atttypid || atttypmod != att->atttypmod)
elog(ERROR, "attribute \"%s\" of type %s does not match corresponding attribute of type %s",
attname,
format_type_be(cstate->indesc->tdtypeid),
format_type_be(cstate->outdesc->tdtypeid));
cstate->attrMap[i] = (AttrNumber) (j + 1);
break;
}
}
if (cstate->attrMap[i] == 0)
elog(ERROR, "attribute \"%s\" of type %s does not exist",
attname,
format_type_be(cstate->indesc->tdtypeid));
}
/* preallocate workspace for Datum arrays */
n = cstate->indesc->natts + 1; /* +1 for NULL */
cstate->invalues = (Datum *) palloc(n * sizeof(Datum));
cstate->inisnull = (bool *) palloc(n * sizeof(bool));
n = cstate->outdesc->natts;
cstate->outvalues = (Datum *) palloc(n * sizeof(Datum));
cstate->outisnull = (bool *) palloc(n * sizeof(bool));
MemoryContextSwitchTo(old_cxt);
}
attrMap = cstate->attrMap;
invalues = cstate->invalues;
inisnull = cstate->inisnull;
outvalues = cstate->outvalues;
outisnull = cstate->outisnull;
outnatts = cstate->outdesc->natts;
/*
* heap_deform_tuple needs a HeapTuple not a bare HeapTupleHeader.
*/
tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
tmptup.t_data = tuple;
/*
* Extract all the values of the old tuple, offsetting the arrays so that
* invalues[0] is NULL and invalues[1] is the first source attribute; this
* exactly matches the numbering convention in attrMap.
*/
heap_deform_tuple(&tmptup, cstate->indesc, invalues + 1, inisnull + 1);
invalues[0] = (Datum) 0;
inisnull[0] = true;
/*
* Transpose into proper fields of the new tuple.
*/
for (i = 0; i < outnatts; i++)
{
int j = attrMap[i];
outvalues[i] = invalues[j];
outisnull[i] = inisnull[j];
}
/*
* Now form the new tuple.
*/
result = heap_form_tuple(cstate->outdesc, outvalues, outisnull);
return HeapTupleGetDatum(result);
}
/* ----------------------------------------------------------------
* ExecEvalCase
*
* Evaluate a CASE clause. Will have boolean expressions
* inside the WHEN clauses, and will have expressions
* for results.
* - thomas 1998-11-09
* ----------------------------------------------------------------
*/
static Datum
ExecEvalCase(CaseExprState *caseExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
List *clauses = caseExpr->args;
ListCell *clause;
Datum save_datum;
bool save_isNull;
if (isDone)
*isDone = ExprSingleResult;
/*
* If there's a test expression, we have to evaluate it and save the value
* where the CaseTestExpr placeholders can find it. We must save and
* restore prior setting of econtext's caseValue fields, in case this node
* is itself within a larger CASE.
*/
save_datum = econtext->caseValue_datum;
save_isNull = econtext->caseValue_isNull;
if (caseExpr->arg)
{
/*
* caseValue_datum and caseValue_isNull from econtext store the results of case
* expression. caseValue_isNull will be true if caseValue_datum store null value.
* Both caseValue_datum and caseValue_isNull should change at same time and they shouldn't
* go out of sync.
* Hence pass temporary variable(caseValue_isNull) and once evaluation is done,
* update the caseValue_isNull from econtext.
*/
bool caseValue_isNull = false;
econtext->caseValue_datum = ExecEvalExpr(caseExpr->arg,
econtext,
&caseValue_isNull,
NULL);
econtext->caseValue_isNull = caseValue_isNull;
}
/*
* we evaluate each of the WHEN clauses in turn, as soon as one is true we
* return the corresponding result. If none are true then we return the
* value of the default clause, or NULL if there is none.
*/
foreach(clause, clauses)
{
CaseWhenState *wclause = lfirst(clause);
Datum clause_value;
clause_value = ExecEvalExpr(wclause->expr,
econtext,
isNull,
NULL);
/*
* if we have a true test, then we return the result, since the case
* statement is satisfied. A NULL result from the test is not
* considered true.
*/
if (DatumGetBool(clause_value) && !*isNull)
{
econtext->caseValue_datum = save_datum;
econtext->caseValue_isNull = save_isNull;
return ExecEvalExpr(wclause->result,
econtext,
isNull,
isDone);
}
}
econtext->caseValue_datum = save_datum;
econtext->caseValue_isNull = save_isNull;
if (caseExpr->defresult)
{
return ExecEvalExpr(caseExpr->defresult,
econtext,
isNull,
isDone);
}
*isNull = true;
return (Datum) 0;
}
/*
* ExecEvalCaseTestExpr
*
* Return the value stored by CASE.
*/
static Datum
ExecEvalCaseTestExpr(ExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
if (isDone)
*isDone = ExprSingleResult;
*isNull = econtext->caseValue_isNull;
return econtext->caseValue_datum;
}
/* ----------------------------------------------------------------
* ExecEvalArray - ARRAY[] expressions
* ----------------------------------------------------------------
*/
static Datum
ExecEvalArray(ArrayExprState *astate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
ArrayExpr *arrayExpr = (ArrayExpr *) astate->xprstate.expr;
ArrayType *result;
ListCell *element;
Oid element_type = arrayExpr->element_typeid;
int ndims = 0;
int dims[MAXDIM];
int lbs[MAXDIM];
/* Set default values for result flags: non-null, not a set result */
*isNull = false;
if (isDone)
*isDone = ExprSingleResult;
if (!arrayExpr->multidims)
{
/* Elements are presumably of scalar type */
int nelems;
Datum *dvalues;
bool *dnulls;
int i = 0;
ndims = 1;
nelems = list_length(astate->elements);
/* Shouldn't happen here, but if length is 0, return empty array */
if (nelems == 0)
return PointerGetDatum(construct_empty_array(element_type));
dvalues = (Datum *) palloc(nelems * sizeof(Datum));
dnulls = (bool *) palloc(nelems * sizeof(bool));
/* loop through and build array of datums */
foreach(element, astate->elements)
{
ExprState *e = (ExprState *) lfirst(element);
dvalues[i] = ExecEvalExpr(e, econtext, &dnulls[i], NULL);
i++;
}
/* setup for 1-D array of the given length */
dims[0] = nelems;
lbs[0] = 1;
result = construct_md_array(dvalues, dnulls, ndims, dims, lbs,
element_type,
astate->elemlength,
astate->elembyval,
astate->elemalign);
}
else
{
/* Must be nested array expressions */
int nbytes = 0;
int nitems = 0;
int outer_nelems = 0;
int elem_ndims = 0;
int *elem_dims = NULL;
int *elem_lbs = NULL;
bool firstone = true;
bool havenulls = false;
bool haveempty = false;
char **subdata;
bits8 **subbitmaps;
int *subbytes;
int *subnitems;
int i;
int32 dataoffset;
char *dat;
int iitem;
i = list_length(astate->elements);
subdata = (char **) palloc(i * sizeof(char *));
subbitmaps = (bits8 **) palloc(i * sizeof(bits8 *));
subbytes = (int *) palloc(i * sizeof(int));
subnitems = (int *) palloc(i * sizeof(int));
/* loop through and get data area from each element */
foreach(element, astate->elements)
{
ExprState *e = (ExprState *) lfirst(element);
bool eisnull;
Datum arraydatum;
ArrayType *array;
int this_ndims;
arraydatum = ExecEvalExpr(e, econtext, &eisnull, NULL);
/* temporarily ignore null subarrays */
if (eisnull)
{
haveempty = true;
continue;
}
array = DatumGetArrayTypeP(arraydatum);
/* run-time double-check on element type */
if (element_type != ARR_ELEMTYPE(array))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("cannot merge incompatible arrays"),
errdetail("Array with element type %s cannot be "
"included in ARRAY construct with element type %s.",
format_type_be(ARR_ELEMTYPE(array)),
format_type_be(element_type))));
this_ndims = ARR_NDIM(array);
/* temporarily ignore zero-dimensional subarrays */
if (this_ndims <= 0)
{
haveempty = true;
continue;
}
if (firstone)
{
/* Get sub-array details from first member */
elem_ndims = this_ndims;
ndims = elem_ndims + 1;
if (ndims <= 0 || ndims > MAXDIM)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("number of array dimensions (%d) exceeds " \
"the maximum allowed (%d)", ndims, MAXDIM)));
elem_dims = (int *) palloc(elem_ndims * sizeof(int));
memcpy(elem_dims, ARR_DIMS(array), elem_ndims * sizeof(int));
elem_lbs = (int *) palloc(elem_ndims * sizeof(int));
memcpy(elem_lbs, ARR_LBOUND(array), elem_ndims * sizeof(int));
firstone = false;
}
else
{
/* Check other sub-arrays are compatible */
if (elem_ndims != this_ndims ||
memcmp(elem_dims, ARR_DIMS(array),
elem_ndims * sizeof(int)) != 0 ||
memcmp(elem_lbs, ARR_LBOUND(array),
elem_ndims * sizeof(int)) != 0)
ereport(ERROR,
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
errmsg("multidimensional arrays must have array "
"expressions with matching dimensions")));
}
subdata[outer_nelems] = ARR_DATA_PTR(array);
subbitmaps[outer_nelems] = ARR_NULLBITMAP(array);
subbytes[outer_nelems] = ARR_SIZE(array) - ARR_DATA_OFFSET(array);
nbytes += subbytes[outer_nelems];
subnitems[outer_nelems] = ArrayGetNItems(this_ndims,
ARR_DIMS(array));
nitems += subnitems[outer_nelems];
havenulls |= ARR_HASNULL(array);
outer_nelems++;
}
/*
* If all items were null or empty arrays, return an empty array;
* otherwise, if some were and some weren't, raise error. (Note:
* we must special-case this somehow to avoid trying to generate
* a 1-D array formed from empty arrays. It's not ideal...)
*/
if (haveempty)
{
if (ndims == 0) /* didn't find any nonempty array */
return PointerGetDatum(construct_empty_array(element_type));
ereport(ERROR,
(errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR),
errmsg("multidimensional arrays must have array "
"expressions with matching dimensions")));
}
/* setup for multi-D array */
dims[0] = outer_nelems;
lbs[0] = 1;
for (i = 1; i < ndims; i++)
{
dims[i] = elem_dims[i - 1];
lbs[i] = elem_lbs[i - 1];
}
if (havenulls)
{
dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nitems);
nbytes += dataoffset;
}
else
{
dataoffset = 0; /* marker for no null bitmap */
nbytes += ARR_OVERHEAD_NONULLS(ndims);
}
result = (ArrayType *) palloc(nbytes);
SET_VARSIZE(result, nbytes);
result->ndim = ndims;
result->dataoffset = dataoffset;
result->elemtype = element_type;
memcpy(ARR_DIMS(result), dims, ndims * sizeof(int));
memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int));
dat = ARR_DATA_PTR(result);
iitem = 0;
for (i = 0; i < outer_nelems; i++)
{
memcpy(dat, subdata[i], subbytes[i]);
dat += subbytes[i];
if (havenulls)
array_bitmap_copy(ARR_NULLBITMAP(result), iitem,
subbitmaps[i], 0,
subnitems[i]);
iitem += subnitems[i];
}
}
return PointerGetDatum(result);
}
/* ----------------------------------------------------------------
* ExecEvalRow - ROW() expressions
* ----------------------------------------------------------------
*/
static Datum
ExecEvalRow(RowExprState *rstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
HeapTuple tuple;
Datum *values;
bool *isnull;
int natts;
ListCell *arg;
int i;
/* Set default values for result flags: non-null, not a set result */
*isNull = false;
if (isDone)
*isDone = ExprSingleResult;
/* Allocate workspace */
natts = rstate->tupdesc->natts;
values = (Datum *) palloc0(natts * sizeof(Datum));
isnull = (bool *) palloc(natts * sizeof(bool));
/* preset to nulls in case rowtype has some later-added columns */
MemSetAligned(isnull, true, natts * sizeof(bool));
/* Evaluate field values */
i = 0;
foreach(arg, rstate->args)
{
ExprState *e = (ExprState *) lfirst(arg);
values[i] = ExecEvalExpr(e, econtext, &isnull[i], NULL);
i++;
}
tuple = heap_form_tuple(rstate->tupdesc, values, isnull);
pfree(values);
pfree(isnull);
return HeapTupleGetDatum(tuple);
}
/* ----------------------------------------------------------------
* ExecEvalRowCompare - ROW() comparison-op ROW()
* ----------------------------------------------------------------
*/
static Datum
ExecEvalRowCompare(RowCompareExprState *rstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
bool result;
RowCompareType rctype = ((RowCompareExpr *) rstate->xprstate.expr)->rctype;
int32 cmpresult = 0;
ListCell *l;
ListCell *r;
int i;
if (isDone)
*isDone = ExprSingleResult;
*isNull = true; /* until we get a result */
i = 0;
forboth(l, rstate->largs, r, rstate->rargs)
{
ExprState *le = (ExprState *) lfirst(l);
ExprState *re = (ExprState *) lfirst(r);
FunctionCallInfoData locfcinfo;
InitFunctionCallInfoData(locfcinfo, &(rstate->funcs[i]), 2,
NULL, NULL);
locfcinfo.arg[0] = ExecEvalExpr(le, econtext,
&locfcinfo.argnull[0], NULL);
locfcinfo.arg[1] = ExecEvalExpr(re, econtext,
&locfcinfo.argnull[1], NULL);
if (rstate->funcs[i].fn_strict &&
(locfcinfo.argnull[0] || locfcinfo.argnull[1]))
return (Datum) 0; /* force NULL result */
locfcinfo.isnull = false;
cmpresult = DatumGetInt32(FunctionCallInvoke(&locfcinfo));
if (locfcinfo.isnull)
return (Datum) 0; /* force NULL result */
if (cmpresult != 0)
break; /* no need to compare remaining columns */
i++;
}
switch (rctype)
{
/* EQ and NE cases aren't allowed here */
case ROWCOMPARE_LT:
result = (cmpresult < 0);
break;
case ROWCOMPARE_LE:
result = (cmpresult <= 0);
break;
case ROWCOMPARE_GE:
result = (cmpresult >= 0);
break;
case ROWCOMPARE_GT:
result = (cmpresult > 0);
break;
default:
elog(ERROR, "unrecognized RowCompareType: %d", (int) rctype);
result = 0; /* keep compiler quiet */
break;
}
*isNull = false;
return BoolGetDatum(result);
}
/* ----------------------------------------------------------------
* ExecEvalTableValue
* ----------------------------------------------------------------
*/
static Datum
ExecEvalTableValue(ExprState *estate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
/* Guard against stack overflow due to overly complex expressions */
check_stack_depth();
if (isDone)
*isDone = ExprSingleResult;
/*
* When evaluated as an expression a TableValueExpr will return NULL,
* this NULL is replaced by an AnyTable datum within nodeTableFunction.c
*
* Is there a better way to do this?
*/
*isNull = true;
return (Datum) 0;
}
/* ----------------------------------------------------------------
* ExecEvalCoalesce
* ----------------------------------------------------------------
*/
static Datum
ExecEvalCoalesce(CoalesceExprState *coalesceExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
ListCell *arg;
if (isDone)
*isDone = ExprSingleResult;
/* Simply loop through until something NOT NULL is found */
foreach(arg, coalesceExpr->args)
{
ExprState *e = (ExprState *) lfirst(arg);
Datum value;
value = ExecEvalExpr(e, econtext, isNull, NULL);
if (!*isNull)
return value;
}
/* Else return NULL */
*isNull = true;
return (Datum) 0;
}
/* ----------------------------------------------------------------
* ExecEvalMinMax
* ----------------------------------------------------------------
*/
static Datum
ExecEvalMinMax(MinMaxExprState *minmaxExpr, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Datum result = (Datum) 0;
MinMaxOp op = ((MinMaxExpr *) minmaxExpr->xprstate.expr)->op;
FunctionCallInfoData locfcinfo;
ListCell *arg;
if (isDone)
*isDone = ExprSingleResult;
*isNull = true; /* until we get a result */
InitFunctionCallInfoData(locfcinfo, &minmaxExpr->cfunc, 2, NULL, NULL);
locfcinfo.argnull[0] = false;
locfcinfo.argnull[1] = false;
foreach(arg, minmaxExpr->args)
{
ExprState *e = (ExprState *) lfirst(arg);
Datum value;
bool valueIsNull;
int32 cmpresult;
value = ExecEvalExpr(e, econtext, &valueIsNull, NULL);
if (valueIsNull)
continue; /* ignore NULL inputs */
if (*isNull)
{
/* first nonnull input, adopt value */
result = value;
*isNull = false;
}
else
{
/* apply comparison function */
locfcinfo.arg[0] = result;
locfcinfo.arg[1] = value;
locfcinfo.isnull = false;
cmpresult = DatumGetInt32(FunctionCallInvoke(&locfcinfo));
if (locfcinfo.isnull) /* probably should not happen */
continue;
if (cmpresult > 0 && op == IS_LEAST)
result = value;
else if (cmpresult < 0 && op == IS_GREATEST)
result = value;
}
}
return result;
}
/* ----------------------------------------------------------------
* ExecEvalNullIf
*
* Note that this is *always* derived from the equals operator,
* but since we need special processing of the arguments
* we can not simply reuse ExecEvalOper() or ExecEvalFunc().
* ----------------------------------------------------------------
*/
static Datum
ExecEvalNullIf(FuncExprState *nullIfExpr,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Datum result;
FunctionCallInfoData fcinfo;
ExprDoneCond argDone;
List *argList;
if (isDone)
*isDone = ExprSingleResult;
/*
* Initialize function cache if first time through
*/
if (nullIfExpr->func.fn_oid == InvalidOid)
{
NullIfExpr *op = (NullIfExpr *) nullIfExpr->xprstate.expr;
init_fcache(op->opfuncid, nullIfExpr,
econtext->ecxt_per_query_memory, true);
Assert(!nullIfExpr->func.fn_retset);
}
/*
* extract info from nullIfExpr
*/
argList = nullIfExpr->args;
/* Need to prep callinfo structure */
InitFunctionCallInfoData(fcinfo, &(nullIfExpr->func), 0, NULL, NULL);
argDone = ExecEvalFuncArgs(&fcinfo, argList, econtext);
if (argDone != ExprSingleResult)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("NULLIF does not support set arguments")));
Assert(fcinfo.nargs == 2);
/* if either argument is NULL they can't be equal */
if (!fcinfo.argnull[0] && !fcinfo.argnull[1])
{
fcinfo.isnull = false;
result = FunctionCallInvoke(&fcinfo);
/* if the arguments are equal return null */
if (!fcinfo.isnull && DatumGetBool(result))
{
*isNull = true;
return (Datum) 0;
}
}
/* else return first argument */
*isNull = fcinfo.argnull[0];
return fcinfo.arg[0];
}
/* ----------------------------------------------------------------
* ExecEvalNullTest
*
* Evaluate a NullTest node.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalNullTest(NullTestState *nstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
NullTest *ntest = (NullTest *) nstate->xprstate.expr;
Datum result;
result = ExecEvalExpr(nstate->arg, econtext, isNull, isDone);
if (isDone && *isDone == ExprEndResult)
return result; /* nothing to check */
if (nstate->argisrow && !(*isNull))
{
HeapTupleHeader tuple;
Oid tupType;
int32 tupTypmod;
TupleDesc tupDesc;
HeapTupleData tmptup;
int att;
tuple = DatumGetHeapTupleHeader(result);
tupType = HeapTupleHeaderGetTypeId(tuple);
tupTypmod = HeapTupleHeaderGetTypMod(tuple);
/* Lookup tupdesc if first time through or if type changes */
tupDesc = get_cached_rowtype(tupType, tupTypmod,
&nstate->argdesc, econtext);
/*
* heap_attisnull needs a HeapTuple not a bare HeapTupleHeader.
*/
tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
tmptup.t_data = tuple;
for (att = 1; att <= tupDesc->natts; att++)
{
/* ignore dropped columns */
if (tupDesc->attrs[att - 1]->attisdropped)
continue;
if (heap_attisnull(&tmptup, att))
{
/* null field disproves IS NOT NULL */
if (ntest->nulltesttype == IS_NOT_NULL)
return BoolGetDatum(false);
}
else
{
/* non-null field disproves IS NULL */
if (ntest->nulltesttype == IS_NULL)
return BoolGetDatum(false);
}
}
return BoolGetDatum(true);
}
else
{
/* Simple scalar-argument case, or a null rowtype datum */
switch (ntest->nulltesttype)
{
case IS_NULL:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(true);
}
else
return BoolGetDatum(false);
case IS_NOT_NULL:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(false);
}
else
return BoolGetDatum(true);
default:
elog(ERROR, "unrecognized nulltesttype: %d",
(int) ntest->nulltesttype);
return (Datum) 0; /* keep compiler quiet */
}
}
}
/* ----------------------------------------------------------------
* ExecEvalBooleanTest
*
* Evaluate a BooleanTest node.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalBooleanTest(GenericExprState *bstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
BooleanTest *btest = (BooleanTest *) bstate->xprstate.expr;
Datum result;
result = ExecEvalExpr(bstate->arg, econtext, isNull, isDone);
if (isDone && *isDone == ExprEndResult)
return result; /* nothing to check */
switch (btest->booltesttype)
{
case IS_TRUE:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(false);
}
else if (DatumGetBool(result))
return BoolGetDatum(true);
else
return BoolGetDatum(false);
case IS_NOT_TRUE:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(true);
}
else if (DatumGetBool(result))
return BoolGetDatum(false);
else
return BoolGetDatum(true);
case IS_FALSE:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(false);
}
else if (DatumGetBool(result))
return BoolGetDatum(false);
else
return BoolGetDatum(true);
case IS_NOT_FALSE:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(true);
}
else if (DatumGetBool(result))
return BoolGetDatum(true);
else
return BoolGetDatum(false);
case IS_UNKNOWN:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(true);
}
else
return BoolGetDatum(false);
case IS_NOT_UNKNOWN:
if (*isNull)
{
*isNull = false;
return BoolGetDatum(false);
}
else
return BoolGetDatum(true);
default:
elog(ERROR, "unrecognized booltesttype: %d",
(int) btest->booltesttype);
return (Datum) 0; /* keep compiler quiet */
}
}
/*
* ExecEvalCoerceToDomain
*
* Test the provided data against the domain constraint(s). If the data
* passes the constraint specifications, pass it through (return the
* datum) otherwise throw an error.
*/
static Datum
ExecEvalCoerceToDomain(CoerceToDomainState *cstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
CoerceToDomain *ctest = (CoerceToDomain *) cstate->xprstate.expr;
Datum result;
ListCell *l;
result = ExecEvalExpr(cstate->arg, econtext, isNull, isDone);
if (isDone && *isDone == ExprEndResult)
return result; /* nothing to check */
foreach(l, cstate->constraints)
{
DomainConstraintState *con = (DomainConstraintState *) lfirst(l);
switch (con->constrainttype)
{
case DOM_CONSTRAINT_NOTNULL:
if (*isNull)
ereport(ERROR,
(errcode(ERRCODE_NOT_NULL_VIOLATION),
errmsg("domain %s does not allow null values",
format_type_be(ctest->resulttype))));
break;
case DOM_CONSTRAINT_CHECK:
{
Datum conResult;
bool conIsNull;
Datum save_datum;
bool save_isNull;
/*
* Set up value to be returned by CoerceToDomainValue
* nodes. We must save and restore prior setting of
* econtext's domainValue fields, in case this node is
* itself within a check expression for another domain.
*/
save_datum = econtext->domainValue_datum;
save_isNull = econtext->domainValue_isNull;
econtext->domainValue_datum = result;
econtext->domainValue_isNull = *isNull;
conResult = ExecEvalExpr(con->check_expr,
econtext, &conIsNull, NULL);
if (!conIsNull &&
!DatumGetBool(conResult))
ereport(ERROR,
(errcode(ERRCODE_CHECK_VIOLATION),
errmsg("value for domain %s violates check constraint \"%s\"",
format_type_be(ctest->resulttype),
con->name)));
econtext->domainValue_datum = save_datum;
econtext->domainValue_isNull = save_isNull;
break;
}
default:
elog(ERROR, "unrecognized constraint type: %d",
(int) con->constrainttype);
break;
}
}
/* If all has gone well (constraints did not fail) return the datum */
return result;
}
/*
* ExecEvalCoerceToDomainValue
*
* Return the value stored by CoerceToDomain.
*/
static Datum
ExecEvalCoerceToDomainValue(ExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
if (isDone)
*isDone = ExprSingleResult;
*isNull = econtext->domainValue_isNull;
return econtext->domainValue_datum;
}
/*
* ExecEvalPercentileExpr
*
* Returns a Datum whose value is the value of the precomputed
* the value at the percentile found in the given expression context.
* Actually, this is almost same as ExecEvalAggref. The main reason
* to add this is because we don't change the catalog at the moment.
* This will be cleaned when we can change the catalog.
*/
static Datum
ExecEvalPercentileExpr(PercentileExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
if (isDone)
*isDone = ExprSingleResult;
if (econtext->ecxt_aggvalues == NULL) /* safety check */
elog(ERROR, "no aggregates in this expression context");
*isNull = econtext->ecxt_aggnulls[exprstate->aggno];
return econtext->ecxt_aggvalues[exprstate->aggno];
}
/* ----------------------------------------------------------------
* ExecEvalFieldSelect
*
* Evaluate a FieldSelect node.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalFieldSelect(FieldSelectState *fstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
FieldSelect *fselect = (FieldSelect *) fstate->xprstate.expr;
AttrNumber fieldnum = fselect->fieldnum;
Datum result;
Datum tupDatum;
HeapTupleHeader tuple;
Oid tupType;
int32 tupTypmod;
TupleDesc tupDesc;
Form_pg_attribute attr;
HeapTupleData tmptup;
tupDatum = ExecEvalExpr(fstate->arg, econtext, isNull, isDone);
/* this test covers the isDone exception too: */
if (*isNull)
return tupDatum;
tuple = DatumGetHeapTupleHeader(tupDatum);
tupType = HeapTupleHeaderGetTypeId(tuple);
tupTypmod = HeapTupleHeaderGetTypMod(tuple);
/* Lookup tupdesc if first time through or if type changes */
tupDesc = get_cached_rowtype(tupType, tupTypmod,
&fstate->argdesc, econtext);
/* Check for dropped column, and force a NULL result if so */
if (fieldnum <= 0 ||
fieldnum > tupDesc->natts) /* should never happen */
elog(ERROR, "attribute number %d exceeds number of columns %d",
fieldnum, tupDesc->natts);
attr = tupDesc->attrs[fieldnum - 1];
if (attr->attisdropped)
{
*isNull = true;
return (Datum) 0;
}
/* Check for type mismatch --- possible after ALTER COLUMN TYPE? */
/* As in ExecEvalVar, we should but can't check typmod */
if (fselect->resulttype != attr->atttypid)
ereport(ERROR,
(errmsg("attribute %d has wrong type", fieldnum),
errdetail("Table has type %s, but query expects %s.",
format_type_be(attr->atttypid),
format_type_be(fselect->resulttype))));
/*
* heap_getattr needs a HeapTuple not a bare HeapTupleHeader. We set all
* the fields in the struct just in case user tries to inspect system
* columns.
*/
tmptup.t_len = HeapTupleHeaderGetDatumLength(tuple);
ItemPointerSetInvalid(&(tmptup.t_self));
tmptup.t_data = tuple;
result = heap_getattr(&tmptup,
fieldnum,
tupDesc,
isNull);
return result;
}
/* ----------------------------------------------------------------
* ExecEvalFieldStore
*
* Evaluate a FieldStore node.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalFieldStore(FieldStoreState *fstate,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
FieldStore *fstore = (FieldStore *) fstate->xprstate.expr;
HeapTuple tuple;
Datum tupDatum;
TupleDesc tupDesc;
Datum *values;
bool *isnull;
Datum save_datum;
bool save_isNull;
ListCell *l1,
*l2;
tupDatum = ExecEvalExpr(fstate->arg, econtext, isNull, isDone);
if (isDone && *isDone == ExprEndResult)
return tupDatum;
/* Lookup tupdesc if first time through or after rescan */
tupDesc = get_cached_rowtype(fstore->resulttype, -1,
&fstate->argdesc, econtext);
/* Allocate workspace */
values = (Datum *) palloc(tupDesc->natts * sizeof(Datum));
isnull = (bool *) palloc(tupDesc->natts * sizeof(bool));
if (!*isNull)
{
/*
* heap_deform_tuple needs a HeapTuple not a bare HeapTupleHeader. We
* set all the fields in the struct just in case.
*/
HeapTupleHeader tuphdr;
HeapTupleData tmptup;
tuphdr = DatumGetHeapTupleHeader(tupDatum);
tmptup.t_len = HeapTupleHeaderGetDatumLength(tuphdr);
ItemPointerSetInvalid(&(tmptup.t_self));
tmptup.t_data = tuphdr;
heap_deform_tuple(&tmptup, tupDesc, values, isnull);
}
else
{
/* Convert null input tuple into an all-nulls row */
MemSetAligned(isnull, true, tupDesc->natts * sizeof(bool));
}
/* Result is never null */
*isNull = false;
save_datum = econtext->caseValue_datum;
save_isNull = econtext->caseValue_isNull;
forboth(l1, fstate->newvals, l2, fstore->fieldnums)
{
ExprState *newval = (ExprState *) lfirst(l1);
AttrNumber fieldnum = lfirst_int(l2);
Assert(fieldnum > 0 && fieldnum <= tupDesc->natts);
/*
* Use the CaseTestExpr mechanism to pass down the old value of the
* field being replaced; this is useful in case we have a nested field
* update situation. It's safe to reuse the CASE mechanism because
* there cannot be a CASE between here and where the value would be
* needed.
*/
econtext->caseValue_datum = values[fieldnum - 1];
econtext->caseValue_isNull = isnull[fieldnum - 1];
values[fieldnum - 1] = ExecEvalExpr(newval,
econtext,
&isnull[fieldnum - 1],
NULL);
}
econtext->caseValue_datum = save_datum;
econtext->caseValue_isNull = save_isNull;
tuple = heap_form_tuple(tupDesc, values, isnull);
pfree(values);
pfree(isnull);
return HeapTupleGetDatum(tuple);
}
/* ----------------------------------------------------------------
* ExecEvalRelabelType
*
* Evaluate a RelabelType node.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalRelabelType(GenericExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
return ExecEvalExpr(exprstate->arg, econtext, isNull, isDone);
}
/* ----------------------------------------------------------------
* ExecEvalPartOidExpr
*
* Evaluate a PartOidExpr
* ----------------------------------------------------------------
*/
static Datum ExecEvalPartOidExpr(PartOidExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Assert(NULL != exprstate);
Assert(NULL != isNull);
if (isDone)
{
*isDone = ExprSingleResult;
}
PartitionConstraints *constraint = *exprstate->acceptedLeafPart;
if (NULL != constraint)
{
*isNull = false;
return UInt32GetDatum(constraint->pRule->parchildrelid);
}
*isNull = true;
return PointerGetDatum(NULL);
}
/* ----------------------------------------------------------------
* ExecEvalPartDefaultExpr
*
* Evaluate a PartDefaultExpr
* ----------------------------------------------------------------
*/
static Datum ExecEvalPartDefaultExpr(PartDefaultExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Assert(NULL != exprstate);
Assert(NULL != isNull);
PartDefaultExpr *expr = (PartDefaultExpr *) exprstate->xprstate.expr;
PartitionConstraints *constraint = (PartitionConstraints *) exprstate->levelPartConstraints[expr->level];
Assert (NULL != constraint);
if (isDone)
{
*isDone = ExprSingleResult;
}
*isNull = false;
return BoolGetDatum(constraint->defaultPart);
}
/* ----------------------------------------------------------------
* ExecEvalPartBoundExpr
*
* Evaluate a PartBoundExpr
* ----------------------------------------------------------------
*/
static Datum ExecEvalPartBoundExpr(PartBoundExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Assert(NULL != exprstate);
Assert(NULL != isNull);
PartBoundExpr *expr = (PartBoundExpr *) exprstate->xprstate.expr;
PartitionConstraints *constraint = (PartitionConstraints *) exprstate->levelPartConstraints[expr->level];
Assert (NULL != constraint);
Const *con = constraint->upperBound;
if (expr->isLowerBound)
{
con = constraint->lowerBound;
}
if (isDone)
{
*isDone = ExprSingleResult;
}
if (NULL != con)
{
*isNull = con->constisnull;
return con->constvalue;
}
/* return NULL if no upper bound or lower bound exists */
*isNull = true;
return PointerGetDatum(NULL);
}
/* ----------------------------------------------------------------
* ExecEvalPartBoundInclusionExpr
*
* Evaluate a PartBoundInclusionExpr
* ----------------------------------------------------------------
*/
static Datum ExecEvalPartBoundInclusionExpr(PartBoundInclusionExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Assert(NULL != exprstate);
Assert(NULL != isNull);
PartBoundInclusionExpr *expr = (PartBoundInclusionExpr *) exprstate->xprstate.expr;
PartitionConstraints *constraint = (PartitionConstraints *) exprstate->levelPartConstraints[expr->level];
Assert (NULL != constraint);
if (isDone)
{
*isDone = ExprSingleResult;
}
*isNull = false;
if (expr->isLowerBound)
{
return BoolGetDatum(constraint->lbInclusive);
}
return BoolGetDatum(constraint->upInclusive);
}
/* ----------------------------------------------------------------
* ExecEvalPartBoundOpenExpr
*
* Evaluate a PartBoundOpenExpr
* ----------------------------------------------------------------
*/
static Datum ExecEvalPartBoundOpenExpr(PartBoundOpenExprState *exprstate,
ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
Assert(NULL != exprstate);
Assert(NULL != isNull);
PartBoundOpenExpr *expr = (PartBoundOpenExpr *) exprstate->xprstate.expr;
PartitionConstraints *constraint = (PartitionConstraints *) exprstate->levelPartConstraints[expr->level];
Assert (NULL != constraint);
if (isDone)
{
*isDone = ExprSingleResult;
}
*isNull = false;
if (expr->isLowerBound)
{
return BoolGetDatum(constraint->lbOpen);
}
return BoolGetDatum(constraint->upOpen);
}
/* ----------------------------------------------------------------
* ExecEvalCurrentOfExpr
*
* Evaluate CURRENT OF
*
* Constant folding must have bound observed values of
* gp_segment_id, ctid, and tableoid into the CurrentOfExpr for
* this function's consumption.
* ----------------------------------------------------------------
*/
static Datum
ExecEvalCurrentOfExpr(ExprState *exprstate, ExprContext *econtext,
bool *isNull, ExprDoneCond *isDone)
{
CurrentOfExpr *cexpr = (CurrentOfExpr *) exprstate->expr;
bool result = false;
TupleTableSlot *slot;
if (isDone)
*isDone = ExprSingleResult;
*isNull = false;
Assert(cexpr->cvarno != INNER);
Assert(cexpr->cvarno != OUTER);
slot = econtext->ecxt_scantuple;
Assert(!TupIsNull(slot));
/*
* The currently scanned tuple must use heap storage for it to possibly
* satisfy the CURRENT OF qualification. Despite our grand attempts during
* parsing and constant folding to demand heap storage, the scanning of an
* AO part is still possible, when the current row uses heap storage, but the
* CURRENT OF invocation uses an unpruned scan of the partition table, yielding
* tuples from the AO parts before the desired heap tuple.
*/
if (TupHasHeapTuple(slot))
{
if (cexpr->gp_segment_id == GetQEIndex() &&
ItemPointerEquals(&cexpr->ctid, slot_get_ctid(slot)))
{
/*
* If tableoid is InvalidOid, this implies that constant folding had
* had determined tableoid was not necessary in uniquely identifying a tuple.
* Otherwise, the given tuple's tableoid must match the CURRENT OF tableoid.
*/
if (!OidIsValid(cexpr->tableoid) ||
cexpr->tableoid == slot->tts_tableOid)
{
result = true;
}
}
}
return BoolGetDatum(result);
}
/*
* ExecEvalExprSwitchContext
*
* Same as ExecEvalExpr, but get into the right allocation context explicitly.
*/
Datum
ExecEvalExprSwitchContext(ExprState *expression,
ExprContext *econtext,
bool *isNull,
ExprDoneCond *isDone)
{
Datum retDatum;
MemoryContext oldContext;
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
retDatum = ExecEvalExpr(expression, econtext, isNull, isDone);
MemoryContextSwitchTo(oldContext);
return retDatum;
}
/*
* ExecInitExpr: prepare an expression tree for execution
*
* This function builds and returns an ExprState tree paralleling the given
* Expr node tree. The ExprState tree can then be handed to ExecEvalExpr
* for execution. Because the Expr tree itself is read-only as far as
* ExecInitExpr and ExecEvalExpr are concerned, several different executions
* of the same plan tree can occur concurrently.
*
* This must be called in a memory context that will last as long as repeated
* executions of the expression are needed. Typically the context will be
* the same as the per-query context of the associated ExprContext.
*
* Any Aggref and SubPlan nodes found in the tree are added to the lists
* of such nodes held by the parent PlanState. Otherwise, we do very little
* initialization here other than building the state-node tree. Any nontrivial
* work associated with initializing runtime info for a node should happen
* during the first actual evaluation of that node. (This policy lets us
* avoid work if the node is never actually evaluated.)
*
* Note: there is no ExecEndExpr function; we assume that any resource
* cleanup needed will be handled by just releasing the memory context
* in which the state tree is built. Functions that require additional
* cleanup work can register a shutdown callback in the ExprContext.
*
* 'node' is the root of the expression tree to examine
* 'parent' is the PlanState node that owns the expression.
*
* 'parent' may be NULL if we are preparing an expression that is not
* associated with a plan tree. (If so, it can't have aggs or subplans.)
* This case should usually come through ExecPrepareExpr, not directly here.
*/
ExprState *
ExecInitExpr(Expr *node, PlanState *parent)
{
ExprState *state;
if (node == NULL)
return NULL;
/* Guard against stack overflow due to overly complex expressions */
check_stack_depth();
switch (nodeTag(node))
{
case T_Var:
state = (ExprState *) makeNode(ExprState);
state->evalfunc = ExecEvalVar;
break;
case T_Const:
state = (ExprState *) makeNode(ExprState);
state->evalfunc = ExecEvalConst;
break;
case T_Param:
state = (ExprState *) makeNode(ExprState);
state->evalfunc = ExecEvalParam;
break;
case T_CoerceToDomainValue:
state = (ExprState *) makeNode(ExprState);
state->evalfunc = ExecEvalCoerceToDomainValue;
break;
case T_CaseTestExpr:
state = (ExprState *) makeNode(ExprState);
state->evalfunc = ExecEvalCaseTestExpr;
break;
case T_Aggref:
{
Aggref *aggref = (Aggref *) node;
AggrefExprState *astate = makeNode(AggrefExprState);
astate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalAggref;
if (parent && IsA(parent, AggState))
{
AggState *aggstate = (AggState *) parent;
int naggs;
aggstate->aggs = lcons(astate, aggstate->aggs);
naggs = ++aggstate->numaggs;
/*
* Combine the argument and sortkey expressions into a single list
* along with the corresponding sortkey clauses, if any.
* The code here is a bit different from postgres, because
* GPDB does different things in parser for the ordered aggregate;
* We don't construct target list in parser but do it here.
* These lists are referenced in ExecInitAgg()
*/
astate->inputTargets =
combineAggrefArgs(aggref, &astate->inputSortClauses);
astate->args = (List *) ExecInitExpr((Expr *) astate->inputTargets,
parent);
/*
* Complain if the aggregate's arguments contain any
* aggregates; nested agg functions are semantically
* nonsensical. (This should have been caught earlier,
* but we defend against it here anyway.)
*/
if (naggs != aggstate->numaggs)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls may not be nested")));
}
else
{
/* planner messed up */
elog(ERROR, "aggref found in non-Agg plan node");
}
state = (ExprState *) astate;
}
break;
case T_GroupingFunc:
{
GroupingFunc *gf = (GroupingFunc *)node;
GroupingFuncExprState *gstate = makeNode(GroupingFuncExprState);
gstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalGroupingFunc;
gstate->args = gf->args;
gstate->ngrpcols = gf->ngrpcols;
state = (ExprState *) gstate;
}
break;
case T_Grouping:
{
ExprState *gstate = makeNode(ExprState);
gstate->evalfunc = (ExprStateEvalFunc) ExecEvalGrouping;
state = (ExprState *) gstate;
}
break;
case T_GroupId:
{
ExprState *gstate = makeNode(ExprState);
gstate->evalfunc = (ExprStateEvalFunc) ExecEvalGroupId;
state = (ExprState *) gstate;
}
break;
case T_WindowRef:
{
WindowRef *windowref = (WindowRef *)node;
WindowRefExprState *wrstate = makeNode(WindowRefExprState);
int numrefs;
WindowState *winstate = (WindowState *) parent;
wrstate->xprstate.evalfunc =
(ExprStateEvalFunc) ExecEvalWindowRef;
Insist(parent && IsA(parent, WindowState));
winstate->wrxstates = lcons(wrstate, winstate->wrxstates);
numrefs = list_length(winstate->wrxstates);
wrstate->args = (List *) ExecInitExpr((Expr *) windowref->args,
parent);
/*
* Nested window functions are invalid and should not have
* reached this point in processing.
*/
if (numrefs != list_length(winstate->wrxstates))
elog(ERRCODE_INTERNAL_ERROR, "nested windowref calls "
"found in Window plan node");
state = (ExprState *) wrstate;
}
break;
case T_ArrayRef:
{
ArrayRef *aref = (ArrayRef *) node;
ArrayRefExprState *astate = makeNode(ArrayRefExprState);
astate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalArrayRef;
astate->refupperindexpr = (List *)
ExecInitExpr((Expr *) aref->refupperindexpr, parent);
astate->reflowerindexpr = (List *)
ExecInitExpr((Expr *) aref->reflowerindexpr, parent);
astate->refexpr = ExecInitExpr(aref->refexpr, parent);
astate->refassgnexpr = ExecInitExpr(aref->refassgnexpr,
parent);
/* do one-time catalog lookups for type info */
astate->refattrlength = get_typlen(aref->refarraytype);
get_typlenbyvalalign(aref->refelemtype,
&astate->refelemlength,
&astate->refelembyval,
&astate->refelemalign);
state = (ExprState *) astate;
}
break;
case T_FuncExpr:
{
FuncExpr *funcexpr = (FuncExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalFunc;
fstate->args = (List *)
ExecInitExpr((Expr *) funcexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
FastPathStrict2Func(funcexpr->funcid, fstate);
state = (ExprState *) fstate;
}
break;
case T_OpExpr:
{
OpExpr *opexpr = (OpExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalOper;
fstate->args = (List *)
ExecInitExpr((Expr *) opexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
FastPathStrict2Func(opexpr->opfuncid, fstate);
state = (ExprState *) fstate;
}
break;
case T_DistinctExpr:
{
DistinctExpr *distinctexpr = (DistinctExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalDistinct;
fstate->args = (List *)
ExecInitExpr((Expr *) distinctexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
case T_ScalarArrayOpExpr:
{
ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
ScalarArrayOpExprState *sstate = makeNode(ScalarArrayOpExprState);
sstate->fxprstate.xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalScalarArrayOp;
sstate->fxprstate.args = (List *)
ExecInitExpr((Expr *) opexpr->args, parent);
sstate->fxprstate.func.fn_oid = InvalidOid; /* not initialized */
sstate->element_type = InvalidOid; /* ditto */
FastPathScalarArrayOp(opexpr, sstate);
state = (ExprState *) sstate;
}
break;
case T_BoolExpr:
{
BoolExpr *boolexpr = (BoolExpr *) node;
BoolExprState *bstate = makeNode(BoolExprState);
switch (boolexpr->boolop)
{
case AND_EXPR:
bstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalAnd;
break;
case OR_EXPR:
bstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalOr;
break;
case NOT_EXPR:
bstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalNot;
break;
default:
elog(ERROR, "unrecognized boolop: %d",
(int) boolexpr->boolop);
break;
}
bstate->args = (List *)
ExecInitExpr((Expr *) boolexpr->args, parent);
state = (ExprState *) bstate;
}
break;
case T_SubPlan:
{
/* Keep this in sync with ExecInitExprInitPlan, below */
SubPlan *subplan = (SubPlan *) node;
SubPlanState *sstate = makeNode(SubPlanState);
sstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecSubPlan;
if (!parent)
elog(ERROR, "SubPlan found with no parent plan");
/*
* Here we just add the SubPlanState nodes to parent->subPlan.
* The subplans will be initialized later.
*/
parent->subPlan = lcons(sstate, parent->subPlan);
sstate->sub_estate = NULL;
sstate->planstate = NULL;
sstate->testexpr =
ExecInitExpr((Expr *) subplan->testexpr, parent);
sstate->args = (List *)
ExecInitExpr((Expr *) subplan->args, parent);
state = (ExprState *) sstate;
}
break;
case T_FieldSelect:
{
FieldSelect *fselect = (FieldSelect *) node;
FieldSelectState *fstate = makeNode(FieldSelectState);
fstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalFieldSelect;
fstate->arg = ExecInitExpr(fselect->arg, parent);
fstate->argdesc = NULL;
state = (ExprState *) fstate;
}
break;
case T_FieldStore:
{
FieldStore *fstore = (FieldStore *) node;
FieldStoreState *fstate = makeNode(FieldStoreState);
fstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalFieldStore;
fstate->arg = ExecInitExpr(fstore->arg, parent);
fstate->newvals = (List *) ExecInitExpr((Expr *) fstore->newvals, parent);
fstate->argdesc = NULL;
state = (ExprState *) fstate;
}
break;
case T_RelabelType:
{
RelabelType *relabel = (RelabelType *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalRelabelType;
gstate->arg = ExecInitExpr(relabel->arg, parent);
state = (ExprState *) gstate;
}
break;
case T_ConvertRowtypeExpr:
{
ConvertRowtypeExpr *convert = (ConvertRowtypeExpr *) node;
ConvertRowtypeExprState *cstate = makeNode(ConvertRowtypeExprState);
cstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalConvertRowtype;
cstate->arg = ExecInitExpr(convert->arg, parent);
state = (ExprState *) cstate;
}
break;
case T_CaseExpr:
{
CaseExpr *caseexpr = (CaseExpr *) node;
CaseExprState *cstate = makeNode(CaseExprState);
List *outlist = NIL;
ListCell *l;
cstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalCase;
cstate->arg = ExecInitExpr(caseexpr->arg, parent);
foreach(l, caseexpr->args)
{
CaseWhen *when = (CaseWhen *) lfirst(l);
CaseWhenState *wstate = makeNode(CaseWhenState);
Assert(IsA(when, CaseWhen));
wstate->xprstate.evalfunc = NULL; /* not used */
wstate->xprstate.expr = (Expr *) when;
wstate->expr = ExecInitExpr(when->expr, parent);
wstate->result = ExecInitExpr(when->result, parent);
outlist = lappend(outlist, wstate);
}
cstate->args = outlist;
cstate->defresult = ExecInitExpr(caseexpr->defresult, parent);
state = (ExprState *) cstate;
}
break;
case T_ArrayExpr:
{
ArrayExpr *arrayexpr = (ArrayExpr *) node;
ArrayExprState *astate = makeNode(ArrayExprState);
List *outlist = NIL;
ListCell *l;
astate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalArray;
foreach(l, arrayexpr->elements)
{
Expr *e = (Expr *) lfirst(l);
ExprState *estate;
estate = ExecInitExpr(e, parent);
outlist = lappend(outlist, estate);
}
astate->elements = outlist;
/* do one-time catalog lookup for type info */
get_typlenbyvalalign(arrayexpr->element_typeid,
&astate->elemlength,
&astate->elembyval,
&astate->elemalign);
state = (ExprState *) astate;
}
break;
case T_RowExpr:
{
RowExpr *rowexpr = (RowExpr *) node;
RowExprState *rstate = makeNode(RowExprState);
Form_pg_attribute *attrs;
List *outlist = NIL;
ListCell *l;
int i;
rstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalRow;
/* Build tupdesc to describe result tuples */
if (rowexpr->row_typeid == RECORDOID)
{
/* generic record, use runtime type assignment */
rstate->tupdesc = ExecTypeFromExprList(rowexpr->args);
BlessTupleDesc(rstate->tupdesc);
/* we won't need to redo this at runtime */
}
else
{
/* it's been cast to a named type, use that */
rstate->tupdesc = lookup_rowtype_tupdesc_copy(rowexpr->row_typeid, -1);
}
/* Set up evaluation, skipping any deleted columns */
Assert(list_length(rowexpr->args) <= rstate->tupdesc->natts);
attrs = rstate->tupdesc->attrs;
i = 0;
foreach(l, rowexpr->args)
{
Expr *e = (Expr *) lfirst(l);
ExprState *estate;
if (!attrs[i]->attisdropped)
{
/*
* Guard against ALTER COLUMN TYPE on rowtype since
* the RowExpr was created. XXX should we check
* typmod too? Not sure we can be sure it'll be the
* same.
*/
if (exprType((Node *) e) != attrs[i]->atttypid)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("ROW() column has type %s instead of type %s",
format_type_be(exprType((Node *) e)),
format_type_be(attrs[i]->atttypid))));
}
else
{
/*
* Ignore original expression and insert a NULL. We
* don't really care what type of NULL it is, so
* always make an int4 NULL.
*/
e = (Expr *) makeNullConst(INT4OID, -1);
}
estate = ExecInitExpr(e, parent);
outlist = lappend(outlist, estate);
i++;
}
rstate->args = outlist;
state = (ExprState *) rstate;
}
break;
case T_RowCompareExpr:
{
RowCompareExpr *rcexpr = (RowCompareExpr *) node;
RowCompareExprState *rstate = makeNode(RowCompareExprState);
int nopers = list_length(rcexpr->opnos);
List *outlist;
ListCell *l;
ListCell *l2;
int i;
rstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalRowCompare;
Assert(list_length(rcexpr->largs) == nopers);
outlist = NIL;
foreach(l, rcexpr->largs)
{
Expr *e = (Expr *) lfirst(l);
ExprState *estate;
estate = ExecInitExpr(e, parent);
outlist = lappend(outlist, estate);
}
rstate->largs = outlist;
Assert(list_length(rcexpr->rargs) == nopers);
outlist = NIL;
foreach(l, rcexpr->rargs)
{
Expr *e = (Expr *) lfirst(l);
ExprState *estate;
estate = ExecInitExpr(e, parent);
outlist = lappend(outlist, estate);
}
rstate->rargs = outlist;
Assert(list_length(rcexpr->opclasses) == nopers);
rstate->funcs = (FmgrInfo *) palloc(nopers * sizeof(FmgrInfo));
i = 0;
forboth(l, rcexpr->opnos, l2, rcexpr->opclasses)
{
Oid opno = lfirst_oid(l);
Oid opclass = lfirst_oid(l2);
int strategy;
Oid subtype;
bool recheck;
Oid proc;
get_op_opclass_properties(opno, opclass,
&strategy, &subtype, &recheck);
proc = get_opclass_proc(opclass, subtype, BTORDER_PROC);
/*
* If we enforced permissions checks on index support
* functions, we'd need to make a check here. But the
* index support machinery doesn't do that, and neither
* does this code.
*/
fmgr_info(proc, &(rstate->funcs[i]));
i++;
}
state = (ExprState *) rstate;
}
break;
case T_TableValueExpr:
state = (ExprState *) makeNode(ExprState);
state->evalfunc = ExecEvalTableValue;
break;
case T_CoalesceExpr:
{
CoalesceExpr *coalesceexpr = (CoalesceExpr *) node;
CoalesceExprState *cstate = makeNode(CoalesceExprState);
List *outlist = NIL;
ListCell *l;
cstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalCoalesce;
foreach(l, coalesceexpr->args)
{
Expr *e = (Expr *) lfirst(l);
ExprState *estate;
estate = ExecInitExpr(e, parent);
outlist = lappend(outlist, estate);
}
cstate->args = outlist;
state = (ExprState *) cstate;
}
break;
case T_MinMaxExpr:
{
MinMaxExpr *minmaxexpr = (MinMaxExpr *) node;
MinMaxExprState *mstate = makeNode(MinMaxExprState);
List *outlist = NIL;
ListCell *l;
TypeCacheEntry *typentry;
mstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalMinMax;
foreach(l, minmaxexpr->args)
{
Expr *e = (Expr *) lfirst(l);
ExprState *estate;
estate = ExecInitExpr(e, parent);
outlist = lappend(outlist, estate);
}
mstate->args = outlist;
/* Look up the btree comparison function for the datatype */
typentry = lookup_type_cache(minmaxexpr->minmaxtype,
TYPECACHE_CMP_PROC);
if (!OidIsValid(typentry->cmp_proc))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not identify a comparison function for type %s",
format_type_be(minmaxexpr->minmaxtype))));
/*
* If we enforced permissions checks on index support
* functions, we'd need to make a check here. But the index
* support machinery doesn't do that, and neither does this
* code.
*/
fmgr_info(typentry->cmp_proc, &(mstate->cfunc));
state = (ExprState *) mstate;
}
break;
case T_NullIfExpr:
{
NullIfExpr *nullifexpr = (NullIfExpr *) node;
FuncExprState *fstate = makeNode(FuncExprState);
fstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalNullIf;
fstate->args = (List *)
ExecInitExpr((Expr *) nullifexpr->args, parent);
fstate->func.fn_oid = InvalidOid; /* not initialized */
state = (ExprState *) fstate;
}
break;
case T_NullTest:
{
NullTest *ntest = (NullTest *) node;
NullTestState *nstate = makeNode(NullTestState);
nstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalNullTest;
nstate->arg = ExecInitExpr(ntest->arg, parent);
nstate->argisrow = type_is_rowtype(exprType((Node *) ntest->arg));
nstate->argdesc = NULL;
state = (ExprState *) nstate;
}
break;
case T_BooleanTest:
{
BooleanTest *btest = (BooleanTest *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalBooleanTest;
gstate->arg = ExecInitExpr(btest->arg, parent);
state = (ExprState *) gstate;
}
break;
case T_CoerceToDomain:
{
CoerceToDomain *ctest = (CoerceToDomain *) node;
CoerceToDomainState *cstate = makeNode(CoerceToDomainState);
cstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalCoerceToDomain;
cstate->arg = ExecInitExpr(ctest->arg, parent);
cstate->constraints = GetDomainConstraints(ctest->resulttype);
state = (ExprState *) cstate;
}
break;
case T_CurrentOfExpr:
state = (ExprState *) makeNode(ExprState);
state->evalfunc = ExecEvalCurrentOfExpr;
break;
case T_PercentileExpr:
{
PercentileExpr *p = (PercentileExpr *) node;
PercentileExprState *pstate = makeNode(PercentileExprState);
AggState *aggstate = (AggState *) parent;
int naggs;
if (!IsA(aggstate, AggState))
elog(ERROR, "PercentileExpr found in non-Agg plan node: %d",
(int) nodeTag(parent));
aggstate->percs = lcons(pstate, aggstate->percs);
naggs = ++aggstate->numaggs;
pstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalPercentileExpr;
/* This is to build TupleDesc. */
pstate->tlist = combinePercentileArgs(p);
/* This is to build ProjectionInfo. */
pstate->args = (List *) ExecInitExpr((Expr *) pstate->tlist, parent);
/*
* Complain if the aggregate's arguments contain any
* aggregates; nested agg functions are semantically
* nonsensical. (This should have been caught earlier,
* but we defend against it here anyway.)
*/
if (naggs != aggstate->numaggs)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls may not be nested")));
state = (ExprState *) pstate;
}
break;
case T_TargetEntry:
{
TargetEntry *tle = (TargetEntry *) node;
GenericExprState *gstate = makeNode(GenericExprState);
gstate->xprstate.evalfunc = NULL; /* not used */
gstate->arg = ExecInitExpr(tle->expr, parent);
state = (ExprState *) gstate;
}
break;
case T_List:
{
List *outlist = NIL;
ListCell *l;
foreach(l, (List *) node)
{
outlist = lappend(outlist,
ExecInitExpr((Expr *) lfirst(l),
parent));
}
/* Don't fall through to the "common" code below */
return (ExprState *) outlist;
}
case T_PartOidExpr:
{
Insist(parent && IsA(parent, PartitionSelectorState));
PartitionSelectorState *psstate = (PartitionSelectorState *) parent;
PartOidExprState *exprstate = makeNode(PartOidExprState);
#if USE_ASSERT_CHECKING
PartOidExpr *expr = (PartOidExpr *) node;
Assert (expr->level == ((PartitionSelector *) psstate->ps.plan)->nLevels - 1 &&
"PartOidExpr can only refer to leaf level.");
#endif
exprstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalPartOidExpr;
/*
* exprstate->acceptedLeafPart is a double pointer, pointing
* to the field in the PartitionSelector state that will
* be holding the actual PartitionConstraints value (GPSQL-2956)
* computed for each tuple.
*/
exprstate->acceptedLeafPart = psstate->acceptedLeafPart;
state = (ExprState *) exprstate;
}
break;
case T_PartDefaultExpr:
{
Insist(parent && IsA(parent, PartitionSelectorState));
PartitionSelectorState *psstate = (PartitionSelectorState *) parent;
PartDefaultExprState *exprstate = makeNode(PartDefaultExprState);
exprstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalPartDefaultExpr;
exprstate->levelPartConstraints = psstate->levelPartConstraints;
state = (ExprState *) exprstate;
}
break;
case T_PartBoundExpr:
{
Insist(parent && IsA(parent, PartitionSelectorState));
PartitionSelectorState *psstate = (PartitionSelectorState *) parent;
PartBoundExprState *exprstate = makeNode(PartBoundExprState);
exprstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalPartBoundExpr;
exprstate->levelPartConstraints = psstate->levelPartConstraints;
state = (ExprState *) exprstate;
}
break;
case T_PartBoundInclusionExpr:
{
Insist(parent && IsA(parent, PartitionSelectorState));
PartitionSelectorState *psstate = (PartitionSelectorState *) parent;
PartBoundInclusionExprState *exprstate = makeNode(PartBoundInclusionExprState);
exprstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalPartBoundInclusionExpr;
exprstate->levelPartConstraints = psstate->levelPartConstraints;
state = (ExprState *) exprstate;
}
break;
case T_PartBoundOpenExpr:
{
Insist(parent && IsA(parent, PartitionSelectorState));
PartitionSelectorState *psstate = (PartitionSelectorState *) parent;
PartBoundOpenExprState *exprstate = makeNode(PartBoundOpenExprState);
exprstate->xprstate.evalfunc = (ExprStateEvalFunc) ExecEvalPartBoundOpenExpr;
exprstate->levelPartConstraints = psstate->levelPartConstraints;
state = (ExprState *) exprstate;
}
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(node));
state = NULL; /* keep compiler quiet */
break;
}
/* Common code for all state-node types */
state->expr = node;
return state;
}
/*
* ExecInitExprInitPlan --- initialize a subplan expr that's being handled
* as an InitPlan. This is identical to ExecInitExpr's handling of a regular
* subplan expr, except we do NOT want to add the node to the parent's
* subplan list.
*/
SubPlanState *
ExecInitExprInitPlan(SubPlan *node, PlanState *parent)
{
SubPlanState *sstate = makeNode(SubPlanState);
/* The subplan's state will be initialized later */
sstate->sub_estate = NULL;
sstate->planstate = NULL;
if (parent != NULL)
{
sstate->testexpr = ExecInitExpr((Expr *) node->testexpr, parent);
sstate->args = (List *) ExecInitExpr((Expr *) node->args, parent);
}
else
{
sstate->testexpr = NULL;
sstate->args = NULL;
}
sstate->xprstate.expr = (Expr *) node;
return sstate;
}
/*
* ExecPrepareExpr --- initialize for expression execution outside a normal
* Plan tree context.
*
* This differs from ExecInitExpr in that we don't assume the caller is
* already running in the EState's per-query context. Also, we apply
* fix_opfuncids() to the passed expression tree to be sure it is ready
* to run. (In ordinary Plan trees the planner will have fixed opfuncids,
* but callers outside the executor will not have done this.)
*/
ExprState *
ExecPrepareExpr(Expr *node, EState *estate)
{
ExprState *result;
MemoryContext oldcontext;
fix_opfuncids((Node *) node);
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
result = ExecInitExpr(node, NULL);
MemoryContextSwitchTo(oldcontext);
return result;
}
/* ----------------------------------------------------------------
* ExecQual / ExecTargetList / ExecProject
* ----------------------------------------------------------------
*/
/* ----------------------------------------------------------------
* ExecQual
*
* Evaluates a conjunctive boolean expression (qual list) and
* returns true iff none of the subexpressions are false.
* (We also return true if the list is empty.)
*
* If some of the subexpressions yield NULL but none yield FALSE,
* then the result of the conjunction is NULL (ie, unknown)
* according to three-valued boolean logic. In this case,
* we return the value specified by the "resultForNull" parameter.
*
* Callers evaluating WHERE clauses should pass resultForNull=FALSE,
* since SQL specifies that tuples with null WHERE results do not
* get selected. On the other hand, callers evaluating constraint
* conditions should pass resultForNull=TRUE, since SQL also specifies
* that NULL constraint conditions are not failures.
*
* NOTE: it would not be correct to use this routine to evaluate an
* AND subclause of a boolean expression; for that purpose, a NULL
* result must be returned as NULL so that it can be properly treated
* in the next higher operator (cf. ExecEvalAnd and ExecEvalOr).
* This routine is only used in contexts where a complete expression
* is being evaluated and we know that NULL can be treated the same
* as one boolean result or the other.
*
* ----------------------------------------------------------------
*/
bool
ExecQual(List *qual, ExprContext *econtext, bool resultForNull)
{
bool result;
MemoryContext oldContext;
ListCell *l;
/*
* debugging stuff
*/
EV_printf("ExecQual: qual is ");
EV_nodeDisplay(qual);
EV_printf("\n");
IncrProcessed();
/*
* Run in short-lived per-tuple context while computing expressions.
*/
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
/*
* Evaluate the qual conditions one at a time. If we find a FALSE result,
* we can stop evaluating and return FALSE --- the AND result must be
* FALSE. Also, if we find a NULL result when resultForNull is FALSE, we
* can stop and return FALSE --- the AND result must be FALSE or NULL in
* that case, and the caller doesn't care which.
*
* If we get to the end of the list, we can return TRUE. This will happen
* when the AND result is indeed TRUE, or when the AND result is NULL (one
* or more NULL subresult, with all the rest TRUE) and the caller has
* specified resultForNull = TRUE.
*/
result = true;
foreach(l, qual)
{
ExprState *clause = (ExprState *) lfirst(l);
Datum expr_value;
bool isNull;
expr_value = ExecEvalExpr(clause, econtext, &isNull, NULL);
if (isNull)
{
if (resultForNull == false)
{
result = false; /* treat NULL as FALSE */
break;
}
}
else
{
if (!DatumGetBool(expr_value))
{
result = false; /* definitely FALSE */
break;
}
}
}
MemoryContextSwitchTo(oldContext);
return result;
}
/*
* Number of items in a tlist (including any resjunk items!)
*/
int
ExecTargetListLength(List *targetlist)
{
/* This used to be more complex, but fjoins are dead */
return list_length(targetlist);
}
/*
* Number of items in a tlist, not including any resjunk items
*/
int
ExecCleanTargetListLength(List *targetlist)
{
int len = 0;
ListCell *tl;
foreach(tl, targetlist)
{
TargetEntry *curTle = (TargetEntry *) lfirst(tl);
Assert(IsA(curTle, TargetEntry));
if (!curTle->resjunk)
len++;
}
return len;
}
/*
* ExecTargetList
* Evaluates a targetlist with respect to the given
* expression context. Returns TRUE if we were able to create
* a result, FALSE if we have exhausted a set-valued expression.
*
* Results are stored into the passed values and isnull arrays.
* The caller must provide an itemIsDone array that persists across calls.
*
* As with ExecEvalExpr, the caller should pass isDone = NULL if not
* prepared to deal with sets of result tuples. Otherwise, a return
* of *isDone = ExprMultipleResult signifies a set element, and a return
* of *isDone = ExprEndResult signifies end of the set of tuple.
*/
static bool
ExecTargetList(List *targetlist,
ExprContext *econtext,
Datum *values,
bool *isnull,
ExprDoneCond *itemIsDone,
ExprDoneCond *isDone)
{
MemoryContext oldContext;
ListCell *tl;
bool haveDoneSets;
/*
* Run in short-lived per-tuple context while computing expressions.
*/
oldContext = MemoryContextSwitchTo(econtext->ecxt_per_tuple_memory);
/*
* evaluate all the expressions in the target list
*/
if (isDone)
*isDone = ExprSingleResult; /* until proven otherwise */
haveDoneSets = false; /* any exhausted set exprs in tlist? */
foreach(tl, targetlist)
{
GenericExprState *gstate = (GenericExprState *) lfirst(tl);
TargetEntry *tle = (TargetEntry *) gstate->xprstate.expr;
AttrNumber resind = tle->resno - 1;
values[resind] = ExecEvalExpr(gstate->arg,
econtext,
&isnull[resind],
&itemIsDone[resind]);
if (itemIsDone[resind] != ExprSingleResult)
{
/* We have a set-valued expression in the tlist */
if (isDone == NULL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("set-valued function called in context that cannot accept a set")));
if (itemIsDone[resind] == ExprMultipleResult)
{
/* we have undone sets in the tlist, set flag */
*isDone = ExprMultipleResult;
}
else
{
/* we have done sets in the tlist, set flag for that */
haveDoneSets = true;
}
}
}
if (haveDoneSets)
{
/*
* note: can't get here unless we verified isDone != NULL
*/
if (*isDone == ExprSingleResult)
{
/*
* all sets are done, so report that tlist expansion is complete.
*/
*isDone = ExprEndResult;
MemoryContextSwitchTo(oldContext);
return false;
}
else
{
/*
* We have some done and some undone sets. Restart the done ones
* so that we can deliver a tuple (if possible).
*/
foreach(tl, targetlist)
{
GenericExprState *gstate = (GenericExprState *) lfirst(tl);
TargetEntry *tle = (TargetEntry *) gstate->xprstate.expr;
AttrNumber resind = tle->resno - 1;
if (itemIsDone[resind] == ExprEndResult)
{
values[resind] = ExecEvalExpr(gstate->arg,
econtext,
&isnull[resind],
&itemIsDone[resind]);
if (itemIsDone[resind] == ExprEndResult)
{
/*
* Oh dear, this item is returning an empty set. Guess
* we can't make a tuple after all.
*/
*isDone = ExprEndResult;
break;
}
}
}
/*
* If we cannot make a tuple because some sets are empty, we still
* have to cycle the nonempty sets to completion, else resources
* will not be released from subplans etc.
*
* XXX is that still necessary?
*/
if (*isDone == ExprEndResult)
{
foreach(tl, targetlist)
{
GenericExprState *gstate = (GenericExprState *) lfirst(tl);
TargetEntry *tle = (TargetEntry *) gstate->xprstate.expr;
AttrNumber resind = tle->resno - 1;
while (itemIsDone[resind] == ExprMultipleResult)
{
values[resind] = ExecEvalExpr(gstate->arg,
econtext,
&isnull[resind],
&itemIsDone[resind]);
}
}
MemoryContextSwitchTo(oldContext);
return false;
}
}
}
/* Report success */
MemoryContextSwitchTo(oldContext);
return true;
}
/*
* ExecVariableList
* Evaluates a simple-Variable-list projection.
*
* Results are stored into the passed values and isnull arrays.
*/
static void
ExecVariableList(ProjectionInfo *projInfo,
Datum *values,
bool *isnull)
{
ExprContext *econtext = projInfo->pi_exprContext;
int *varSlotOffsets = projInfo->pi_varSlotOffsets;
int *varNumbers = projInfo->pi_varNumbers;
int i;
/*
* Assign to result by direct extraction of fields from source slots ... a
* mite ugly, but fast ...
*/
for (i = list_length(projInfo->pi_targetlist) - 1; i >= 0; i--)
{
char *slotptr = ((char *) econtext) + varSlotOffsets[i];
TupleTableSlot *varSlot = *((TupleTableSlot **) slotptr);
int varNumber = varNumbers[i] - 1;
values[i] = slot_getattr(varSlot, varNumber+1, &(isnull[i]));
}
}
/*
* ExecProject
*
* projects a tuple based on projection info and stores
* it in the previously specified tuple table slot.
*
* Note: the result is always a virtual tuple; therefore it
* may reference the contents of the exprContext's scan tuples
* and/or temporary results constructed in the exprContext.
* If the caller wishes the result to be valid longer than that
* data will be valid, he must call ExecMaterializeSlot on the
* result slot.
*/
TupleTableSlot *
ExecProject(ProjectionInfo *projInfo, ExprDoneCond *isDone)
{
TupleTableSlot *slot;
/*
* sanity checks
*/
Assert(projInfo != NULL);
/*
* get the projection info we want
*/
slot = projInfo->pi_slot;
/*
* Clear any former contents of the result slot. This makes it safe for
* us to use the slot's Datum/isnull arrays as workspace. (Also, we can
* return the slot as-is if we decide no rows can be projected.)
*/
ExecClearTuple(slot);
/*
* form a new result tuple (if possible); if successful, mark the result
* slot as containing a valid virtual tuple
*/
if (projInfo->pi_isVarList)
{
/* simple Var list: this always succeeds with one result row */
if (isDone)
*isDone = ExprSingleResult;
ExecVariableList(projInfo, slot_get_values(slot), slot_get_isnull(slot));
ExecStoreVirtualTuple(slot);
}
else
{
if (ExecTargetList(projInfo->pi_targetlist,
projInfo->pi_exprContext,
slot_get_values(slot),
slot_get_isnull(slot),
(ExprDoneCond *) projInfo->pi_itemIsDone,
isDone))
ExecStoreVirtualTuple(slot);
}
return slot;
}
/*
* ExecIsExprUnsafeToConst_walker
*
* Almost all of the expressions are not allowed without the executor.
* Returns true as soon as possible we find such unsafe nodes.
*/
static bool
ExecIsExprUnsafeToConst_walker(Node *node, void *context)
{
switch(nodeTag(node))
{
/*
* Param can be a Const in some situation, but the demanded use case
* so far doesn't want it.
*/
case T_Const:
case T_CaseTestExpr:
case T_FuncExpr:
case T_OpExpr:
case T_DistinctExpr:
case T_ScalarArrayOpExpr:
case T_BoolExpr:
case T_CaseExpr:
case T_CoalesceExpr:
case T_MinMaxExpr:
case T_NullIfExpr:
case T_NullTest:
case T_BooleanTest:
case T_List:
case T_TypeCast:
return false;
default:
return true;
}
}
/*
* ExecIsExprUnsafeToConst
*
* Returns true if the expression cannot be evaluated to a const value.
*/
static bool
ExecIsExprUnsafeToConst(Node *node)
{
Assert(node != NULL);
return ExecIsExprUnsafeToConst_walker(node, NULL);
}
/*
* ExecEvalFunctionArgToConst
*
* Evaluates an argument of function expression and returns the result.
* This is assumed to be used in the parser stage, where
* dynamic evaluation such like Var is not available, though we put it
* here so that we can extend it to be useful in other places later.
*/
Datum
ExecEvalFunctionArgToConst(FuncExpr *fexpr, int argno, bool *isnull)
{
Expr *aexpr;
Oid argtype;
Const *result;
/* argument number sanity check */
if (argno < 0 || list_length(fexpr->args) <= argno)
elog(ERROR, "invalid argument number found during evaluating function argument");
aexpr = (Expr *) list_nth(fexpr->args, argno);
/*
* Check if the expression can be evaluated in the Const fasion.
*/
if (ExecIsExprUnsafeToConst((Node *) aexpr))
elog(ERROR, "unable to resolve function argument");
argtype = exprType((Node *) aexpr);
if (!OidIsValid(argtype))
elog(ERROR, "unable to resolve function argument type");
result = (Const *) evaluate_expr(aexpr, argtype);
/* evaluate_expr always returns Const */
Assert(IsA(result, Const));
if (isnull)
*isnull = result->constisnull;
return result->constvalue;
}
typedef struct neededColumnContext
{
bool *mask;
int n;
} neededColumnContext;
static bool
neededColumnContextWalker(Node *node, neededColumnContext *c)
{
if (node == NULL)
return false;
if (IsA(node, Var))
{
Var *var = (Var *)node;
if (var->varattno > 0)
{
Assert(var->varattno <= c->n);
c->mask[var->varattno - 1] = true;
}
/*
* If all attributes are included,
* set all entries in mask to true.
*/
else if (var->varattno == 0)
{
int i;
for (i=0; i < c->n; i++)
c->mask[i] = true;
}
return false;
}
return expression_tree_walker(node, neededColumnContextWalker, (void * )c);
}
/*
* n specifies the number of allowed entries in mask: we use
* it for bounds-checking in the walker above.
*/
void GetNeededColumnsForScan(Node *expr, bool *mask, int n)
{
neededColumnContext c;
c.mask = mask;
c.n = n;
neededColumnContextWalker(expr, &c);
}
/* ----------------------------------------------------------------
* isJoinExprNull
*
* Checks if the join expression evaluates to NULL for a given
* input tuple.
*
* The input tuple has to be present in the correct TupleTableSlot
* in the ExprContext. For example, if all the expressions
* in joinExpr refer to the inner side of the join,
* econtext->ecxt_innertuple must be valid.
* ----------------------------------------------------------------
*/
bool
isJoinExprNull(List *joinExpr, ExprContext *econtext)
{
Assert(NULL != joinExpr);
bool joinkeys_null = true;
ListCell *lc;
foreach(lc, joinExpr)
{
ExprState *keyexpr = (ExprState *) lfirst(lc);
bool isNull = false;
/*
* Evaluate the current join attribute value of the tuple
*/
ExecEvalExpr(keyexpr, econtext, &isNull, NULL);
if (!isNull)
{
/* Found at least one non-null join expression, we're done */
joinkeys_null = false;
break;
}
}
return joinkeys_null;
}