blob: 3ffbd671133317acf0d2c7c3ee4ea97a02793a7b [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package java.util;
/**
* LinkedHashMap is a variant of HashMap. Its entries are kept in a
* doubly-linked list. The iteration order is, by default, the order in which
* keys were inserted. Reinserting an already existing key doesn't change the
* order. A key is existing if a call to {@code containsKey} would return true.
* <p>
* If the three argument constructor is used, and {@code order} is specified as
* {@code true}, the iteration will be in the order that entries were accessed.
* The access order gets affected by put(), get(), putAll() operations, but not
* by operations on the collection views.
* <p>
* Null elements are allowed, and all the optional map operations are supported.
* <p>
* <b>Note:</b> The implementation of {@code LinkedHashMap} is not synchronized.
* If one thread of several threads accessing an instance modifies the map
* structurally, access to the map needs to be synchronized. For
* insertion-ordered instances a structural modification is an operation that
* removes or adds an entry. Access-ordered instances also are structurally
* modified by put(), get() and putAll() since these methods change the order of
* the entries. Changes in the value of an entry are not structural changes.
* <p>
* The Iterator that can be created by calling the {@code iterator} method
* throws a {@code ConcurrentModificationException} if the map is structurally
* changed while an iterator is used to iterate over the elements. Only the
* {@code remove} method that is provided by the iterator allows for removal of
* elements during iteration. It is not possible to guarantee that this
* mechanism works in all cases of unsynchronized concurrent modification. It
* should only be used for debugging purposes.
*
* @since 1.4
*/
public class LinkedHashMap<K, V> extends HashMap<K, V> {
private static final long serialVersionUID = 3801124242820219131L;
private final boolean accessOrder;
transient private LinkedHashMapEntry<K, V> head, tail;
/**
* Constructs a new empty {@code LinkedHashMap} instance.
*/
public LinkedHashMap() {
super();
accessOrder = false;
head = null;
}
/**
* Constructs a new {@code LinkedHashMap} instance with the specified
* capacity.
*
* @param s
* the initial capacity of this map.
* @throws IllegalArgumentException
* if the capacity is less than zero.
*/
public LinkedHashMap(int s) {
super(s);
accessOrder = false;
head = null;
}
/**
* Constructs a new {@code LinkedHashMap} instance with the specified
* capacity and load factor.
*
* @param s
* the initial capacity of this map.
* @param lf
* the initial load factor.
* @throws IllegalArgumentException
* when the capacity is less than zero or the load factor is
* less or equal to zero.
*/
public LinkedHashMap(int s, float lf) {
super(s, lf);
accessOrder = false;
head = null;
tail = null;
}
/**
* Constructs a new {@code LinkedHashMap} instance with the specified
* capacity, load factor and a flag specifying the ordering behavior.
*
* @param s
* the initial capacity of this hash map.
* @param lf
* the initial load factor.
* @param order
* {@code true} if the ordering should be done based on the last
* access (from least-recently accessed to most-recently
* accessed), and {@code false} if the ordering should be the
* order in which the entries were inserted.
* @throws IllegalArgumentException
* when the capacity is less than zero or the load factor is
* less or equal to zero.
*/
public LinkedHashMap(int s, float lf, boolean order) {
super(s, lf);
accessOrder = order;
head = null;
tail = null;
}
/**
* Constructs a new {@code LinkedHashMap} instance containing the mappings
* from the specified map. The order of the elements is preserved.
*
* @param m
* the mappings to add.
*/
public LinkedHashMap(Map<? extends K, ? extends V> m) {
accessOrder = false;
head = null;
tail = null;
putAll(m);
}
private static class AbstractMapIterator<K, V> {
int expectedModCount;
LinkedHashMapEntry<K, V> futureEntry;
LinkedHashMapEntry<K, V> currentEntry;
final LinkedHashMap<K, V> associatedMap;
AbstractMapIterator(LinkedHashMap<K, V> map) {
expectedModCount = map.modCount;
futureEntry = map.head;
associatedMap = map;
}
public boolean hasNext() {
return (futureEntry != null);
}
final void checkConcurrentMod() throws ConcurrentModificationException {
if (expectedModCount != associatedMap.modCount) {
throw new ConcurrentModificationException();
}
}
final void makeNext() {
checkConcurrentMod();
if (!hasNext()) {
throw new NoSuchElementException();
}
currentEntry = futureEntry;
futureEntry = futureEntry.chainForward;
}
public void remove() {
checkConcurrentMod();
if (currentEntry==null) {
throw new IllegalStateException();
}
associatedMap.removeEntry(currentEntry);
LinkedHashMapEntry<K, V> lhme = currentEntry;
LinkedHashMapEntry<K, V> p = lhme.chainBackward;
LinkedHashMapEntry<K, V> n = lhme.chainForward;
LinkedHashMap<K, V> lhm = associatedMap;
if (p != null) {
p.chainForward = n;
if (n != null) {
n.chainBackward = p;
} else {
lhm.tail = p;
}
} else {
lhm.head = n;
if (n != null) {
n.chainBackward = null;
} else {
lhm.tail = null;
}
}
currentEntry = null;
expectedModCount++;
}
}
private static class EntryIterator <K, V> extends AbstractMapIterator<K, V> implements Iterator<Map.Entry<K, V>> {
EntryIterator (LinkedHashMap<K, V> map) {
super(map);
}
public Map.Entry<K, V> next() {
makeNext();
return currentEntry;
}
}
private static class KeyIterator <K, V> extends AbstractMapIterator<K, V> implements Iterator<K> {
KeyIterator (LinkedHashMap<K, V> map) {
super(map);
}
public K next() {
makeNext();
return currentEntry.key;
}
}
private static class ValueIterator <K, V> extends AbstractMapIterator<K, V> implements Iterator<V> {
ValueIterator (LinkedHashMap<K, V> map) {
super(map);
}
public V next() {
makeNext();
return currentEntry.value;
}
}
static final class LinkedHashMapEntrySet<KT, VT> extends
HashMapEntrySet<KT, VT> {
public LinkedHashMapEntrySet(LinkedHashMap<KT, VT> lhm) {
super(lhm);
}
@Override
public Iterator<Map.Entry<KT, VT>> iterator() {
return new EntryIterator<KT,VT>((LinkedHashMap<KT, VT>) hashMap());
}
}
static final class LinkedHashMapEntry<K, V> extends Entry<K, V> {
LinkedHashMapEntry<K, V> chainForward, chainBackward;
LinkedHashMapEntry(K theKey, V theValue) {
super(theKey, theValue);
chainForward = null;
chainBackward = null;
}
LinkedHashMapEntry(K theKey, int hash) {
super(theKey, hash);
chainForward = null;
chainBackward = null;
}
@Override
@SuppressWarnings("unchecked")
public Object clone() {
LinkedHashMapEntry<K, V> entry = (LinkedHashMapEntry<K, V>) super
.clone();
entry.chainBackward = chainBackward;
entry.chainForward = chainForward;
LinkedHashMapEntry<K, V> lnext = (LinkedHashMapEntry<K, V>) entry.next;
if (lnext != null) {
entry.next = (LinkedHashMapEntry<K, V>) lnext.clone();
}
return entry;
}
}
@Override
public boolean containsValue(Object value) {
LinkedHashMapEntry<K, V> entry = head;
if (null == value) {
while (null != entry) {
if (null == entry.value) {
return true;
}
entry = entry.chainForward;
}
} else {
while (null != entry) {
if (value.equals(entry.value)) {
return true;
}
entry = entry.chainForward;
}
}
return false;
}
/**
* Create a new element array
*
* @param s
* @return Reference to the element array
*/
@Override
@SuppressWarnings("unchecked")
Entry<K, V>[] newElementArray(int s) {
return new LinkedHashMapEntry[s];
}
/**
* Returns the value of the mapping with the specified key.
*
* @param key
* the key.
* @return the value of the mapping with the specified key, or {@code null}
* if no mapping for the specified key is found.
*/
@Override
public V get(Object key) {
LinkedHashMapEntry<K, V> m;
if (key == null) {
m = (LinkedHashMapEntry<K, V>) findNullKeyEntry();
} else {
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % elementData.length;
m = (LinkedHashMapEntry<K, V>) findNonNullKeyEntry(key, index, hash);
}
if (m == null) {
return null;
}
if (accessOrder && tail != m) {
LinkedHashMapEntry<K, V> p = m.chainBackward;
LinkedHashMapEntry<K, V> n = m.chainForward;
n.chainBackward = p;
if (p != null) {
p.chainForward = n;
} else {
head = n;
}
m.chainForward = null;
m.chainBackward = tail;
tail.chainForward = m;
tail = m;
}
return m.value;
}
/*
* @param key @param index @return Entry
*/
@Override
Entry<K, V> createEntry(K key, int index, V value) {
LinkedHashMapEntry<K, V> m = new LinkedHashMapEntry<K, V>(key, value);
m.next = elementData[index];
elementData[index] = m;
linkEntry(m);
return m;
}
Entry<K, V> createHashedEntry(K key, int index, int hash) {
LinkedHashMapEntry<K, V> m = new LinkedHashMapEntry<K, V>(key, hash);
m.next = elementData[index];
elementData[index] = m;
linkEntry(m);
return m;
}
/**
* Maps the specified key to the specified value.
*
* @param key
* the key.
* @param value
* the value.
* @return the value of any previous mapping with the specified key or
* {@code null} if there was no such mapping.
*/
@Override
public V put(K key, V value) {
V result = putImpl(key, value);
if (removeEldestEntry(head)) {
remove(head.key);
}
return result;
}
V putImpl(K key, V value) {
LinkedHashMapEntry<K, V> m;
if (elementCount == 0) {
head = tail = null;
}
if (key == null) {
m = (LinkedHashMapEntry<K, V>) findNullKeyEntry();
if (m == null) {
modCount++;
// Check if we need to remove the oldest entry. The check
// includes accessOrder since an accessOrder LinkedHashMap does
// not record the oldest member in 'head'.
if (++elementCount > threshold) {
rehash();
}
m = (LinkedHashMapEntry<K, V>) createHashedEntry(null, 0, 0);
} else {
linkEntry(m);
}
} else {
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % elementData.length;
m = (LinkedHashMapEntry<K, V>) findNonNullKeyEntry(key, index, hash);
if (m == null) {
modCount++;
if (++elementCount > threshold) {
rehash();
index = (hash & 0x7FFFFFFF) % elementData.length;
}
m = (LinkedHashMapEntry<K, V>) createHashedEntry(key, index,
hash);
} else {
linkEntry(m);
}
}
V result = m.value;
m.value = value;
return result;
}
/*
* @param m
*/
void linkEntry(LinkedHashMapEntry<K, V> m) {
if (tail == m) {
return;
}
if (head == null) {
// Check if the map is empty
head = tail = m;
return;
}
// we need to link the new entry into either the head or tail
// of the chain depending on if the LinkedHashMap is accessOrder or not
LinkedHashMapEntry<K, V> p = m.chainBackward;
LinkedHashMapEntry<K, V> n = m.chainForward;
if (p == null) {
if (n != null) {
// The entry must be the head but not the tail
if (accessOrder) {
head = n;
n.chainBackward = null;
m.chainBackward = tail;
m.chainForward = null;
tail.chainForward = m;
tail = m;
}
} else {
// This is a new entry
m.chainBackward = tail;
m.chainForward = null;
tail.chainForward = m;
tail = m;
}
return;
}
if (n == null) {
// The entry must be the tail so we can't get here
return;
}
// The entry is neither the head nor tail
if (accessOrder) {
p.chainForward = n;
n.chainBackward = p;
m.chainForward = null;
m.chainBackward = tail;
tail.chainForward = m;
tail = m;
}
}
/**
* Returns a set containing all of the mappings in this map. Each mapping is
* an instance of {@link Map.Entry}. As the set is backed by this map,
* changes in one will be reflected in the other.
*
* @return a set of the mappings.
*/
@Override
public Set<Map.Entry<K, V>> entrySet() {
return new LinkedHashMapEntrySet<K, V>(this);
}
/**
* Returns a set of the keys contained in this map. The set is backed by
* this map so changes to one are reflected by the other. The set does not
* support adding.
*
* @return a set of the keys.
*/
@Override
public Set<K> keySet() {
if (keySet == null) {
keySet = new AbstractSet<K>() {
@Override
public boolean contains(Object object) {
return containsKey(object);
}
@Override
public int size() {
return LinkedHashMap.this.size();
}
@Override
public void clear() {
LinkedHashMap.this.clear();
}
@Override
public boolean remove(Object key) {
if (containsKey(key)) {
LinkedHashMap.this.remove(key);
return true;
}
return false;
}
@Override
public Iterator<K> iterator() {
return new KeyIterator<K,V>(LinkedHashMap.this);
}
};
}
return keySet;
}
/**
* Returns a collection of the values contained in this map. The collection
* is backed by this map so changes to one are reflected by the other. The
* collection supports remove, removeAll, retainAll and clear operations,
* and it does not support add or addAll operations.
* <p>
* This method returns a collection which is the subclass of
* AbstractCollection. The iterator method of this subclass returns a
* "wrapper object" over the iterator of map's entrySet(). The size method
* wraps the map's size method and the contains method wraps the map's
* containsValue method.
* <p>
* The collection is created when this method is called for the first time
* and returned in response to all subsequent calls. This method may return
* different collections when multiple concurrent calls occur, since no
* synchronization is performed.
*
* @return a collection of the values contained in this map.
*/
@Override
public Collection<V> values() {
if (valuesCollection == null) {
valuesCollection = new AbstractCollection<V>() {
@Override
public boolean contains(Object object) {
return containsValue(object);
}
@Override
public int size() {
return LinkedHashMap.this.size();
}
@Override
public void clear() {
LinkedHashMap.this.clear();
}
@Override
public Iterator<V> iterator() {
return new ValueIterator<K,V>(LinkedHashMap.this);
}
};
}
return valuesCollection;
}
/**
* Removes the mapping with the specified key from this map.
*
* @param key
* the key of the mapping to remove.
* @return the value of the removed mapping or {@code null} if no mapping
* for the specified key was found.
*/
@Override
public V remove(Object key) {
LinkedHashMapEntry<K, V> m = (LinkedHashMapEntry<K, V>) removeEntry(key);
if (m == null) {
return null;
}
LinkedHashMapEntry<K, V> p = m.chainBackward;
LinkedHashMapEntry<K, V> n = m.chainForward;
if (p != null) {
p.chainForward = n;
} else {
head = n;
}
if (n != null) {
n.chainBackward = p;
} else {
tail = p;
}
return m.value;
}
/**
* This method is queried from the put and putAll methods to check if the
* eldest member of the map should be deleted before adding the new member.
* If this map was created with accessOrder = true, then the result of
* removeEldestEntry is assumed to be false.
*
* @param eldest
* the entry to check if it should be removed.
* @return {@code true} if the eldest member should be removed.
*/
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
return false;
}
/**
* Removes all elements from this map, leaving it empty.
*
* @see #isEmpty()
* @see #size()
*/
@Override
public void clear() {
super.clear();
head = tail = null;
}
}